JPH02232366A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH02232366A
JPH02232366A JP5214389A JP5214389A JPH02232366A JP H02232366 A JPH02232366 A JP H02232366A JP 5214389 A JP5214389 A JP 5214389A JP 5214389 A JP5214389 A JP 5214389A JP H02232366 A JPH02232366 A JP H02232366A
Authority
JP
Japan
Prior art keywords
film
target
sputtering
cathodes
power sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5214389A
Other languages
Japanese (ja)
Inventor
Kyuzo Nakamura
久三 中村
Yoshifumi Ota
太田 賀文
Shin Asari
伸 浅利
Takashi Miyamoto
敬司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP5214389A priority Critical patent/JPH02232366A/en
Publication of JPH02232366A publication Critical patent/JPH02232366A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously obtain multilayered laminated films and composition-modified films with a simple mechanism by providing targets of plural sputtering cathodes toward one film forming region, connecting respectively independent sputtering power sources to the above-mentioned respective cathodes and providing a means for controlling the output waveforms of the respective power sources in synchronization. CONSTITUTION:The respectively independent sputtering power sources 7a, 7b are used for the respective cathodes 2a, 2b and are connected to arbitrary waveform transmitters 8a, 8b in the case of using the target 3a consisting of an Fe-Co alloy for the above-mentioned cathode 2a and the target 3b consisting of Tb for the target 2b. The multilayered laminated films consisting of Fe-Co/Tb are formed or substrates 4 while the film thicknesses of the respective layers are controlled when square waves, etc., are impressed to the cathodes 2 by controlling the speed at which the substrates 4 pass one film forming region 6, the outputs of the respective power sources 7a, 7b and the time of the outputs thereof by the above-mentioned oscillators 8a, 8b. Further, the compsn. modulated films consisting of Fe-Co/Tb are obtd. when the output waveforms of the power sources 7a, 7b are made into sine waves, etc., by the control of the transmitters 8a, 8b.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、移動する基板にスパッタリングによる薄膜を
形成し、或は多層積層膜や組成変調膜を作成するに使用
されるスパッタ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sputtering apparatus used to form a thin film on a moving substrate by sputtering, or to create a multilayer laminated film or a compositionally modulated film.

(従来の技術) 最近、2種類以上の元素が膜厚方向に多層に繰返し積層
された多層積層膜や、膜厚方向に組成が変調している組
成変調膜の物性が研究されている。その主なものは、F
e−TI膜、Ni−Cu膜、Fe−Tb膜、PeCo 
− Tb膜、Go − Ta − Nb − N膜等で
ある。このうちのPe−Tb膜やPeCo − Tb膜
を用いて光磁気ディスクを作成すると、均一に合金化さ
れた膜を用いるよりも、Fe或はFeCo層とTb層の
繰返しの多層膜或は組成変調膜の方が保磁力が高くまた
C/N値が良好になることがわかっている。この場合の
1層あたりの膜厚は、5〜20人程度で、全体として2
00〜1000人の膜厚に積層されている。
(Prior Art) Recently, the physical properties of multilayer laminated films in which two or more types of elements are repeatedly laminated in multiple layers in the film thickness direction and composition-modulated films in which the composition is modulated in the film thickness direction have been studied. The main one is F.
e-TI film, Ni-Cu film, Fe-Tb film, PeCo
- Tb film, Go - Ta - Nb - N film, etc. When creating a magneto-optical disk using a Pe-Tb film or a PeCo-Tb film, it is possible to create a multi-layered film of repeated Fe or FeCo layers and Tb layers, or a composition of It is known that the modulation film has a higher coercive force and a better C/N value. In this case, the thickness of each layer is approximately 5 to 20 people, and the total thickness is 2.
The layers are stacked to a thickness of 00 to 1000 people.

