JPH02105349A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH02105349A
JPH02105349A JP25596588A JP25596588A JPH02105349A JP H02105349 A JPH02105349 A JP H02105349A JP 25596588 A JP25596588 A JP 25596588A JP 25596588 A JP25596588 A JP 25596588A JP H02105349 A JPH02105349 A JP H02105349A
Authority
JP
Japan
Prior art keywords
targets
substrate
sputtering
substrates
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25596588A
Other languages
Japanese (ja)
Inventor
Naoki Kusuki
直毅 楠木
Hideaki Takeuchi
英明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP25596588A priority Critical patent/JPH02105349A/en
Publication of JPH02105349A publication Critical patent/JPH02105349A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize the time when sputtering is executed by masks and to improve productivity by transferring the mask members provided between rare earth and transition metal targets and substrates together with the substrates at the time of rotating substrate holders at a specified speed in a region where both the targets are arranged in >=2 arrays and subjecting the substrates to sputtering. CONSTITUTION:The rare earth metal targets and the transition metal targets are arranged in >=2 arrays in the sputtering chamber 15 of a sputtering device 10. These targets are arranged to face each other as the targets 1a, 1b and the substrate holders 2 are disposed in the opposite regions of the targets 1a, 1b. The substrates 4 are mounted to a turn table 3 of the holders 2 and the table is rotated at a specified speed by a revolving shaft 5 disposed to the center of the table 3, then the substrates 4 are subjected to sputtering. The mask members 9 are disposed between the targets 1a, 1b and the substrates 4. The mask members 9 are formed to such shape that the apertures thereof face each of the targets 1a, 1b and the aperture width extends in the direction orthogonal with the transporting direction of the substrates 4 and expands from the center of rotation of the substrates 4 toward the outer peripheral direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光磁気記録媒体の製造方法に関し、特にスパ
ッタリング法により連続的に多層構造の薄膜を形成する
光磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a magneto-optical recording medium, and particularly to a method for manufacturing a magneto-optical recording medium in which a thin film having a multilayer structure is continuously formed by a sputtering method.

[従来技術] 近年、光磁気記録媒体は、レーザ光による書き込み・読
みだし可能な光磁気ディスクとして大容量データ・ファ
イル等に広く利用されている。
[Prior Art] In recent years, magneto-optical recording media have been widely used for large-capacity data files, etc. as magneto-optical disks that can be written and read by laser light.

この光磁気ディスクは、ガラス、プラスティック等の透
明基板上にスパッタ法により誘電体層、記録層、保護層
等の層構造を有する。光磁気効果を示す前記記録層には
希土類金属(以下REと称する)からなる層と遷移金属
(以下TMと称する)とからなる層を夫々数人〜10数
人の厚さで交互に少なくとも2層以上積層した層構造と
する事により、磁化量。
This magneto-optical disk has a layer structure including a dielectric layer, a recording layer, a protective layer, etc., formed by sputtering on a transparent substrate such as glass or plastic. The recording layer exhibiting the magneto-optical effect includes at least two layers each consisting of a rare earth metal (hereinafter referred to as RE) and a layer consisting of a transition metal (hereinafter referred to as TM), each having a thickness of several to ten-odd layers. The amount of magnetization is reduced by creating a layered structure with more than one layer.

保磁力、光磁気効果(カー効果)の優れた特性を得る事
が出来、また製造上の制御性においても良好である。
Excellent properties such as coercive force and magneto-optical effect (Kerr effect) can be obtained, and manufacturing controllability is also good.

その製造方法としては、回転ホルダ上に前記基板を固定
し、REターゲット及びTMツタ−ットの上方において
前記ホルダを回転させる事により前記基板を前記両ター
ゲット上方を通過させRM層とTM層の薄層を少なくと
も2層以上積層させる方法(例えば、特開昭62−71
041号、特開昭62−60865号)が開示されてい
る。
The manufacturing method includes fixing the substrate on a rotating holder, rotating the holder above the RE target and the TM target, and passing the substrate above both the targets to separate the RM layer and the TM layer. A method of laminating at least two or more thin layers (for example, Japanese Patent Application Laid-Open No. 62-71
No. 041 and Japanese Unexamined Patent Publication No. 62-60865).

