JPH01162256A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH01162256A
JPH01162256A JP32071287A JP32071287A JPH01162256A JP H01162256 A JPH01162256 A JP H01162256A JP 32071287 A JP32071287 A JP 32071287A JP 32071287 A JP32071287 A JP 32071287A JP H01162256 A JPH01162256 A JP H01162256A
Authority
JP
Japan
Prior art keywords
substrate
targets
layer
metal
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32071287A
Other languages
Japanese (ja)
Inventor
Masaaki Nomura
正明 野村
Takashi Yamada
隆 山田
Akira Nahara
明 名原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP32071287A priority Critical patent/JPH01162256A/en
Publication of JPH01162256A publication Critical patent/JPH01162256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To continuously form recording layers alternately laminated with RE layers and TM layers at a high speed by continuously carrying alternately disposed RE targets and TM targets and a substrate disposed opposite to the targets. CONSTITUTION:The RE targets 8 consisting of Tb, Gd, or Sm, etc., and the TM targets 9 consisting of Fe, Co, Ni or alloys, etc. of said metals are arrayed alternately at nearly equal intervals to face the substrate 4 in a sputtering chamber 7. Specified bias electric power is simultaneously impressed from power supplies 10, 11 respectively to the RE targets 8 and the TM targets 8. The sputtered particles of the RE metals and TM metals driven out by the plasma particles of Ar generated near the surfaces of the respective targets are released and arrive successively and continuously at the substrate 4 by which the films are formed on the substrate. The recording layers laminated alternately by as much as the number of the RE targets 8 and the TM targets 9 are thereby formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光磁気記録媒体の製造方法に関し、特にスパッ
タ法により連続的に多層構造を形成する光磁気記録媒体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a magneto-optical recording medium, and more particularly to a method for manufacturing a magneto-optical recording medium in which a multilayer structure is continuously formed by sputtering.

〔従来技術〕[Prior art]

近年、光磁気記録媒体はレーザー光による書き込み読み
だし可能光磁気ディスクとして大容量データファイルな
どに広く利用されている。
In recent years, magneto-optical recording media have been widely used for large-capacity data files as magneto-optical disks that can be written and read using laser light.

この光磁気記録媒体は、ガラス、プラスチックなどの透
明基板上にス、Rツタ法により防電体層、記録層、保護
層、接着層などを夫々数lOA〜数toogの厚さで積
層した多層構造の層ケ有する。
This magneto-optical recording medium is a multi-layered material in which an electric shield layer, a recording layer, a protective layer, an adhesive layer, etc. are laminated on a transparent substrate such as glass or plastic using the R-Tap method to a thickness of several 1OA to several 200 mm each. It has layers of structure.