上記の多層積層膜や組成変調膜をスパッタ法により作成
する装置としては、第1図に示すように、真空室a内に
夫々ターゲットb,cを備えた複数個のカソードdSe
を隣り合せに設置し、基板fS fを取付けた基板ホル
ダーgを防若板hを介してカソードd,eに対向させる
ようにしたものが用いられている。同図に示す装置は、
光ディスク作成用装置として使用されるもので、カソー
ドdには、例えば、Pe或はPeCoのターゲットbが
設けられ、もう一方のカソードeにはTbのターゲット
Cを設け、これらターゲットb,cを一定の電源出力で
スパッタし乍ら防着板hの開口部jに設けたシャッター
1,1を開き、回転する基板ホルダーgのディスク基板
f,fに光磁気記録用の多層膜を形成する。
As shown in Fig. 1, an apparatus for producing the above-mentioned multilayer laminated films and compositionally modulated films by sputtering is equipped with a plurality of cathodes dSe each equipped with targets b and c in a vacuum chamber a.
A substrate holder g with a substrate fS f attached thereto faces the cathodes d and e through a anti-aging plate h. The device shown in the figure is
This device is used as an optical disc creation device, and the cathode d is provided with a target b of Pe or PeCo, the other cathode e is provided with a target C of Tb, and these targets b and c are kept constant. While performing sputtering using the power output of , the shutters 1, 1 provided in the openings j of the adhesion prevention plate h are opened, and a multilayer film for magneto-optical recording is formed on the disk substrates f, f of the rotating substrate holder g.

この時、多層膜を構成する各膜の膜厚は、カソードへの
投入電力、基板ホルダーの回転数、防着板の開口部の面
積等により制御する。
At this time, the film thickness of each film constituting the multilayer film is controlled by the power input to the cathode, the rotation speed of the substrate holder, the area of the opening of the adhesion prevention plate, etc.

また、多数の基板や大型の基板に大量に成膜するスパッ
タ装置として、第2図に示すような、真空室a内に設け
たカソードdに対向する位置に基板f,fを移動させ、
その移動過程で連続的に基板f,fに成膜するようにし
たものも知られている。
In addition, as a sputtering apparatus for depositing a large amount of film on a large number of substrates or large substrates, as shown in FIG.
There is also known a method in which films are continuously formed on the substrates f and f during the movement process.

(発明が解決しようとする課題) 第1図に示した装置では、多層膜等の成膜のために必ず
基板fに回転させる必要がある。従って、例えば基板に
下地膜としてSiNx[を形成し、次いでその上にPe
Co − Tbの多層積層膜を形成し、更にその上に保
護膜としてsiNxmを形成するような、実際の先磁気
ディスクの場合には、製造装置として下地膜、多層積層
膜及び保護膜を形成するための3室を備えると共に基板
ホルダーを回転し且つ移動させるための機構を備えたも
のが必要になる。かかる構成の製造装置は機構が極めて
複雑になり、信頼性が悪くなる問題点がある。また、基
板ホルダーをカソード間の中心に移動した後、シャッタ
ーを開けて成膜し、その成膜が終ると再度シャッターを
閉じて基板ホルダーを移動させるので、成膜を行なえな
い移動時間が多くなり、量産性が悪くなる不都合を生ず
ると共に、成膜されない時間中に成摸面が残留ガス雰囲
気にさらされるので、そのEに次の成膜層を形成した場
合、層と層の開に不純ガス分子を混入I7勝ちである不
都合を生ずる。更に、かかる構成の製造装置により多層
積層膜を作成することは基本的には可能であるが、組成
が膜厚方向に連続的に変化している組成変調膜を作成す
ることは出来ない。
(Problems to be Solved by the Invention) In the apparatus shown in FIG. 1, it is necessary to rotate the substrate f in order to form a multilayer film or the like. Therefore, for example, SiNx is formed on the substrate as a base film, and then Pe
In the case of an actual magnetic disk in which a Co-Tb multilayer film is formed and siNxm is further formed as a protective film on top of the Co-Tb multilayer film, the manufacturing equipment forms the base film, multilayer film, and protective film. It is necessary to have three chambers for this purpose, as well as a mechanism for rotating and moving the substrate holder. A manufacturing apparatus having such a configuration has a problem that the mechanism is extremely complicated and reliability is poor. In addition, after moving the substrate holder to the center between the cathodes, the shutter is opened to form a film, and when the film formation is finished, the shutter is closed again and the substrate holder is moved, so there is a lot of travel time during which film formation cannot be performed. In addition to causing the inconvenience of poor mass production, the surface to be coated is exposed to a residual gas atmosphere during the time when no film is being formed, so when the next film layer is formed on that E, impurity gas may be present in the gap between the layers. Mixing the molecule causes the inconvenience of I7 winning. Furthermore, although it is basically possible to create a multilayer laminated film using a manufacturing apparatus having such a configuration, it is not possible to create a composition-modulated film in which the composition changes continuously in the film thickness direction.