このような従来のスパッタリング法は、回転機構を有す
る基板ホルダの交換を行う間、成膜を中断するインター
バル時間を必要とする所謂バッチ式であるため、量産化
上の問題点があった。
Such conventional sputtering methods have problems in mass production because they are so-called batch-type sputtering methods that require an interval time during which film formation is interrupted while a substrate holder having a rotation mechanism is replaced.

また、従来のスパッタリング法では、膜厚分布を均一に
するためにスパッタ粒子量を規制するマスク部材がスパ
ッタ室に固定して取り付けられていたため、基板が回転
を伴って順次移送されるような搬送機構のスパッタリン
グ法の場合、膜厚分布を均一にすることが非常に難しか
った。
In addition, in conventional sputtering methods, a mask member that regulates the amount of sputtered particles is fixedly attached to the sputtering chamber in order to make the film thickness distribution uniform. In the case of the mechanism's sputtering method, it was extremely difficult to make the film thickness distribution uniform.

[発明の目的] 本発明は、上記課題に鑑みなされたものであり、従来に
比べ極めて生産性を高くできかつRE層及びTM層の膜
厚分布が均一な光磁気記録媒体の製造方法を提供するこ
とにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and provides a method for manufacturing a magneto-optical recording medium that can achieve extremely high productivity compared to conventional methods and has a uniform thickness distribution of the RE layer and the TM layer. It's about doing.

[発明の構成] 本発明のかかる目的は、基板上に少なくとも希土類金属
と遷移金属を積層するため、スパッタ室内に希土類金属
ターゲットと遷移金属ターゲットとを2列以上配設し、
前記両ターゲットに対向するようにした前記基板を少な
くとも前記両ターゲットが配設された領域にて回転を伴
いながら一定速度で連続的にターゲット配列方向に沿っ
て移送させ、前記両ターゲットによるスパッタリング領
域を夫々規制するために該両ターゲットと前記基板との
間に配設したマスク部材を有し、該マスク部材の開口が
前記ターゲット毎に対向しその開口幅が前記基板の移送
方向に対してほぼ直交する方に延び且つ基板の回転中心
から外周方向に向かって広がる形状に構成され、前記マ
スク部材を前記基板と共に移送させることを特徴とする
光磁気記録媒体の製造方法により達成される。
[Structure of the Invention] An object of the present invention is to arrange two or more rows of rare earth metal targets and transition metal targets in a sputtering chamber in order to laminate at least a rare earth metal and a transition metal on a substrate,
The substrate facing the two targets is continuously moved along the target arrangement direction at a constant speed while being rotated at least in the area where the two targets are arranged, so that the sputtering area by the two targets is A mask member is provided between the targets and the substrate for regulating each target, and an opening of the mask member faces each target, and the width of the opening is substantially perpendicular to the direction in which the substrate is transferred. This is achieved by a method of manufacturing a magneto-optical recording medium, which is configured to have a shape that extends in the direction of the substrate and expands from the center of rotation of the substrate toward the outer circumference, and is characterized in that the mask member is transferred together with the substrate.

[実施態様] 以下、本発明の方法を適用した装置にもとづいて本発明
の詳細な説明する。
[Embodiments] Hereinafter, the present invention will be described in detail based on an apparatus to which the method of the present invention is applied.

第1図は本発明の磁気記録媒体の製造方法を適用したス
パッタリング装置の要部概略図を示し、第2図はターゲ
ットと基板の位置関係を示すための概略平面図であり、
第3図はマスク部材の配置の様子を示す平面図であり、
第4図はスパッタリング装置及び基板ホルダの搬送経路
を示した概略平面図である。
FIG. 1 shows a schematic view of the main parts of a sputtering apparatus to which the method of manufacturing a magnetic recording medium of the present invention is applied, and FIG. 2 is a schematic plan view showing the positional relationship between a target and a substrate.
FIG. 3 is a plan view showing how the mask members are arranged;
FIG. 4 is a schematic plan view showing the sputtering apparatus and the transport path of the substrate holder.

