JPH02231294A - Underwater surveying machine - Google Patents

Underwater surveying machine

Info

Publication number
JPH02231294A
JPH02231294A JP4856689A JP4856689A JPH02231294A JP H02231294 A JPH02231294 A JP H02231294A JP 4856689 A JP4856689 A JP 4856689A JP 4856689 A JP4856689 A JP 4856689A JP H02231294 A JPH02231294 A JP H02231294A
Authority
JP
Japan
Prior art keywords
underwater
propulsion device
reverse
propulsion
advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4856689A
Other languages
Japanese (ja)
Inventor
Yasushi Funaki
舟木 靖
Kenichi Mochizuki
望月 研一
Kazumasa Nemoto
和正 根本
Rokuro Morikawa
緑郎 森川
Tatsu Momiyama
籾山 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Corp
Original Assignee
OCC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Corp filed Critical OCC Corp
Priority to JP4856689A priority Critical patent/JPH02231294A/en
Publication of JPH02231294A publication Critical patent/JPH02231294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PURPOSE:To improve the stability in straight advance propulsion with the simple constitution by arranging the right and left propulsion device parts for advance and retreat into inverted V shaped form in plane view, in the constitution in which a propulsion device part for rising and lowering, right and left propulsion device parts for advance and retreat, and an underwater photographing means are provided. CONSTITUTION:An underwater surveying machine is equipped with thrustors 11 and 12 for advance and retreat on the right and left sides in a protecting angle 15, and a thrustor 13 for rising and lowering in the front part on the center line in the protecting angle 15, and further equipped with a float 14 in the rear part. A hydrolight is installed in an acryl window 11A in the foremost part of the thrustor 11, and a video camera is accommodated in an acryl dome 12A in the foremost part of the thrustor 12. In this case, the thrustors 11 and 12 are arranged into nearly inverted V shaped form, viewed from the upper part plane direction. In other words, the separation distance WR in the rearmost part of the both thrustors 11 and 12 is set slightly longer then the separation distance WF of the foremost part. Therefore, the angle in the thrust direction can be automatically adjusted, and the straight advance thrust force can be stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,地上あるいは船上からのリモートコントロー
ルによって水中の様子を撮影することができる水中探査
機に関するものである.[従来の技術] 一般に自走式水中R O V (Ren+ote Op
erate Vehicle )といわれる水中探査機
(以下、木中ROVという)は、内部にビデオカメラや
照明装置等を備えるとともに、前進・後退用推進装置部
と、上昇・下降用推進装置部を備え、船上等からのリモ
ートコントロールによって氷中搬影動作ができるように
なされたものであり、海底地形調査等に広《利用されて
いる. 第3図に従来の水中ROVの一例を示す.lは本体部で
あり、この本体部1の上部中央には水中における上昇・
下降動作のための上昇・下降用推進装置部(以下、上昇
・下降用スラスタという)IAが設けられ、また最前部
はアクリルドームIBとされ内部にビデオカメラが収容
されている. 2及び3は水中における前進・後退動作のための前進・
後退用推進装置部(以下、前進・後退用スラスタという
)であり、各前進・後退用スラスタ2、3は本体部1の
両側面方向に平行に配置されている.また、各前進・後
退用スラスタ2、3の最前部はアクリル窓2A、3Aと
されて内部に水中ライトが収容されている。4は保護用
アングルである. Cは船上のコントローラ等からのリモートコントロール
信号を水中ROMに供給するための複合ケーブル、S.
−S.は各スラスタの推進手段であるスクリュー装置部
を示す. なお、本体部lの外筐体及び前進・後退用スラスタ2,
3の外筐体は耐水圧構造とされている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an underwater probe that can take pictures of underwater conditions by remote control from the ground or aboard a ship. [Prior art] Self-propelled underwater R O V (Ren+ote Open
The underwater exploration vehicle (hereinafter referred to as "Kinaka ROV") is equipped with an internal video camera, lighting system, etc., as well as a forward/reverse propulsion unit and an ascent/descent propulsion unit. It is designed to be able to carry images through the ice by remote control from a remote control device, and is widely used for underwater topography surveys. Figure 3 shows an example of a conventional underwater ROV. 1 is a main body part, and in the upper center of this main body part 1 there is a
An ascending/descending propulsion unit (hereinafter referred to as "ascending/descending thruster") IA is provided for descending operations, and the frontmost part is an acrylic dome IB with a video camera housed inside. 2 and 3 are forward and backward movements for forward and backward movement underwater.
This is a backward propulsion unit (hereinafter referred to as a forward/reverse thruster), and each forward/reverse thruster 2, 3 is arranged parallel to both side surfaces of the main body 1. Further, the frontmost portions of each of the forward and backward thrusters 2 and 3 are acrylic windows 2A and 3A, and an underwater light is housed inside. 4 is a protective angle. C is a composite cable for supplying remote control signals from a shipboard controller etc. to the underwater ROM;
-S. indicates the screw device that is the propulsion means of each thruster. In addition, the outer casing of the main body l and the forward/reverse thrusters 2,
The outer casing of No. 3 has a water pressure resistant structure.