一方、第2図示の通過型スパッタ装置では、カソードに
対向している位置を基板が移動していく過程で連続的に
成膜を行なえるが、多層積層膜や組成変調膜を作成する
ことは出来ない。
On the other hand, with the pass-through sputtering apparatus shown in Figure 2, films can be formed continuously as the substrate moves through the position facing the cathode, but it is not possible to create multilayered films or compositionally modulated films. Can not.

本発明は、前記の問題点、不都合を解消するもので、機
構が簡単で、スパッタを中止スルコ己なく連続的に成膜
を行なえ、不純物ガス分子のとり込みが少なく、組成変
調膜をも作成可能なスパッタ装置を提供することを目的
とするものである。
The present invention solves the above-mentioned problems and inconveniences, and has a simple mechanism, allows continuous film formation without stopping sputtering, reduces the amount of impurity gas molecules incorporated, and can also create compositionally modulated films. The purpose of this invention is to provide a sputtering device that can be used.

(課題を解決するための手段) 本発明では、真空室内にターゲットを備えたスパッタカ
ソードを設け、基板を該ターゲットと対向する成膜領域
を移動させ乍ら該基板に成膜を施すようにしたものに於
いて、複数個のスパッタカソ一ドの各ターゲットを1つ
の成III M域に向けて設け、各スパッタカソードに
夫々独立したスパッタ電源を接続すると共に該スパッタ
電源にその出力を同期して任意の波形に制御する手段を
設けることにより、前記目的を達成するようにした。こ
の場合、スパッタ電源の出力の制御を行なう手段として
任意波形発振器を設けることが好ましい。
(Means for Solving the Problems) In the present invention, a sputter cathode equipped with a target is provided in a vacuum chamber, and a film is formed on the substrate while moving the film forming region facing the target. In this method, each target of a plurality of sputter cathodes is provided to face one growth region, and an independent sputter power supply is connected to each sputter cathode, and its output is synchronized with the sputter power supply to perform arbitrary processing. The above object is achieved by providing means for controlling the waveform. In this case, it is preferable to provide an arbitrary waveform oscillator as means for controlling the output of the sputtering power source.

(作 用) 真空室内に設けたターゲットと対向する成膜領域を、基
板ホルダーにより保持した基板を移動させ、該基板にス
パッタ膜を形成するが、1つの成膜領域に向けて複数の
スパッタカソードのターゲットが設けられており、各ス
パッタカソードには夫々独立したスパッタ電源が接続さ
れ、しかもその電源出力は例えば任意波形発娠器により
同期して任意の波形に制御出来るので、基板が該一つの
成膜領域を通過する速度と各電源の出力及びその出力の
時間を制御すれば、該基板に夫々の層の膜厚を制御し乍
ら多層積層膜を形成することが出来、更に各電源の出力
波形を変化させると膜の組成変調の状態が制御され、組
成変調膜を基板上に成膜することが出来る。
(Operation) A substrate held by a substrate holder is moved to a film forming area facing a target provided in a vacuum chamber, and a sputtered film is formed on the substrate. targets are provided, each sputter cathode is connected to an independent sputter power source, and the power output can be synchronously controlled to an arbitrary waveform by, for example, an arbitrary waveform generator, so that the substrate can be By controlling the speed at which the film passes through the film forming region, the output of each power source, and the output time, it is possible to form a multilayer film on the substrate while controlling the film thickness of each layer. By changing the output waveform, the state of compositional modulation of the film is controlled, and a compositionally modulated film can be formed on the substrate.