第1図および第4図に示すように、スパッタリング装置
10は、中央のスパッタ室15と該スパッタ室15の前
後の予備室12とが隔壁11により一部連通して分けら
れ、全体が長く構成されている。そして、被スパタリン
グ部材である基板4を適宜保持する複数の基板ホルダ2
は、例えば搬送経路20を形成したガイドレール8に案
内されて、前記スパッタリング装置10内に連続して移
送されるように構成されている。したがって、前記スパ
ッタリング装置10の内部は、前記基板ホルダ2が移動
するので完全な密閉状態に出来ないため、スパッタリン
グ工程中における前記スパッタ室15の真空度を保つた
めに少なくとも前記各予備室12に繋げた図示しない排
気手段により排気を続けるように構成されている。
As shown in FIGS. 1 and 4, the sputtering apparatus 10 has a central sputtering chamber 15 and preliminary chambers 12 at the front and rear of the sputtering chamber 15, which are separated by a partition wall 11 and partially communicated with each other. has been done. A plurality of substrate holders 2 suitably hold substrates 4 which are members to be sputtered.
are configured to be continuously transported into the sputtering apparatus 10 while being guided by guide rails 8 forming a transport path 20, for example. Therefore, since the inside of the sputtering apparatus 10 cannot be completely sealed because the substrate holder 2 moves, the sputtering chamber 15 is connected to at least each preliminary chamber 12 in order to maintain the degree of vacuum in the sputtering chamber 15 during the sputtering process. It is configured to continue evacuation by means of an evacuation means (not shown).

前記スパッタ室15内には、底部にターゲット1aと1
bが設けられている。前記ターゲラ)la。
In the sputtering chamber 15, targets 1a and 1 are placed at the bottom.
b is provided. Said Targera) la.

1bは、第2図に示すように前記基板ホルダ2の搬送方
向に沿って長く並列して配置されている。前記ターゲラ
)la、lbの長さは特に限定するものではな(、前記
基板ホルダ2の搬送速度や前記ターゲラ)la、lbと
前記基板4との距離等の種々の条件により適宜決定され
るもので、要は良好な成膜に必要な時間を得られる長さ
を有していればよい。また、前記基板ホルダ2は前記基
板4が前記ターゲット1aと1bの両方に対してほぼ均
等な距離になるような位置を移動するようになされてお
り、前記基板ホルダ2の本体の下方側に、前記基板4を
保持した回転自在なターンテーブル3及びマスク部材9
を備えている。前記ターンテーブル3は、その中心に回
転軸5を有しており、該回転軸5が前記本体を貫通して
上方に延びており、該回転軸5の上方端寄にビニオン6
が設けれている。前記ピニオン6は前記スパッタ室15
に固定されているラック7に係合し、前記基板ホルダ2
が前記ガイドレール8に沿って移動することにより、前
記ターンテーブル3を所定方向に回転させることができ
る。
1b are long and arranged in parallel along the conveyance direction of the substrate holder 2, as shown in FIG. The lengths of the target blades (la, lb) are not particularly limited, and may be appropriately determined depending on various conditions such as the conveyance speed of the substrate holder 2 and the distance between the target blades (la, lb) and the substrate 4. In short, it is sufficient that it has a length that allows the time necessary for good film formation. Further, the substrate holder 2 is configured to move to a position such that the substrate 4 is at a substantially equal distance from both the targets 1a and 1b, and on the lower side of the main body of the substrate holder 2, A rotatable turntable 3 holding the substrate 4 and a mask member 9
It is equipped with The turntable 3 has a rotating shaft 5 at its center, the rotating shaft 5 passing through the main body and extending upward, and a pinion 6 near the upper end of the rotating shaft 5.
is provided. The pinion 6 is connected to the sputtering chamber 15.
engages with the rack 7 fixed to the substrate holder 2.
By moving along the guide rail 8, the turntable 3 can be rotated in a predetermined direction.

前記マスク部材9は、前記ターンテーブル3上に配置さ
れた前記基板4の下方に位置するようになされている。
The mask member 9 is positioned below the substrate 4 placed on the turntable 3.

すなわち、前記マスク部材9は屈曲された接続部により
前記基板ホルダ2に固設されている。
That is, the mask member 9 is fixed to the substrate holder 2 by a bent connection portion.