[発明が解決しようとする問題点] このように構成された従来の氷中ROVは次のような問
題点を有している. まず,製造時の問題として、本体部1は上昇・下降用ス
ラスタlAを配置すること等によって形状が複雑になら
ざるを得ないとともに、耐圧構造としなければならない
ため、製造が非常に難しくなり、製造工程の複雑化とと
もに製造コストが上昇してしまうという欠点がある. また、ある程度大型化することを許容しなければ推進力
の向上を図ることができず、結果的にあるレベル以上の
推進力の向上は望めないという問題点がある.つまり,
推進力向上のために左右の前進・後退,用スラスタ2、
3の大型化を図ると、本体部1とスクリエ−82、S3
が接触してしまう恐れがあるため、どうしても前進・後
退用スラスタ2,3と本体部1の間の距離を太き《する
必要があり、その結果大型化を余儀なくされてしまうも
のである.ところが、大型であるということは製造時、
運搬時、使用時ともに不経済であり好ましくない.また
、本体部lを小型にすると前進・後退用スラスタ2、3
も小型にしなければならず、推進力という点ではある程
度制限されてしまうという欠点が生じる.(従来の水中
ROMでは、一般的には潮流が2ノットを越える海域で
の使用は困難とされている) さらに、上述したように左右の前進・後退用スラスタ2
、3を本体lから大きく離すことはできないため、各ス
クリエー82とS,の間隔も十分にとることができない
.このため、場合によっては両スクリューS2、Ssの
相互作用により複雑な渦流を生じさせてしまい,その結
果、推進力の低下や直進走行性の不安定といった現象が
もたらされてしまうという問題点もある. さらにまた、上昇・下降用スラスタIAが本体l内にあ
るため、スクリューS,に流れ込む水量が制限を受け、
上昇及び下降機能が低下しやすいという問題点もある. [問題点を解決するための手段] 本発明は上記した問題点にかんがみてなされたものであ
り、上昇・下降用スラスタと,各前進・後退用スラスタ
とをそれぞれ独立したユニットとして形成するとともに
、左側及び右側に一対に配置される各前進・後退用スラ
スタ間の離間間隔が、スクリュー側から前部に向かって
徐々に狭《なるように略ハ字状に配置した氷中ROVを
提供するものである. また、このような構成を備^るとともに、水中撮影手段
として特に、一方の前進・後退用スラスタの最前方部に
水中ライトを収容し、他方の前進・後退用スラスタの最
前方部に搬影用カメラを収容した氷中ROVを提供する
ものでもある.さらに上記構成に加えて,両前進・後退
用スラスタの中間部に上昇・下降用スラスタ及びフロー
トを配置して重量バランスをとることができるように構
成するものである. [作用] 上昇・下降用スラスタと,各前進・後退用スラスタとを
それぞれ独立したユニットとして形成して構成すること
により,水中ROMとして非常にシンプルな形態となる
とともに、両前進・後退用スラスタは略ハ字状に配置さ
れるため、推進角度調整作用が生じ、さらに前進・後退
用の両スクリューの位置を平行配置時に比べて離間させ
ることができる.また、ハ字状に配置した一方の前進・
後退用スラスタの最前部に水中ライトを収容し、他方の
前進・後退用スラスタの最前部に撮影カメラを収容する
ことにより,水中ライト及び撮影カメラの光軸を前方の
所定の位置、つまり撮影観測領域に合わせることができ
る.さらに、上昇・下降用スラスタとフロートを適正位
置に設置することにより、容易に重量バランスを得るこ
とができる. [実施例] 第1図は本発明の一実施例を示すものであり、11、1
2は前進・後退用スラスタであり、前進・後退用スラス
タ11の最前部のアクリル窓11A内には水中ライトが
収容され、前進・後退用スラスタl2の最前部のアクリ
ルドーム12A内にはビデオカメラが収容されている.
13は上昇・下降用スラスタ、14はフロート(浮き)
である.そして、前進・後退用スラスタ11,12、上
昇・下降用スラスタ13、及びフロートl4はフレーム
Fによって保護用アングルl5内に設置固定されている
.なお、Cは第3図と同様に複合ケーブルを示す. 前進・後退用スラスタ11.12は上部平面方向から見
て略ハ字状になるように設置されており,両スラスタ1
1、12の最後方部(スクリューS2、S,の部分)の
離間距離WRは、最前方部(アクリル窓11A及びアク
リルドーム12Aの部分)の離間距離W,よりも若干長
いものとされている. このように、前進・後退用スラスタ11.12を略ハ字
状に固定することにより、各種の作用を得ることができ
るものである. すなわち、両スラスタ11、12の筐体を前方に向かっ
て収束するような、若干の角度をつけて取付けることに
より、推進方向角度を自動的に調整する作用が得られ、
直進推進力は安定するものとなる. また、木中ROV全体のサイズを大型化しなくても、両
スクリューS..S.の位置をより離間させる(W,よ
り大きい離間距離W,Iが得られる)ことができること
をなり、両スクリューS2、S,の相互作用によって複
雑な渦流が生じることが防止でき、推進力及び直進走行
性に対する悪影響も無くすことができる. さらに、両スラスタ11.12の筐体の角度によって水
中ライト及びビデオカメラの光軸は前方の所定位置で交
わることとなり、水中ライトが1つでも十分に撮影が可
能となる. つまり、この実施例では、各前進・後退用スラスタ11
,12の最前部にそれぞれ水中ライト及びビデオカメラ
を収容するものとなっているが、前進・後退用スラスタ
l1、12の筐体は前述したように略ハ字状に固定され
ているため、第2図に示すように、水中ライトの光軸L
lとビデオカメラの光軸L,は所定距離だけ前方の位置
Tで一致することになり、1つの水中ライトで撮影に必
要な光量を十分に与えることができる。
[Problems to be Solved by the Invention] The conventional ice ROV configured as described above has the following problems. First, as a manufacturing problem, the main body 1 has to have a complicated shape due to the arrangement of the ascending/descending thrusters 1A, etc., and it also has to have a pressure-resistant structure, which makes it extremely difficult to manufacture. The drawback is that the manufacturing cost increases as the manufacturing process becomes more complex. Another problem is that it is not possible to improve the propulsion force unless it is allowed to increase in size to a certain extent, and as a result, it is not possible to improve the propulsion force beyond a certain level. In other words,
Thruster 2 for left and right forward/backward movement to improve propulsion.
3, the main body 1, the screener 82, and the S3
Since there is a risk that they may come into contact with each other, it is necessary to increase the distance between the forward/reverse thrusters 2, 3 and the main body 1, which results in an increase in size. However, the large size means that during manufacturing,
It is uneconomical and undesirable both during transportation and use. In addition, if the main body l is made smaller, the forward and backward thrusters 2 and 3
However, it also has to be made smaller, which has the disadvantage of being somewhat limited in terms of propulsion. (Conventional underwater ROMs are generally difficult to use in sea areas where the tidal current exceeds 2 knots.) Furthermore, as mentioned above, the left and right forward and backward thrusters 2
, 3 cannot be separated from the main body l by a large distance, and therefore it is not possible to provide a sufficient distance between each screer 82 and S. Therefore, in some cases, the interaction between both screws S2 and Ss may cause a complex vortex flow, resulting in problems such as a reduction in propulsive force and instability in straight running performance. be. Furthermore, since the ascending/descending thruster IA is inside the main body, the amount of water flowing into the screw S is limited.