光磁気効果を示す前記記録層には希土類金属(以下、R
E金金属称する)と遷移金属(以下、TM金金属称する
)の合金の単一層もしくは前記RE金金属らなる層(以
下、RE層と称する)と前記TM金金属らなる層(以下
、TM層と称する)λ層以上積層した層が使用されてい
る。特に後者QRE層とTM層とを交互に積層した記a
層は磁化量、保磁力、光磁気効果(カー効果)に優れ又
その特性を制御し易いという利点がある。その製造方法
としては回転ホルダー上に前記基板を固定し希土類金属
ターゲット(以下、REメタ−ットと称する)及び遷移
金属ターゲット(以下、TMメタ−ットと称する)の上
をホルダーを回転させることにより基板を通過させ前記
RE層とTM層の薄層を少なくとも21以上積層させる
方法(2元同時スパッタ法と称され、特開昭!ター21
72弘7号公報、特開昭62−21s4jり号公報、特
開昭6コーコ7Ajり号公報、特開昭1.1−i0r/
/2号公報、特開昭62−7104c/号公報、特開昭
62−/21r04LI号公報に開示されている)また
、別の方法として特開昭62−1377!3号公報には
前記RE金金属TM金金属合金ターゲットと基板とを対
向させその間にかけるバイアス電力を時間的に変化させ
【成膜することにより前記RE金金属TM金金属組成比
の異なる層を積層させる方法が開示されている。
The recording layer exhibiting the magneto-optical effect contains a rare earth metal (hereinafter referred to as R
A single layer of an alloy of an alloy of E gold metal (hereinafter referred to as TM gold metal) and a transition metal (hereinafter referred to as TM gold metal), or a layer consisting of the RE gold metal (hereinafter referred to as RE layer) and a layer consisting of the TM gold metal (hereinafter referred to as TM layer). (referred to as λ) or more laminated layers are used. In particular, a record in which the latter QRE layer and TM layer are alternately laminated.
The layer has the advantage that it has excellent magnetization, coercive force, and magneto-optical effect (Kerr effect), and its properties are easy to control. The manufacturing method involves fixing the substrate on a rotating holder and rotating the holder over a rare earth metal target (hereinafter referred to as RE metal target) and a transition metal target (hereinafter referred to as TM metal target). A method of laminating at least 21 thin layers of the RE layer and the TM layer by passing the substrate through the substrate (referred to as a dual simultaneous sputtering method, disclosed in Japanese Patent Application Laid-Open No. 2003-211022).
72 Hiroshi 7, JP 62-21S4J, JP 6 Koko 7Aj, JP 1987-1-i0r/
2, Japanese Patent Application Laid-open No. 62-7104c/, and Japanese Patent Application Laid-Open No. 62-1377!3). A method is disclosed for stacking layers of the RE Gold Metal TM with different gold metal composition ratios by facing the gold metal TM gold metal alloy target and the substrate and changing the bias power applied therebetween over time. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記2元同時スパッタ法は、回転機構を
有する基板ホルダー上K、通常、ある限られた数の複数
個の前記基板をセットして、数量的にはその単位でしか
積層記録層を成膜することができず、光磁気記録媒体の
量産化上の問題があった。また、前記特開昭1.2−1
3773号公報のようにバイアス電力を時間的に変化さ
せる方法は、成膜速度は早くできるが、前記RE層とT
M層と明確に区別して積層することができず特性の改良
が充分でなかった。さらにバイアス電力を短周期で変化
させるための複雑な制御機構を必要とした。
However, in the dual simultaneous sputtering method, a limited number of substrates are usually set on a substrate holder having a rotating mechanism, and the laminated recording layer is formed only in units of that number. There was a problem in the mass production of magneto-optical recording media. Also, the above-mentioned Unexamined Patent Publication No. 1.2-1
The method of changing the bias power over time as in Japanese Patent No. 3773 can increase the film formation rate, but the RE layer and T
It was not possible to laminate the layer while clearly distinguishing it from the M layer, and the properties were not sufficiently improved. Furthermore, a complicated control mechanism was required to change the bias power in short periods.

本発明は、このような問題を解決するためになされたも
のであり、前記RE層とTM層を少なくとも2層交互に
積層した記録層を連続的にかつ高速で成膜する光磁気記
録媒体の製造方法を提供することを目的とするものであ
る。
The present invention has been made to solve these problems, and provides a magneto-optical recording medium in which a recording layer in which at least two RE layers and TM layers are alternately laminated is formed continuously and at high speed. The purpose is to provide a manufacturing method.

〔発明の構成〕[Structure of the invention]

本発明のかかる目的は、スパッタ法により基体上に前記
RE層とTM層を積層する光磁気記録媒体の製造方法に
おいて、前記基体を所定の真空度に保たれたスパッタリ
ング室内で一定の速度で連続的に一方向に移送させなが
ら前記基体の移送経路に沿って核基体に所定の間隔をも
つズ対向し、かつ互いに前記基体の移送方向に重ならな
いように配設したRE金属ターゲットとTM金属ターゲ
ットを同時に連続してスパッタリングを行い、前記基体
上に前記各金属層を積層することにより達成される。特
に前記RE金属ターゲットとTM金属ターゲットとの境
界に設げた仕切り板により前記両金属ターゲットの同時
連続スパッタリングにより放出される該両金属ターゲッ
トの各金屑粒子の混合を防止することにより本発明の目
的は、さらに有効に達成される。
Such an object of the present invention is to provide a method for manufacturing a magneto-optical recording medium in which the RE layer and the TM layer are laminated on a substrate by sputtering, in which the substrate is continuously deposited at a constant speed in a sputtering chamber maintained at a predetermined degree of vacuum. An RE metal target and a TM metal target are arranged to face each other at a predetermined distance from the nuclear substrate along the transfer path of the substrate while being transferred in one direction, and are arranged so as not to overlap with each other in the transfer direction of the substrate. This is accomplished by simultaneously and successively performing sputtering to deposit each of the metal layers on the base. Particularly, the purpose of the present invention is to prevent the mixing of gold dust particles of both metal targets emitted by simultaneous continuous sputtering of both metal targets by a partition plate provided at the boundary between the RE metal target and the TM metal target. is achieved more effectively.