尚、各ターゲットは互に内方に傾けることにより基板に
対して角度を持たせ、できるだけ基板上に形成される膜
の組成分布の不均一が発生しないようにすることが好ま
しい。
Incidentally, it is preferable that each target be tilted inward to each other so as to have an angle with respect to the substrate so as to prevent uneven composition distribution of the film formed on the substrate as much as possible.

(実施例) 本発明の実施例を図面第3図に基づき説明すると、同図
に於いて符号(1)は真空排気された真空室、(2)は
ターゲット(3》を備えたスパッタカソード、(4)は
基板ホルダ(5)に取付けられて真空室(1)内のター
ゲット(3)と対向する成膜領域(6)を移動する例え
ばポリカーボネート製の光磁気ディスク用の基板を示す
。図示の例では該スパッタカソード(2)を2個設け、
各スパッタカソード(2a) (2b)を互に内方に傾
けることによりその夫々のターゲット(3a) (3b
)を1つの成膜領域(6)に向けるようにした。光磁気
ディスクを作成する場合、一方のターゲット(3a)と
して例えば90%Fe−10%Co合金が使用され、も
う一方のターゲット(3b)にはTbが使用される。
(Embodiment) An embodiment of the present invention will be explained based on FIG. 3. In the figure, reference numeral (1) is an evacuated vacuum chamber, (2) is a sputter cathode equipped with a target (3), (4) shows a substrate for a magneto-optical disk made of polycarbonate, for example, which is attached to a substrate holder (5) and moves in a film forming area (6) facing a target (3) in a vacuum chamber (1). In the example, two sputter cathodes (2) are provided,
By tilting each sputter cathode (2a) (2b) inwardly relative to each other, its respective target (3a) (3b)
) was made to face one film forming region (6). When producing a magneto-optical disk, for example, a 90% Fe-10% Co alloy is used as one target (3a), and Tb is used as the other target (3b).

(7a) (7b)は各スパッタカソード(2a) (
2b)の夫々にスパッタ電力を共給するスパッタ電源、
(8a)(8b)は各スパッタ電源(7a)(7b)の
出力を例えば第4図乃至第6図示のように同期して任意
の波形に制御する手段を示し、各手段(8a) (8b
)は例えばトリガー信号発生器(9)により制御された
任意波形発振器で構成される。(′IOはアースした防
看板である。
(7a) (7b) are each sputter cathode (2a) (
2b) a sputtering power supply that supplies sputtering power to each of the above;
(8a) (8b) shows means for controlling the output of each sputtering power source (7a) (7b) to an arbitrary waveform in synchronization as shown in FIGS. 4 to 6, and each means (8a) (8b)
) is composed of, for example, an arbitrary waveform oscillator controlled by a trigger signal generator (9). ('IO is a grounded bulletin board.

第3図示の装置に於いて、カソード(2a)に90%F
e−10%Co合金のグリッド型のターゲット(3a)
を使用し、カソード(2b)にTbのターゲット(3b
)を使用して光磁気ディスクを作成した。各カソード(
2a) (2b)にはマグネトロンカソードを用い、そ
の電源(7a)(7b)に直流電源を用いた。
In the apparatus shown in Figure 3, 90% F is applied to the cathode (2a).
Grid type target of e-10%Co alloy (3a)
and a Tb target (3b) on the cathode (2b).
) was used to create a magneto-optical disk. Each cathode (
2a) A magnetron cathode was used for (2b), and a DC power supply was used for the power supply (7a) and (7b).

そして任意波形発振器(8a) (8b)により、電源
(7a) (7b)から第5図示のような直流波形を出
力させ、カソード(2a> (2b)に夫々印加した。
Then, the arbitrary waveform oscillators (8a) (8b) caused the power supplies (7a) (7b) to output DC waveforms as shown in Figure 5, and applied them to the cathodes (2a>(2b)).