Another problem is that the ascending and descending functions tend to deteriorate. [Means for Solving the Problems] The present invention has been made in view of the above-mentioned problems, and includes forming an ascending/descending thruster and each forward/reverse thruster as independent units, and To provide an ROV in ice that is arranged in a substantially V-shape so that the distance between forward and backward thrusters arranged in pairs on the left and right sides gradually narrows from the screw side toward the front. It is. In addition to having such a configuration, as an underwater photographing means, an underwater light is housed in the forwardmost part of one of the forward and backward thrusters, and an image transporter is housed in the forwardmost part of the other forward and backward thruster. It also provides an ice ROV that houses a camera for use in the ice. Furthermore, in addition to the above configuration, a lift/lower thruster and a float are placed between the forward and reverse thrusters to balance the weight. [Function] By configuring the ascending/descending thruster and each forward/reverse thruster as independent units, it becomes a very simple form as an underwater ROM, and both forward/reverse thrusters are Because they are arranged in a roughly V-shape, the propulsion angle can be adjusted, and the forward and backward screws can be spaced apart from each other compared to when they are arranged in parallel. In addition, one side of the forward
By accommodating an underwater light at the forefront of the backward thruster and a photographic camera at the front of the other forward/backward thruster, the optical axes of the underwater light and photographic camera are positioned at a predetermined position in front, i.e., for photographing and observation. It can be adjusted to suit the area. Furthermore, weight balance can be easily achieved by installing the ascending/descending thrusters and floats in appropriate positions. [Example] Figure 1 shows an example of the present invention.
2 is a forward/reverse thruster; an underwater light is housed in an acrylic window 11A at the forefront of the forward/reverse thruster 11, and a video camera is housed within an acrylic dome 12A at the forefront of the forward/reverse thruster 12. is accommodated.
13 is a rising/lowering thruster, 14 is a float.
It is. The forward/reverse thrusters 11, 12, the ascending/descending thrusters 13, and the float 14 are installed and fixed within the protective angle 15 by the frame F. Note that C indicates a composite cable as in Fig. 3. The forward/reverse thrusters 11 and 12 are installed in a substantially V-shape when viewed from the upper plane, and both thrusters 1
The distance WR between the rearmost portions of screws 1 and 12 (the screws S2 and S) is slightly longer than the distance W between the frontmost portions (the acrylic window 11A and the acrylic dome 12A). .. By fixing the forward and backward thrusters 11 and 12 in a substantially V-shape in this way, various effects can be obtained. That is, by attaching the casings of both thrusters 11 and 12 at a slight angle so that they converge toward the front, an effect of automatically adjusting the propulsion direction angle can be obtained.
The straight propulsion force becomes stable. Also, without increasing the size of the entire Kinaka ROV, both screws S. .. S. This means that the positions of the screws can be further spaced apart (W, a larger separation distance W, I can be obtained), and it is possible to prevent the generation of complex vortices due to the interaction of both screws S2, S, and increase the propulsion force and straight forward movement. It also eliminates the negative effect on running performance. Furthermore, depending on the angle of the casings of both thrusters 11 and 12, the optical axes of the underwater light and video camera intersect at a predetermined position in front, making it possible to take sufficient pictures even with just one underwater light. That is, in this embodiment, each forward/reverse thruster 11
, 12 are designed to accommodate an underwater light and a video camera, respectively. However, since the forward/reverse thrusters l1 and 12 casings are fixed in a substantially V-shape as mentioned above, As shown in Figure 2, the optical axis L of the underwater light
1 and the optical axis L of the video camera coincide at a position T ahead by a predetermined distance, and one underwater light can provide a sufficient amount of light necessary for photographing.