また、前記マスク部材9は、第3図に図示するように矢
印で示す前記基板ホルダ2にあって略H字状の形状を有
し、その上方及び下方が外方向に向かって広がるように
切欠かれている。すなわち、前記切欠かれた部分に相当
する開口は、前記ターゲット毎に対向しその開口幅が前
記基板の移送方向に対してほぼ直交する方に延び且つ前
記基板4の回転中心から外周方向に向かって広がる形状
に構成されている。
The mask member 9 is located in the substrate holder 2 as shown by the arrow in FIG. It's dark. That is, the openings corresponding to the notched portions face each of the targets, the width of the openings extends in a direction substantially perpendicular to the transfer direction of the substrate, and extends toward the outer circumferential direction from the rotation center of the substrate 4. It is configured in a widening shape.

したがって、回転基板上には夫々のターゲツト材による
膜厚分布の均一な薄膜が積層される。 なお、前記ター
ゲットla、lbはそれぞれ別々のターゲット電源18
が繋げられており、該ターゲラl−1a。
Therefore, a thin film with a uniform thickness distribution of each target material is laminated on the rotating substrate. Note that the targets la and lb are each connected to separate target power supplies 18.
are connected, and the Targera l-1a.

■bに個々に適したスパッタパワーを与え、所望の積層
薄膜が形成出来るようになされている。
(2) Appropriate sputtering power is applied to each of b to form a desired laminated thin film.

前記ターゲラ)laと1bは、例えば、1aが遷移金属
、■bが希土類金属にて形成されていることにより、ま
た図示しないマスク部材等の作用により前記基板4上に
遷移金属と希土類金属の積層薄膜を形成することができ
る。
The target layers 1a and 1b are made of a transition metal and a rare earth metal, for example, 1a is made of a transition metal and A thin film can be formed.

なお、前記ターゲットIa、Ibは必ずしも一枚板の構
成でなくとも良く、複数に分割された構成であってもよ
い。また、複数に分割された部分は必ずしも同じ材質の
ターゲットでなく複数個の組み合わせにすることができ
、この組み合わせによって、成膜の積層構造を適宜調整
することができる。
Note that the targets Ia and Ib do not necessarily have to have a single plate configuration, but may have a configuration in which they are divided into a plurality of plates. In addition, the divided portions are not necessarily made of the same material, but can be combined into a plurality of targets, and by this combination, the laminated structure for film formation can be adjusted as appropriate.

上記のように構成された前記スパッタリング装置lOの
スパッタ室15にアルゴン(Ar)ガス等の不活性ガス
を導入し、且つ前記ターゲラ)Ia、1bに適宜スパッ
タパワーを付加させた状態にしておき、前記搬送経路2
0の適所において、前記基板ホルダ2に予め誘電体層を
形成したガラスあるいはプラスティック樹脂の前記基板
4を連続して次々に装着する。
An inert gas such as argon (Ar) gas is introduced into the sputtering chamber 15 of the sputtering apparatus IO configured as described above, and sputtering power is appropriately applied to the targeters Ia and 1b, Said transport route 2
The substrates 4 made of glass or plastic resin on which a dielectric layer has been formed in advance are successively mounted on the substrate holder 2 at appropriate positions at the substrate holder 2 .

前記基板ホルダ2は連続して前記スパッタ室15内に移
送されて行き、スパッタ室内にて回転しながら前記基板
4上に希土類金属と遷移金属の積層薄膜が形成され、前
記スパッタリング装置10から連続して出てくる。この
出てきた前記基板ホルダ2から次々に前記基板4を取り
外し、次の工程に移行させることができる。
The substrate holder 2 is continuously transferred into the sputtering chamber 15, and while rotating in the sputtering chamber, a laminated thin film of a rare earth metal and a transition metal is formed on the substrate 4. It comes out. The substrates 4 can be removed one after another from the substrate holder 2 that has come out, allowing the process to proceed to the next step.

このように、本発明によれば、連続的にターゲット配列
方向に沿って移送しながらスパッタリングすることによ
り、所望の積層薄膜を形成するために必要とする時間を
、前記基板4が移動しながら充分に確保でき、マスク部
材は基板と共に移動するので、基板の回転半径方向位置
でのREツタ−ット及び1Mターゲットの各々のプラズ
マにさらされる時間(領域)が定まるため、RF−層及
びTM層の膜厚分布を均一にし、且つ積層構造で高い生
産性を向上させることができる。特に、前記基板ホルダ
2の移送方向に分割した複数種のターゲットからなるタ
ーゲット列を該移送方向に沿って並列に設けた場合には
、その配列の仕方によって任意の積層構造の成膜が自在
にでき、生産性とともに成膜調整の範囲が極めて広くな
る。
As described above, according to the present invention, by performing sputtering while continuously moving the target along the direction of arrangement of the targets, the time required to form the desired laminated thin film can be sufficiently covered while the substrate 4 is moving. Since the mask member moves together with the substrate, the time (area) exposed to the plasma of the RE target and the 1M target at the position in the rotational radial direction of the substrate is determined. It is possible to make the film thickness distribution uniform and to improve high productivity with the laminated structure. In particular, when target rows consisting of multiple types of targets divided in the direction of transfer of the substrate holder 2 are provided in parallel along the transfer direction, film formation of any laminated structure can be freely performed depending on the arrangement. This greatly increases the productivity and the range of film formation adjustment.