両カソード(2a) (2b)の大きさは共に3インチ
×8インチの長方形である。カソード(2a)には、第
5図のAで示すように、1.51V 、1秒の矩形波を
1秒間の休止時間をはさんで印加した。また、カソード
(2b)には、第5図のBで示すように、0.4KW 
, 1秒間の矩形波を1秒間の休止時間をはさんで印加
し、夫々の矩形波の位相を180 ”ずらした。基板(
4)には、SINx膜を700人成膜したポリカーボネ
ート光磁気ディスク基板を用い、これを200 mm/
n+inの搬送速度でターゲット(3a)(3b)と対
向する成膜領域(6)を移動通過させた。
Both cathodes (2a) and (2b) have rectangular dimensions of 3 inches by 8 inches. As shown by A in FIG. 5, a 1.51 V, 1 second rectangular wave was applied to the cathode (2a) with a 1 second rest period in between. In addition, the cathode (2b) has a 0.4KW power as shown by B in Figure 5.
, A 1-second square wave was applied with a 1-second rest period in between, and the phase of each square wave was shifted by 180''.
For 4), a polycarbonate magneto-optical disk substrate on which 700 SINx films were deposited was used, and this was
The film was moved through the film forming region (6) facing the targets (3a) and (3b) at a transport speed of n+in.

この通過後に、該基板(4)のSiNx膜上にはPeC
o/Tbの多層積層膜が形成され、その形成後にその上
に別個にSINx膜を700人保護膜として更に形成し
、光磁気ディスクを得た。
After this passage, PeC is deposited on the SiNx film of the substrate (4).
A multilayer laminated film of o/Tb was formed, and after the formation, a SINx film was separately formed thereon as a protective film to obtain a magneto-optical disk.

このようにして作成したPeCo/Tb多層積層膜は、
PeCo層が約12人でTb層で約3人であった。
The PeCo/Tb multilayer film produced in this way is
There were about 12 people in the PeCo layer and about 3 people in the Tb layer.

この膜は垂直磁気異方性を示し、垂直方向に測定した保
持力は12Kエルステッド、カー回転角は25″で良好
な光磁気特性を示した。
This film exhibited perpendicular magnetic anisotropy, had a coercive force measured in the perpendicular direction of 12 K Oersteds, had a Kerr rotation angle of 25'', and exhibited good magneto-optical properties.

また、任意波形発振器の手段<8a) (8b)の制御
作動により電源(7a) (7b)から第6図示のよう
な正弦波形を出力させると、組成変調膜を得ることが出
来、正弦波形の出力以外は前記の場合と同条件で、SI
Nx膜を有するポリカーボネート光磁気ディスクの基板
(4》にFeCo/Tbの膜を形成し、その上に更にS
INx膜を700人保護膜として形成した。この場合、
カソード(2a)には第6図のCで示すような極大値1
.5KW , 1秒の正弦波形の出力を与え、カソード
(2b)にはDで示すような極大値0.4KW 、1秒
の正弦波形の出力をCと180 ’の位相をずらし角与
えた。
Furthermore, if a sinusoidal waveform as shown in Fig. 6 is outputted from the power supply (7a) (7b) by the control operation of the arbitrary waveform oscillator means <8a) (8b), a composition modulated film can be obtained, and the sinusoidal waveform Under the same conditions as above except for the output, SI
A FeCo/Tb film is formed on the polycarbonate magneto-optical disk substrate (4) having an Nx film, and an S
An INx film was formed as a protective film for 700 people. in this case,
The cathode (2a) has a maximum value of 1 as shown by C in Figure 6.
.. A sine waveform output of 5KW for 1 second was given to the cathode (2b), and a sine waveform output of a maximum value of 0.4KW for 1 second as shown by D was given to the cathode (2b) with a phase shift angle of 180' from C.

これにより基板(4)に形成されたPeCo/Tbの膜
は、その膜厚方向にFeCo 100%から次第にその
組成分にTbが増え、やがてPeCo O%でTb 1
00%の組成となり、次いでFeCoの成分が次第に増
えてTbの組成が0%になることを繰返す、組成変調膜
であった。この膜もFeCo/Tb多層積層膜同様良好
な光磁気特性を示した。
As a result, the PeCo/Tb film formed on the substrate (4) gradually increases in its composition from 100% FeCo to 100% FeCo, and eventually becomes 100% Tb with 0% PeCo.
It was a compositionally modulated film in which the composition was 00%, and then the FeCo component gradually increased and the Tb composition decreased to 0%. This film also exhibited good magneto-optical properties like the FeCo/Tb multilayer laminate film.