また、本実施例では、以上のような、前進・後退用スラ
スタ11.12の筐体が略ハ字状に固定されていること
による利点に加えて、各スラスタ11、12、l3を独
立した形態として構成することにより、従来の水中RO
Vにおける本体部のような中心ユニットは不必要になり
(撮影手段の搭載部についても上述のとうり解決されて
いるため)、製造上、使用上の種々の利点が生じること
になる:すなわち、必ず耐圧構造とすることを必要とす
る部分(つまり各スラスタ)の形状はすべて非常にシン
プルなものであり、特に複雑な形状となるユニット(例
えば従来例における本体部l)は存在しないため、耐圧
設計は非常に容易になり、製造効率も大幅に改善させる
ことができ、とりわけ、製造コストを著しく低下させる
ことができる。
Furthermore, in this embodiment, in addition to the above-mentioned advantage that the housings of the forward and backward thrusters 11 and 12 are fixed in a substantially V-shape, each thruster 11, 12, l3 is By configuring it as a form, traditional underwater RO
A central unit such as the main body in V is no longer necessary (since the mounting part for the photographing means has also been solved as described above), and various advantages arise in terms of manufacturing and use: namely: The shapes of all the parts that must have a pressure-resistant structure (that is, each thruster) are extremely simple, and there are no units with particularly complex shapes (for example, the main body l in the conventional example), so the pressure-resistant structure is very simple. The design becomes much easier, the manufacturing efficiency can also be significantly improved, and above all, the manufacturing costs can be significantly reduced.