本発明の一実施態様を添付した図面によりさらに詳細に
説明する。
One embodiment of the present invention will be explained in more detail with reference to the accompanying drawings.

第1図は、本発明の方法による光磁気記録媒体の前記R
E層とTM層とをスパッタリングにより積層するための
装置の平面図であり、第2図はその側面図である。
FIG. 1 shows the R
FIG. 2 is a plan view of an apparatus for laminating an E layer and a TM layer by sputtering, and FIG. 2 is a side view thereof.

搬送用ベル)/の上九支持具コで前記搬送用ベル)/上
にほぼ垂直に装着された基体ホルダー3の側面にガラス
、プラスチック等の透明な基体≠が固定されている。前
記基体ホルダー3は前記搬送用ベル)/上にほぼ等間隙
に複数個直列に装着されており、誘電体層成膜用スパッ
タリング室夕内で窒化ケイ素、酸化ケイ素、窒化アルミ
又は硫化亜鉛などの誘電体の成膜を終えて前記搬送用ベ
ル)/の駆動に従って矢印ルの方向から、記録層成膜用
スパッタリング室7に送られてくる。
A transparent substrate made of glass, plastic, etc. is fixed to the side surface of the substrate holder 3, which is mounted almost perpendicularly on the conveyance bell). A plurality of substrate holders 3 are mounted in series at approximately equal intervals on the transport bell, and are used to deposit silicon nitride, silicon oxide, aluminum nitride, zinc sulfide, etc. in a sputtering chamber for forming a dielectric layer. After the dielectric film has been formed, it is sent to the sputtering chamber 7 for forming a recording layer from the direction of the arrow L according to the drive of the transport bell (1).

前記スパッタリング室7内には前記基体≠と対向して、
Tb、GdあるいはSm等のREターゲットr及びFe
、Co、Niあるいはそれらの金属の合金等のTMター
ゲットヂが交互に各1枚以上はぼ等間隙で前記基体≠と
一定距離を保って並べられている。前記記録層成膜用ス
・ξツタリング室7内は、Ar等の不活性ガスでtxi
o”−3Torr程度の真空度に保たれており、前記R
Eメタ−ット!及びTMターゲットタには、夫々REタ
ーゲット用電源10及びTMターゲット//から同時に
一定のバイアス電力が印加されており、各ターゲット表
面付近に発生したArのプラズマ粒子によりたたき出さ
れたRE金金属びTM金金属スパッタ粒子が放出され、
前記基体μ上に、順次連続的に到達し、成膜され、前記
REメタ−ットを及びTMターゲットタの数だけ、交互
に積層された記録層が形成される。
Inside the sputtering chamber 7, facing the substrate≠,
RE targets such as Tb, Gd or Sm and Fe
, Co, Ni, or alloys of these metals, one or more of each are alternately arranged at approximately equal intervals and at a constant distance from the substrate. The inside of the recording layer deposition chamber 7 is filled with an inert gas such as Ar.
The degree of vacuum is maintained at approximately o''-3 Torr, and the above-mentioned R
Emetat! A constant bias power is simultaneously applied to the RE target power supply 10 and the TM target //, respectively, and the RE gold metal particles ejected by Ar plasma particles generated near the surface of each target are TM gold metal sputtered particles are released,
The recording layers are successively deposited on the substrate μ, and are alternately laminated by the number of RE metals and TM targets.

前記REメタ−ットtとTMターゲットタの間に仕切り
板12を前記各ターゲット及び基体仏とほぼ直交するよ
うに配設することにより、前記REメタ−ットj及びT
Mターゲットタから放出されるRE金金属スパッタ粒子
及びTM金金属スパッタ粒子の混合が防止され、前記R
E層とTM層とが明確に分離された積層記録層が形成で
きる。
By disposing a partition plate 12 between the RE metal t and the TM target so as to be substantially orthogonal to each target and the base plate, the RE metal t and the TM target
Mixing of RE gold metal sputter particles and TM gold metal sputter particles emitted from the M target is prevented, and the R
A laminated recording layer in which the E layer and TM layer are clearly separated can be formed.