前記実施態様においては、前記ターゲラ)la。In the embodiment, the T. targera) la.

■bは共にほぼ水平に設けられたが、このような配設の
仕方に限るのものではなく、前記ターゲット1aと1b
の隣接部分よりも反対側が前記基板4に近づくようなタ
ーゲット幅方向(基板ホルダ移送方向の直角方向)の適
宜傾斜を持たせるようにしてもよい。また、前記実施態
様においては述べなかったが、前記ターゲット1aと1
bの隣接部分に仕切り板を設けることにより、成膜品質
を高めることが出来望ましいものである。
(b) Both targets 1a and 1b are provided almost horizontally, but the arrangement is not limited to this.
It may be made to have an appropriate inclination in the target width direction (direction perpendicular to the substrate holder transfer direction) such that the opposite side approaches the substrate 4 than the adjacent portion. Although not mentioned in the embodiment, the targets 1a and 1
It is desirable to provide a partition plate in the area adjacent to b because it can improve the quality of film formation.

なお、実施態様では、前記基板ホルダ2のターンテーブ
ル3に前記基板4を1枚装着して自転させながら移送す
る例を示したが、本発明を適用する装置はこれに限られ
るものでないことは当然であり、基板ホルダに複数の基
板を装着して基板を公転成いは自公転させながら移送し
て成膜を行っても充分な効果が期待できる事は言うまで
もない。
In the embodiment, an example is shown in which one substrate 4 is mounted on the turntable 3 of the substrate holder 2 and transferred while rotating, but the apparatus to which the present invention is applied is not limited to this. It goes without saying that a sufficient effect can be expected even if a plurality of substrates are attached to a substrate holder and the substrates are transferred while rotating or rotating to form a film.

[発明の効果] 以上述べたように、本発明の磁気記録媒体の製造方法は
、基板上に少なくとも希土類金属と遷移金属を積層する
ため、スパッタ室内に希土類金属ターゲットと遷移金属
ターゲットとを2列以上配設し、前記両ターゲットに対
向するようにした前記基板を少なくとも前記両ターゲッ
トが配設された領域にて回転を伴いながら一定速度で連
続的にターゲット配列方向に沿って移送しながらスパッ
タリングするので、所望の積層薄膜を形成するために必
要とする時間を、前記基板が移動しながら確保でき、積
層薄膜の成膜調整も前記ターゲットを分割構造とした場
合には極めて容易かつ調整範囲も広く出来、また、連続
搬送であることから従来のバッチ式さらには間欠式のス
パッタリング方法に比べて、極めて高い生産効率を得る
ことができる。
[Effects of the Invention] As described above, in the method for manufacturing a magnetic recording medium of the present invention, in order to laminate at least a rare earth metal and a transition metal on a substrate, two rows of rare earth metal targets and transition metal targets are arranged in a sputtering chamber. Sputtering is performed by continuously transporting the substrate arranged as above and facing both the targets at a constant speed along the target arrangement direction while rotating at least in the region where both the targets are arranged. Therefore, the time required to form the desired laminated thin film can be secured while the substrate is moving, and when the target has a split structure, the deposition adjustment of the laminated thin film is extremely easy and the adjustment range is wide. Moreover, since it is continuously conveyed, extremely high production efficiency can be obtained compared to conventional batch-type or even intermittent-type sputtering methods.