また、推進力向上を図るために、前進・後退用スラスタ
11、12を大型化する際においても、重大な支障(例
えば、従来例の如きスクリューと本体部の接触の恐れ)
はなくなり、必ずしも水中ROV全体を大型化しなくて
も高出力を得ることができるようにもなる. さらに、上昇・下降用スラスタIAも独立したユニット
であることから、スクリューS1に流れ込む水量が制限
を受けることはなくなり、上昇及び下降機能が低下する
といった問題点も解消される. なお、本実施例では、上昇・下降用スラスタ13、及び
フロートl4を略ハ字状の前進・後退用スラスタ11.
12の中間部に設置固定することにより、容易に水中R
OV全体の水中重量バランスをとることができる.通常
、前進・後退用スラスタ11.12はスクリューS2、
S,のモータによって後部に重心があるため、第1図に
示すように、中間部前方に上昇・下降用スラスクl3を
固定し、中間部後方にフロート14をつければよい. [発明の効果] 以上説明してきたように、本発明の水中ROMは、上昇
・下降用スラスタと、各前進・後退用スラスタとをそれ
ぞれ独立したユニットとして、非常にシンプルに構成す
るとともに各前進・後退用スラスタ間の離間間隔が、ス
クリュー側から前部に向かって徐々に狭くなるように略
ハ字状に配置したため、製造コストの大幅な低下、直進
推進性の安定といった効果を実現できることになるとと
もに、水中ROMの大型化を伴わないままで推進力の向
上を実現できるという効果がある。
In addition, when increasing the size of the forward/reverse thrusters 11 and 12 in order to improve the propulsive force, there are serious problems (for example, there is a risk of contact between the screw and the main body as in the conventional example).
This means that high output can be obtained without necessarily increasing the size of the entire underwater ROV. Furthermore, since the ascending/descending thruster IA is also an independent unit, the amount of water flowing into the screw S1 is not limited, and the problem of reduced ascending and descending functions is also resolved. In this embodiment, the ascending/descending thruster 13 and the float 14 are replaced by a substantially V-shaped forward/retreat thruster 11.
By installing and fixing it in the middle part of 12, you can easily perform underwater R.
It is possible to balance the weight of the entire OV underwater. Normally, the forward and backward thrusters 11.12 are screws S2,
Since the center of gravity is at the rear due to the motor of S, it is sufficient to fix the raising/lowering thrust l3 to the front of the intermediate part and attach the float 14 to the rear of the intermediate part, as shown in Fig. 1. [Effects of the Invention] As explained above, the underwater ROM of the present invention has a very simple configuration in which the ascending/descending thruster and each forward/reverse thruster are independent units, and each forward/reverse thruster is configured as an independent unit. The spacing between the retreating thrusters is arranged in a roughly V-shape so that it gradually narrows from the screw side to the front, resulting in significant reductions in manufacturing costs and stable straight-line propulsion. In addition, there is an effect that the propulsion force can be improved without increasing the size of the underwater ROM.