前記積層記録層のRE層とTM層の厚さ及び総厚は、前
記基体ダの搬送速度、スパッタ投入電力及びターゲット
サイズ等により決まり、それらのファクターの選択によ
りコントロールできる。通常、搬送速度はo、smy分
乃至06417分であり、ターゲットに印加する電力は
、通常数10W乃至数toOWである。
The thickness and total thickness of the RE layer and TM layer of the laminated recording layer are determined by the conveyance speed of the substrate, sputtering input power, target size, etc., and can be controlled by selecting these factors. Usually, the conveyance speed is from 0, smy minutes to 0,6417 minutes, and the power applied to the target is usually from several 10 W to several toOW.

前記REメタ−ットの各ターゲット及び前記1Mターゲ
ットの各ターゲットに印加するバイアス電力を夫々等し
くすることにより各RE層の厚さ及び各TM層の厚さが
夫々一定となり、記録層の厚さ方申での特性を均一にす
ることができる。
By making the bias power applied to each target of the RE metalt and each target of the 1M target equal to each other, the thickness of each RE layer and the thickness of each TM layer are made constant, and the thickness of the recording layer is It is possible to make the characteristics uniform across different models.

光磁気効果を最適にするために、前記RE層及びTM層
夫々の層厚さはコ又以上望ましくはi。
In order to optimize the magneto-optical effect, the layer thickness of each of the RE layer and TM layer is desirably equal to or more than i.

X以上であり、積層される層の数はRE層及びTM層合
せて2層以上望ましくは、/ 0層以上であり全厚は、
200A以上あることが望ましい。
X or more, and the number of laminated layers is 2 or more in total for the RE layer and TM layer, preferably / 0 or more layers, and the total thickness is
It is desirable that the current is 200A or more.

前記REメタ−ット用のRE金金属しては、例えばGd
、Tb、Dy%Nd、Sm、又はHoの単体金属若しく
はそれらの合金例えばGd!OTb!0が使用される。
The RE gold metal for the RE metal is, for example, Gd.
, Tb, Dy% Nd, Sm, or Ho or their alloys, such as Gd! OTb! 0 is used.

一方、前記TMメタ−ット用のTM金金属しては、Fe
、Co又はNi等の単体金属若しくはそれらの合金例え
ばFel!  Co1t等が使用される。前記TM層の
耐蝕性を高めるために前記1M金属中KPt、Ti、C
r又はCulkj%以下添加させてもよい。
On the other hand, the TM gold metal for the TM metal is Fe.
, Co or Ni, or their alloys, such as Fel! Colt etc. are used. In order to improve the corrosion resistance of the TM layer, KPt, Ti, and C are added in the 1M metal.
It may be added in an amount equal to or less than r or Culkj%.

これらの各ターゲット用金属の純度は、タタ%゛以上、
望ましくはタタ、り5以上である。
The purity of each of these target metals is at least Tata%.
Desirably, the tatami is 5 or more.

同時連続セパツタリングにより、前記REメタ−ット及
び1Mターゲットから放出される前記RE金金属びTM
金金属粒子が混合するのを防止するために設けた前記仕
切り板/2はAr等の不活性ガスのプラズマ中にさらさ
れるので、記録層中にその材料が混入する恐れがあり、
それを防止するだめに前記仕切り板の材料としては、R
E金金属はTM金金属することが望ましい。そうするこ
とにより、少なくとも、RE金金属はTM金属以外の第
3の金属の混入は防止することができる。
The RE gold metal and TM released from the RE metal and the 1M target by simultaneous and continuous separating
Since the partition plate /2 provided to prevent gold metal particles from mixing is exposed to plasma of an inert gas such as Ar, there is a risk that the material may be mixed into the recording layer.
In order to prevent this, the material of the partition plate is R.
It is desirable that the E gold metal is a TM gold metal. By doing so, at least the RE gold metal can be prevented from being mixed with a third metal other than the TM metal.

コストの点から前記TM金金属前記仕切り板の材料とす
ることが望ましい。
From the viewpoint of cost, it is desirable to use TM gold metal as the material for the partition plate.

前記仕切り板12を設けることにより、各ターゲットの
間隙をさらに小さ(することができ、装置の縮小化に有
利である。
By providing the partition plate 12, the gap between each target can be further reduced, which is advantageous for downsizing the apparatus.

また、記録層各層の組成的な均一性を高めるために前記
基体ダを回転させつつ搬送してもよい。
Further, in order to improve the compositional uniformity of each layer of the recording layer, the substrate may be conveyed while being rotated.