また、基板の上方に、開口幅が基板の移送方向に対して
ほぼ直交する方に延び且つ基板の回転中心から外周方向
に広がる形状のマスク部材を設け、該マスク部材を介し
てスパッタリングすることにより、ターゲットから飛翔
するターゲット粒子の基板面への到達量を一定にして、
膜厚分布を均一にできる。
Furthermore, a mask member having an opening width extending in a direction substantially perpendicular to the transfer direction of the substrate and expanding in the outer circumferential direction from the rotation center of the substrate is provided above the substrate, and sputtering is performed through the mask member. , by keeping the amount of target particles flying from the target constant and reaching the substrate surface.
The film thickness distribution can be made uniform.

[実施例コ 以下、実施例により本発明の効果を更に明確にすること
ができる。
[Examples] The effects of the present invention can be further clarified with the following examples.

第1図に示す装置及び第3図に示すマスク部材を用いて
行った実施例について記載する。
An example carried out using the apparatus shown in FIG. 1 and the mask member shown in FIG. 3 will be described.

厚さ1.2mm、直径130mmのプラスティック基板
4上に、スパッタリング法により厚さ800人の窒化ケ
イ素(Si3N4)を誘電体層として成膜し、以下の方
法でRE層とTM層の交互積層記録層を成膜した。
On a plastic substrate 4 with a thickness of 1.2 mm and a diameter of 130 mm, a silicon nitride (Si3N4) film with a thickness of 800 mm was formed as a dielectric layer by a sputtering method, and recording of alternate lamination of RE layers and TM layers was performed using the following method. A layer was deposited.

REターゲットとして、大きさ80mmX 500mm
のTbターゲッ)laを5枚、80m+nの辺を隣合わ
せとして計5枚並べた。また、TMツタ−ットとして、
同じ80mmX 500+n+nの大きさのFeesC
O+s合金ターゲット1bをTbターゲットと同様に8
0羅の短辺を隣合わせとして計5枚並べ、両ターゲット
間距離を40mmとした。スパッタ室内の初期真空度を
110 Torr以下にした後に、同室内にArガスを
導入し、I X 10 ”Torrの真空度にした。次
に、Tbターゲット1枚(80mmX 500mm)当
たりに1100W、またFeesCO+s1枚(80m
mX 500II1m)当たりに3200Wのパワーで
放電させ、予め誘電体層を成膜したプラスティック基板
4をターンテーブル3に保持させて基板ホルダ2に取り
付け、各ターゲラ)Ia、lbから150m+n離した
位置で10m+++/ s e cの速度でかつ13r
pmで回転しながら基板ホルダを連続的に供給し移送し
て、RE層とTM層の交互積層記録層を成膜した。その
後、オージェ電子分光、X線小角散乱法で分析したとこ
ろ、Tb層は10人、FeasCO+sは12人、全膜
厚で900Aであった。さらに、段差法によりプラステ
ィック基板(φ130++++n)内の膜厚を測定した
ところ膜厚分布は、±2.8%であった。
As an RE target, size 80mm x 500mm
A total of five sheets of Tb target) la were arranged with sides of 80m+n adjacent to each other. Also, as TM Tsutaat,
FeesC with the same size of 80mmX 500+n+n
Similarly to the Tb target, the O+s alloy target 1b was
A total of five sheets were arranged with their short sides adjacent to each other, and the distance between both targets was set to 40 mm. After reducing the initial vacuum level in the sputtering chamber to 110 Torr or less, Ar gas was introduced into the same chamber to achieve a vacuum level of I x 10'' Torr. Next, 1100 W per Tb target (80 mm x 500 mm), and FeesCO+s1 piece (80m
The plastic substrate 4 on which a dielectric layer has been formed in advance is held on the turntable 3 and attached to the substrate holder 2, and the plastic substrate 4 is held at a position 150m+n away from each Targetera) Ia and lb for 10m+++. /sec speed and 13r
While rotating at pm, the substrate holder was continuously supplied and transferred to form a recording layer of alternately laminated RE layers and TM layers. Thereafter, analysis using Auger electron spectroscopy and small-angle X-ray scattering revealed that the Tb layer had 10 layers, the FeasCO+s layer had 12 layers, and the total film thickness was 900A. Further, when the film thickness within the plastic substrate (φ130++++n) was measured by the step method, the film thickness distribution was ±2.8%.