図示の例ではスパッタカソード(2)を2個設置した場
合を示したが、3個以上設け、その夫々に電源(7)と
その出力を制御する手段(8)を設けた場合でも前記と
同様に多層積層膜や組成変調膜を作成出来る。また、図
示のDCマグネトロンスパッタに限らず、RPスパッタ
、RFマグネトロンスパッタ等の他のスパッタも同様に
行なうことが出来る。
The illustrated example shows a case where two sputter cathodes (2) are installed, but the same applies if three or more are installed and each is provided with a power source (7) and a means (8) for controlling its output. It is possible to create multilayer laminated films and compositionally modulated films. In addition, other sputtering methods such as RP sputtering, RF magnetron sputtering, etc. can be performed in the same manner as well as the DC magnetron sputtering shown in the drawings.

(発明の効果) 以上のように、本発明によれば、真空室内に、復数個の
スパッタカソードの各ターゲットを1つの成膜領域に向
けて設け、各スパッタカソードに夫々独立して電源を接
続し、その各電源の出力波形を同期して制御する手段を
設けるようにしたので、複雑な機構を用いることなくま
たスパッタを中止することなく連続的に多層の成膜を行
なえ、スパッタが連続するので膜中に不純物ガス分子が
とり込まれることが少なくなり、組成変調膜も作成する
ことが出来て便利である等の効果がある。
(Effects of the Invention) As described above, according to the present invention, a plurality of sputter cathode targets are provided in a vacuum chamber so as to face one film forming area, and each sputter cathode is independently powered. Since we have provided a means to synchronize and control the output waveforms of the respective power supplies, it is possible to continuously deposit multiple layers without using a complicated mechanism or stopping sputtering. Therefore, impurity gas molecules are less likely to be incorporated into the film, and composition-modulated films can also be produced, which is convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は従来例の截断側面図、第1図(B)は第
1図(A)の平面図、第2図は他の従来例の截断側面図
、第3図は本発明の実施例の截断側面図、第4図乃至第
6図は本発明の実施例に於ける電源出力波形の線図を示
す。 (1》・・・真空室 (2) (2a) (2b)・・・スパッタカソード(
3) (3a) (8b)・・・ターゲット(4)・・
・基板 <6)・・・成膜領域 (7a)(7b)・・・スパッタ電源 (8a)(8b)・・・波形制御手段 特 許 出 願 人  日本真空技術株式会社外3名 第3図
FIG. 1(A) is a cutaway side view of a conventional example, FIG. 1(B) is a plan view of FIG. 1(A), FIG. 2 is a cutaway side view of another conventional example, and FIG. 3 is a cutaway side view of the present invention. FIGS. 4 to 6 are cross-sectional side views of the embodiment of the present invention, and show diagrams of power output waveforms in the embodiment of the present invention. (1)...Vacuum chamber (2) (2a) (2b)...Sputter cathode (
3) (3a) (8b)...Target (4)...
・Substrate <6)...Film forming area (7a) (7b)...Sputtering power supply (8a) (8b)...Waveform control means patent Applicant: 3 people other than Japan Vacuum Technology Co., Ltd. Figure 3

Claims (1)