また、積層する層の数を増加するために、ターゲットの
数を増加させてもよいが、同じパスを往復させるととく
より、ターゲットの数の増加を避けることもできる。
Further, the number of targets may be increased in order to increase the number of layers to be laminated, but an increase in the number of targets can be avoided by reciprocating the same path.

〔本発明の効果〕[Effects of the present invention]

本発明では、交互に配設された前記REメタ−ット及び
1Mターゲットに対向させて、基体を連続的に搬送する
ことにより、前記RE層とTM層が交互に積層できるの
で記録層の連続成膜に有利である。そして、前記記録層
成膜用スノツタリング室7の前後に前記誘電体層成膜用
スパッタリング室及び保護層成膜用スノツタリング室そ
の他必要に応じて、ロード室、アンロード室、反射層成
膜用スノツタリング室等と連結させることにより、前記
基体上への必要な成膜が連続的になされ、光磁気記録媒
体の量産化の上で非常に有利である。
In the present invention, the RE layer and the TM layer can be alternately stacked by continuously transporting the substrate facing the RE metalts and the 1M target which are arranged alternately, so that the recording layer is continuous. It is advantageous for film formation. Before and after the snottering chamber 7 for forming the recording layer, there are a sputtering chamber for forming the dielectric layer, a snottering chamber for forming the protective layer, and a load chamber, an unloading chamber, and a snotter ring for forming the reflective layer, as necessary. By connecting it to a chamber or the like, the necessary film formation on the substrate can be performed continuously, which is very advantageous in terms of mass production of magneto-optical recording media.

さらに、従来法のように基板回転機構、夕〒ゲットへの
入力の複雑なコントロールを必要とせずに前記RE層と
TM層とが積層された記録層が得られる。
Furthermore, a recording layer in which the RE layer and TM layer are laminated can be obtained without requiring complicated control of inputs to a substrate rotation mechanism and a substrate as in the conventional method.

さらに又、各ターゲット間に前記仕切り板12を設ける
ことにより、RE金金属TM金金属混り合いがより少な
い交互積層記録層が得られ、良好な光磁気記録層とする
ことができる。
Furthermore, by providing the partition plate 12 between each target, an alternately laminated recording layer with less RE gold metal TM gold metal mixing can be obtained, and a good magneto-optical recording layer can be obtained.

本発明の効果を以下の実施例によりさらに具体的に説明
する。
The effects of the present invention will be explained in more detail with reference to the following examples.

(実施例−l) 厚さ/、2wm、!、2!インチφのガラス基板上にス
・ξツタリング法により厚さrooXの窒化ケイ素(S
i3N、)の薄膜を誘電体層として設けその上に以下の
ような方法でRE層とTM層との交互積層記録層を設け
た。
(Example-l) Thickness/, 2wm,! , 2! Silicon nitride (S) with a thickness of roo
A thin film of i3N, ) was provided as a dielectric layer, and a recording layer of alternately laminated RE layers and TM layers was provided thereon in the following manner.

!インチ×rインチの大きさのTbターゲット(REメ
タ−ット)及びF e g 5 CO15合金ターゲラ
)(TMメタ−ット)ヲ各7枚ずつ約2インチの間隙で
交互に計7μ枚並べた。スパッタリング室内の初期真空
度を’X’0−6Torr以下にした後に、同室内にA
rガスを導入し/X10   Torrの真空度(した
! A total of 7 μ of Tb targets (RE metal) and Fe g 5 CO15 alloy target (TM metal) with a size of inch x r inch were arranged alternately with a gap of about 2 inches. Ta. After reducing the initial vacuum level in the sputtering chamber to 'X'0-6 Torr or less, A
r gas was introduced and the vacuum was maintained at 10 Torr.

次いで各Tbターゲットにかけるパワーを10OW1各
FerjCo/!合金ターゲットにかけるパワーを一2
30Wに固定し、予め誘電体層を設けたガラス基板を各
ターゲットから/30m離して0.3前/分の速度で送
り、TbとPerICo/7合金の薄層をその上に成膜
してRE層とTM層の交互積層記録層を設けた。その後
、オージェ分光分析、X線小角散乱法で分析したところ
Tb層は20に1FerICo/!の合金層はλ!Aで
全厚はJelAであった。
Then the power applied to each Tb target is 10OW1 each FerjCo/! Increase the power applied to the alloy target by 12
The power was fixed at 30 W, and a glass substrate with a dielectric layer preliminarily provided thereon was sent at a speed of 0.3 min/min to a distance of 30 m from each target, and a thin layer of Tb and PerICo/7 alloy was deposited on it. A recording layer consisting of an RE layer and a TM layer was provided. After that, analysis using Auger spectroscopy and small-angle X-ray scattering revealed that the Tb layer was 20 to 1 FerICo/! The alloy layer of is λ! A, the total thickness was JelA.