また、保護層として、厚さ100OAの窒化ケイ素を成
膜した。その後、振動試料型磁束計及びカー・ヒステリ
シス測定装置で記録層の磁気特性を測定した結果、Hc
(保持力)は15KOe以上、θk(カー回転角)は0
.43度、  Tc(キュリー温度)は165℃であっ
た。
Further, a silicon nitride film having a thickness of 100 OA was formed as a protective layer. After that, the magnetic properties of the recording layer were measured using a vibrating sample magnetometer and a Kerr hysteresis measuring device, and as a result, Hc
(holding force) is 15KOe or more, θk (Kerr rotation angle) is 0
.. The temperature was 43 degrees, and the Tc (Curie temperature) was 165 degrees Celsius.

[比較例] 次に、比較例として、従来方法を説明する。[Comparative example] Next, a conventional method will be explained as a comparative example.

プラスティック樹脂の基板を6枚装着できる回転基板ホ
ルダを用いて記録層の成膜を行った。条件は、直径20
0+nmのTb材質のターゲットを900Wのスパッタ
パワーを加え、もう一つのターゲットには直径200+
nmのFeasCO+s材質で2200Wのスパッタパ
ワーを加えて放電させた。またその際、上記実施例の条
件に対して、マスク部材を除去して基板ホルダの回転速
度を15rpmにて回転させ、3分開成膜を行った。こ
の結果、Tb層は10人、  Fe85coIsは13
人、全膜厚で100OAの記録層を得ることができた。
A recording layer was formed using a rotating substrate holder capable of mounting six plastic resin substrates. The condition is diameter 20
A sputtering power of 900W was applied to a target made of Tb material with a diameter of 0+nm, and a sputtering power of 900W was added to the other target with a diameter of 200+nm.
A sputtering power of 2200 W was applied to discharge the material using FeasCO+s material. At that time, the mask member was removed, the substrate holder was rotated at a rotation speed of 15 rpm, and open film formation was performed for 3 minutes under the conditions of the above example. As a result, there were 10 people in the Tb layer and 13 people in the Fe85coIs layer.
A recording layer with a total thickness of 100 OA could be obtained.

その後、実施例と同様に振動試料型磁束計及びカー・ヒ
ステリシス測定装置で記録層の磁気特性を測定した結果
、Hc(保持力)は15KOe以上、θk(カー回転角
)は0.44度。
Thereafter, the magnetic properties of the recording layer were measured using a vibrating sample magnetometer and a Kerr hysteresis measuring device in the same manner as in the example. As a result, Hc (coercive force) was 15 KOe or more, and θk (Kerr rotation angle) was 0.44 degrees.

Tc(キュリー温度)は165℃であった。また、プラ
スティック基板内の膜厚を段差法により測定したところ
、膜厚分布は±6.7%であった。
Tc (Curie temperature) was 165°C. Further, when the film thickness within the plastic substrate was measured by the step method, the film thickness distribution was ±6.7%.

上記結果から明らかなように、本比較例による生=13
− 産速度は、前記基板を一分間にほぼ2枚生産する速度と
なった。また、本実施例は比較例に較べて膜厚分布が格
段に優れていることが分かった。
As is clear from the above results, raw material according to this comparative example = 13
- The production rate was such that approximately two substrates were produced per minute. Furthermore, it was found that the film thickness distribution of this example was much better than that of the comparative example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の製造方法を適用したス
パッタリング装置の要部概略図、第2図はターゲットと
基板の位置関係を示すための概略平面図、第3図はマス
ク部材の配置の様子を示す平面図、第4図はスパッタリ
ング装置及び基板ホルダの搬送経路を示した概略平面図
である。 図中符号 la、lb・ ・ ・ターゲット、 2・・・基板ホルダ、  3・・・ターンテーブル、4
・・・基板、    5・・・回転軸、6・・・ピニオ
ン、   7・・・ラック、8・・・ガイドレール、9
・・・マスク部材、10・・・スパッタリング装置、 11・・・隔壁、  12・・・予備室、15・・・ス
パッタ室、 18・・・ターゲット電源、 20 ・ ・搬送経路。
FIG. 1 is a schematic diagram of the main parts of a sputtering apparatus to which the method of manufacturing a magnetic recording medium of the present invention is applied, FIG. 2 is a schematic plan view showing the positional relationship between the target and the substrate, and FIG. 3 is the arrangement of mask members. FIG. 4 is a schematic plan view showing the sputtering apparatus and the transport path of the substrate holder. Reference symbols la, lb...target, 2...substrate holder, 3...turntable, 4
... Board, 5... Rotating shaft, 6... Pinion, 7... Rack, 8... Guide rail, 9
...Mask member, 10... Sputtering device, 11... Partition wall, 12... Preliminary chamber, 15... Sputtering chamber, 18... Target power source, 20... Transport route.