【特許請求の範囲】 1、真空室内にターゲットを備えたスパッタカソードを
設け、基板を該ターゲットと対向する成膜領域を移動さ
せ乍ら該基板に成膜を施すようにしたものに於いて、複
数個のスパッタカソードの各ターゲットを1つの成膜領
域に向けて設け、各スパッタカソードに夫々独立したス
パッタ電源を接続すると共に該スパッタ電源にその出力
を同期して任意の波形に制御する手段を設けたことを特
徴とするスパッタ装置。 2、前記スパッタ電源の出力の制御を行なう手段として
任意波形発振器を設けてなる請求項1に記載のスパッタ
装置。
[Claims] 1. A sputtering cathode equipped with a target is provided in a vacuum chamber, and a film is formed on the substrate while moving the film forming region facing the target, Each target of a plurality of sputter cathodes is provided to face one film forming area, and an independent sputter power source is connected to each sputter cathode, and means is provided for synchronizing the output with the sputter power source and controlling it to an arbitrary waveform. A sputtering device characterized in that: 2. The sputtering apparatus according to claim 1, further comprising an arbitrary waveform oscillator as means for controlling the output of the sputtering power source.
JP5214389A 1989-03-06 1989-03-06 Sputtering device Pending JPH02232366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5214389A JPH02232366A (en) 1989-03-06 1989-03-06 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5214389A JPH02232366A (en) 1989-03-06 1989-03-06 Sputtering device

Publications (1)

Publication Number Publication Date
JPH02232366A true JPH02232366A (en) 1990-09-14

Family

ID=12906652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5214389A Pending JPH02232366A (en) 1989-03-06 1989-03-06 Sputtering device

Country Status (1)

Country Link
JP (1) JPH02232366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741405A (en) * 1995-10-22 1998-04-21 Ipmms (Development And Production) Spotter-deposit method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123768A (en) * 1982-12-28 1984-07-17 Toyota Central Res & Dev Lab Inc Method and device for simultaneous multi-element sputtering
JPS61207573A (en) * 1985-03-09 1986-09-13 Matsufumi Takatani Multi-component electric power sputtering method
JPS61238958A (en) * 1985-04-15 1986-10-24 Hitachi Ltd Method and apparatus for forming composite thin film
JPS6376871A (en) * 1986-09-19 1988-04-07 Hitachi Ltd Method and apparatus for forming thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123768A (en) * 1982-12-28 1984-07-17 Toyota Central Res & Dev Lab Inc Method and device for simultaneous multi-element sputtering
JPS61207573A (en) * 1985-03-09 1986-09-13 Matsufumi Takatani Multi-component electric power sputtering method
JPS61238958A (en) * 1985-04-15 1986-10-24 Hitachi Ltd Method and apparatus for forming composite thin film
JPS6376871A (en) * 1986-09-19 1988-04-07 Hitachi Ltd Method and apparatus for forming thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741405A (en) * 1995-10-22 1998-04-21 Ipmms (Development And Production) Spotter-deposit method and apparatus

Similar Documents

Publication Publication Date Title
US6180208B1 (en) Information recording medium and method for producing the same
WO2002084702A3 (en) Sputtering deposition apparatus and method for depositing surface films
JPH05504993A (en) Method for sputtering multilayer bodies for magneto-optical recording
JP2592311B2 (en) Method and apparatus for manufacturing magneto-optical recording medium
US6309516B1 (en) Method and apparatus for metal allot sputtering
JPH02232366A (en) Sputtering device
WO2002042511A3 (en) Method of coating smooth electroless nickel on magnetic memory disks and related memory devices
JP2971586B2 (en) Thin film forming equipment
US6217723B1 (en) Method of manufacturing a multilayer film
JP2000353343A (en) Optical recording medium and production of optical recording medium and apparatus for production therefor
EP0479109B1 (en) Process for fabrication of magneto-optic recording medium
JPH0194552A (en) Manufacture of magneto-optical recording medium
JPH06251441A (en) Magneto-optical recording medium
JPH0628727A (en) Production of magneto-optical recording medium
US5693198A (en) Method of producing a magnetic recording medium
JPH05128604A (en) Magneto-optical recording medium
JPH0559549A (en) Method and apparatus for producing thin film and magnetic recording medium
JPH0375368A (en) Sputtering device
JPH04260313A (en) Forming method of photomagnetic recording medium
JPH11120637A (en) Deposition method and production of optical disk
JPH01162256A (en) Production of magneto-optical recording medium
JP2003272264A (en) Magneto-optical recording medium and manufacturing method thereof
JPS6350466A (en) Sputtering device
JPH0826898A (en) Method for making artificial lattice
JPS62245546A (en) Production of photomagnetic recording medium