記録層上に保護層として厚さ1OOOAの窒化ケイ素(
Si3N4)の薄膜をスパッタリング法で成膜した。
A protective layer of silicon nitride (1OOOA thick) is placed on the recording layer as a protective layer.
A thin film of Si3N4) was formed by sputtering.

振動試料型磁束計及びカーヒステリシス装置で記録層の
磁気特性を測定した結果、Hc(抗磁力)はt jK 
Oe以上、θk(カー回転角)は、0゜4co”、Tc
(キュリー温度)は、irooCであった。
As a result of measuring the magnetic properties of the recording layer using a vibrating sample magnetometer and a Kerr hysteresis device, Hc (coercive force) was t jK
Oe or more, θk (Kerr rotation angle) is 0°4co", Tc
(Curie temperature) was irooC.

なお、Tb層とF e B 5 CO5o合金層の界面
には、両組成の入り混じった層が約6A認められた。
In addition, at the interface between the Tb layer and the F e B 5 CO5o alloy layer, a layer having a mixture of both compositions was found to be about 6A.

(実施例−2) 実施例−7において、TbターゲットとF e B。(Example-2) In Example-7, Tb target and FeB.

Co□5合金ターゲットとの間に、Feg5C。Feg5C between the Co□5 alloy target.

、5の仕切り板を設けた。基板と仕切り板の最近接距離
は、約!簡とした。
, 5 partition plates were installed. The closest distance between the board and the partition plate is approximately! Simple.

他は実施例−7と同一条件でTbとF e B 5Co
工5合金の交互積層記録層を設けた。Tb層はJOA、
F’e   Co   合金層は2jXで全厚は3/I
Aであった。実施例−Iよりも各層の境界は、組成的に
明瞭であった。
Other conditions were the same as in Example-7.Tb and FeB5Co
Alternately laminated recording layers of alloy No. 5 were provided. Tb layer is JOA,
The F'e Co alloy layer is 2jX and the total thickness is 3/I
It was A. The boundaries between each layer were compositionally clearer than in Example-I.

実施例−lと同一条件で保護層を設けた後、記録層の磁
気特性を測定したところ、Hcがl!OK’Oe以上、
θには0.μl0、Tcは、/400Cであった。
After forming a protective layer under the same conditions as in Example 1, the magnetic properties of the recording layer were measured, and Hc was found to be 1! OK'Oe and above,
θ is 0. μl0, Tc was /400C.

(実施例−3) 実施例−2において、ガラス基板を0.6m1分で搬送
しTbターゲットにかけるパワーを2QOW、 F e
 B 5 Co□5合金ターゲットにかげるパワーt≠
tOWにした。
(Example 3) In Example 2, the glass substrate was transported in 0.6 m 1 minute and the power applied to the Tb target was 2QOW, Fe
B 5 Co□5 alloy target power t≠
I set it to tOW.