Claims (1)

【特許請求の範囲】[Claims]  基板上に少なくとも希土類金属と遷移金属を積層する
ため、スパッタ室内に希土類金属ターゲットと遷移金属
ターゲットとを2列以上配設し、前記両ターゲットに対
向するようにした前記基板を少なくとも前記両ターゲッ
トが配設された領域にて回転を伴いながら一定速度で連
続的にターゲット配列方向に沿って移送させ、前記両タ
ーゲットによるスパッタリング領域を夫々規制するため
に該両ターゲットと前記基板との間に配設したマスク部
材を有し、該マスク部材の開口が前記ターゲット毎に対
向しその開口幅が前記基板の移送方向に対してほぼ直交
する方に延び且つ基板の回転中心から外周方向に向かっ
て広がる形状に構成され、前記マスク部材を前記基板と
共に移送させることを特徴とする光磁気記録媒体の製造
方法。
In order to laminate at least a rare earth metal and a transition metal on a substrate, two or more rows of rare earth metal targets and transition metal targets are arranged in a sputtering chamber, and the substrate facing both the targets is placed so that at least both of the targets Disposed between the two targets and the substrate in order to transport the target continuously along the target array direction at a constant speed while rotating in the disposed area, and to restrict the sputtering area by the two targets, respectively. The mask member has a shape in which the opening of the mask member faces each of the targets, the opening width thereof extends in a direction substantially perpendicular to the transfer direction of the substrate, and widens toward the outer circumference from the rotation center of the substrate. A method for manufacturing a magneto-optical recording medium, characterized in that the mask member is transferred together with the substrate.
JP25596588A 1988-10-13 1988-10-13 Production of magneto-optical recording medium Pending JPH02105349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25596588A JPH02105349A (en) 1988-10-13 1988-10-13 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25596588A JPH02105349A (en) 1988-10-13 1988-10-13 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH02105349A true JPH02105349A (en) 1990-04-17

Family

ID=17286037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25596588A Pending JPH02105349A (en) 1988-10-13 1988-10-13 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH02105349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478685A (en) * 1993-04-02 1995-12-26 Fuji Electric Co., Ltd. Photoconductor for electrophotography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478685A (en) * 1993-04-02 1995-12-26 Fuji Electric Co., Ltd. Photoconductor for electrophotography

Similar Documents

Publication Publication Date Title
JP2003141719A (en) Sputtering device and thin film forming method
US9196284B2 (en) In-line type film forming apparatus and method for manufacturing magnetic recording medium
JP2592311B2 (en) Method and apparatus for manufacturing magneto-optical recording medium
JPH11302841A (en) Sputtering system
JPH02105349A (en) Production of magneto-optical recording medium
JP2971586B2 (en) Thin film forming equipment
JP2601358B2 (en) Sputtering method
JPH02105348A (en) Production of magneto-optical recording medium
JPH02105350A (en) Production of magneto-optical recording medium
JP4234009B2 (en) Film forming method for magneto-optical recording medium and manufacturing apparatus for magneto-optical recording medium
TW201226612A (en) Method and apparatus to produce high density overcoats
JP2001207257A (en) Method and system for manufacturing gmr film
JPH02277768A (en) Sputtering method
JPH0375368A (en) Sputtering device
JPS62211374A (en) Sputtering device
JPH0375369A (en) Sputtering device
JP2601357B2 (en) Sputtering method
JP3286736B2 (en) Manufacturing equipment for magnetic recording media
JPH0379760A (en) Sputtering device
JP5328462B2 (en) Magnetron sputtering apparatus, in-line film forming apparatus, and method for manufacturing magnetic recording medium
CN101724816A (en) Thin film formation apparatus and magnetic recording medium manufacturing method
JPH11229139A (en) Magnetic field impressing mechanism and its arrangement method
JPH0375363A (en) Sputtering device
JPH0826453B2 (en) Sputtering equipment
JP3106456B2 (en) Opposing target type sputtering method and opposing target type sputtering apparatus