Tb層は’ rA、F e B 5 CO15合金層は
2JXであり全厚は2roXであった。実施例−7と同
一の条件で窒化ケイ素の保護層を設けた後記録層の特性
を測定したところHcは/rKOe以上であり、θには
O1弘3°、Tcはttr”cであった。
The Tb layer was 'rA, the F e B 5 CO15 alloy layer was 2JX, and the total thickness was 2roX. After forming a protective layer of silicon nitride under the same conditions as in Example 7, the characteristics of the recording layer were measured and found that Hc was /rKOe or more, θ was O1 3°, and Tc was ttr"c. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明におけるスパッタ室の平面図第2図は
、側面図である。 3・・・・・・基体ホルダー μ・・・・・・基体 7・・・・・・スパッタリング室 r・・・・・・REメタ−ット タ・・・・・・TMメタ−ット 12・・・・・・仕切り板 特許出願人 富士写真フィルム株式会社昭和43年コ月
げ日
FIG. 1 is a plan view of the sputtering chamber in the present invention, and FIG. 2 is a side view. 3...Substrate holder μ...Substrate 7...Sputtering chamber r...RE meter...TM meter 12. ...Partition plate patent applicant Fuji Photo Film Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 1.スパッタ法により基体上に希土類金属層と遷移金属
層を積層する光磁気記録媒体の製造方法において、前記
基体を所定の真空度に保たれたスパッタリング室内で一
定の速度で連続的に一方向に移送させながら前記基体の
移送経路に沿つて該基体に所定の間隔をもつて対向し、
かつ互いに前記基体の移送方向に重ならないように配置
した希土類金属ターゲットと遷移金属ターゲットを同時
に連続してスパッタリングを行い、前記基体上に前記各
金属層を積層することを特徴とする光磁気記録媒体の製
造方法。
1. In a method for manufacturing a magneto-optical recording medium in which a rare earth metal layer and a transition metal layer are laminated on a substrate by sputtering, the substrate is continuously transferred in one direction at a constant speed in a sputtering chamber maintained at a predetermined degree of vacuum. facing the substrate at a predetermined distance along the transfer path of the substrate while
A magneto-optical recording medium characterized in that a rare earth metal target and a transition metal target, which are arranged so as not to overlap with each other in the transport direction of the substrate, are simultaneously and continuously sputtered to laminate each of the metal layers on the substrate. manufacturing method.
2.前記希土類金属ターゲットと遷移金属ターゲットと
の境界に設けた仕切り板により、前記両金属ターゲット
の同時連続スパッタリングにより放出される該両金属タ
ーゲットの各金属粒子の混合を防止することを特徴とす
る光磁気記録媒体の製造方法。
2. A magneto-optical device characterized in that a partition plate provided at the boundary between the rare earth metal target and the transition metal target prevents mixing of metal particles of both metal targets emitted by simultaneous and continuous sputtering of both metal targets. A method for manufacturing a recording medium.
JP32071287A 1987-12-18 1987-12-18 Production of magneto-optical recording medium Pending JPH01162256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32071287A JPH01162256A (en) 1987-12-18 1987-12-18 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32071287A JPH01162256A (en) 1987-12-18 1987-12-18 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH01162256A true JPH01162256A (en) 1989-06-26

Family

ID=18124490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32071287A Pending JPH01162256A (en) 1987-12-18 1987-12-18 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH01162256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280410A (en) * 1990-09-29 1992-10-06 Gold Star Co Ltd Manufacture of opto-magnetic recording medium
JP2016507656A (en) * 2013-02-25 2016-03-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus using adjacent sputter cathode and operation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280410A (en) * 1990-09-29 1992-10-06 Gold Star Co Ltd Manufacture of opto-magnetic recording medium
JP2016507656A (en) * 2013-02-25 2016-03-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus using adjacent sputter cathode and operation method thereof

Similar Documents

Publication Publication Date Title
JPH07262628A (en) Multilayer magneto-optical recording medium
US6309516B1 (en) Method and apparatus for metal allot sputtering
JPH01162256A (en) Production of magneto-optical recording medium
JPH0766584B2 (en) Method for manufacturing magneto-optical recording medium
EP0367685A2 (en) Magnetooptical recording element
US5232567A (en) Process for fabricating of a magneto-optical recording medium
JPH02105348A (en) Production of magneto-optical recording medium
JPS59157833A (en) Magnetic recording medium
JP2561111B2 (en) Magneto-optical recording medium
JPS59157828A (en) Magnetic recording medium
EP0479109B1 (en) Process for fabrication of magneto-optic recording medium
JPH02105349A (en) Production of magneto-optical recording medium
JPH0512765B2 (en)
JPH11110756A (en) Manufacture for magnetic recording medium
JPS60231911A (en) Magnetic recording medium
JPS60211904A (en) Magnetic substance and magnetic film of metal oxide
JP2726298B2 (en) Magneto-optical recording method
JPS59148318A (en) Formation of magnetic layer
JPH1166559A (en) Magnetic recording medium and its manufacture
JPH05182169A (en) Magnetic disk and its production
JPH0451889B2 (en)
JPS63155604A (en) Multilayered magnetic film and manufacture thereof
JPH05325183A (en) Manufacture of magnetic disk
JPS581832A (en) Vertical magnetized recording medium
JPH0379760A (en) Sputtering device