【図面の簡単な説明】 第1図は本発明の一実施例を示す斜視図、第2図は撮影
光軸角度の説明図,第3図は従来例を示す斜視図である
. l1、l2は前進・後退用スラスタ、l3は上昇・下降
用スラスタ、l4はフロート、l5は保護用アングル、
Cは複合ケーブル、Fはフレーム、81〜S,はスクリ
ューを示す。 ?1■′゛ ・・゛一 代理人  脇  篤 夫  ,,, 第 図 i2
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is an explanatory view of the photographing optical axis angle, and FIG. 3 is a perspective view showing a conventional example. l1 and l2 are forward and backward thrusters, l3 is a rising and descending thruster, l4 is a float, l5 is a protective angle,
C indicates a composite cable, F indicates a frame, and 81 to S indicate a screw. ? 1■'゛...゛1 Agent Atsuo Waki ,,, Fig. i2

Claims (3)

【特許請求の範囲】[Claims] (1)上昇・下降用推進装置部と、左右一対の前進・後
退用推進装置部と、水中撮影手段とを備えた水中探査機
において、 前記上昇・下降用推進装置部と、前記各前進・後退用推
進装置部とをそれぞれ独立したユニットとして形成する
とともに、 左側及び右側に一対に配置される前記各前進・後退用推
進装置部間の離間間隔が、後部スクリュー側から前部に
向かって徐々に狭くなるようにュハ字状に配置したこと
を特徴とする水中探査機。
(1) In an underwater exploration vehicle equipped with an ascent/descend propulsion device section, a pair of left and right forward/reverse propulsion devices, and an underwater photographing means, the ascent/descend propulsion device section, and each of the forward/backward propulsion devices and the reverse propulsion device sections are each formed as an independent unit, and the spacing between the forward and reverse propulsion device sections disposed in pairs on the left and right sides gradually increases from the rear screw side toward the front. An underwater probe characterized by being arranged in a shape that narrows.
(2)水中撮影手段として、一方の前進・後退用推進装
置部の最前方部に水中ライトを収容し、他方の前進・後
退用推進装置部の最前方部に撮影用カメラを収容したこ
とを特徴とする特許請求の範囲第(1)項記載の水中探
査機。
(2) As an underwater photography means, an underwater light is housed in the forwardmost part of one forward/reverse propulsion unit, and a photographic camera is housed in the forwardmost part of the other forward/reverse propulsion unit. An underwater probe according to claim (1).
(3)一対の前進・後退用推進装置部の中間部に上昇・
下降用推進装置部及びフロートを配置し、全体の重量バ
ランスをとることができるように構成したことを特徴と
する特許請求の範囲第(1)項記載の水中探査機。
(3) In the middle part of the pair of forward/reverse propulsion devices,
An underwater probe according to claim 1, characterized in that the descending propulsion device section and the float are arranged so that the overall weight balance can be maintained.
JP4856689A 1989-03-02 1989-03-02 Underwater surveying machine Pending JPH02231294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4856689A JPH02231294A (en) 1989-03-02 1989-03-02 Underwater surveying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4856689A JPH02231294A (en) 1989-03-02 1989-03-02 Underwater surveying machine

Publications (1)

Publication Number Publication Date
JPH02231294A true JPH02231294A (en) 1990-09-13

Family

ID=12806946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4856689A Pending JPH02231294A (en) 1989-03-02 1989-03-02 Underwater surveying machine

Country Status (1)

Country Link
JP (1) JPH02231294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019134299A1 (en) * 2018-01-08 2019-07-11 天津深之蓝海洋设备科技有限公司 Underwater auxiliary propulsion device
WO2019242690A1 (en) * 2018-06-21 2019-12-26 天津深之蓝海洋设备科技有限公司 Underwater booster

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019134299A1 (en) * 2018-01-08 2019-07-11 天津深之蓝海洋设备科技有限公司 Underwater auxiliary propulsion device
WO2019242690A1 (en) * 2018-06-21 2019-12-26 天津深之蓝海洋设备科技有限公司 Underwater booster
JP2021528299A (en) * 2018-06-21 2021-10-21 天津深之藍海洋設備科技有限公司Tianjin Deepfar Ocean Technology Co., Ltd. Underwater booster

Similar Documents

Publication Publication Date Title
US8651041B2 (en) Personal underwater vehicle
ES2647830T3 (en) System and method for underwater observation
SG182839A1 (en) A joint commonality submersible (jcs)
JPH0263993A (en) Unmanned diving machine
JPH0749277B2 (en) A glider-type submersible with control of boat attitude by adjusting gravity and buoyancy
CN105752301A (en) Self-inclination submersing device
JPH09301273A (en) Underwater probe device
JPH02231294A (en) Underwater surveying machine
CN107600375B (en) Design method of observation type unmanned remote control submersible
JPH02501135A (en) Remote controlled self-propelled underwater boat
US11396355B2 (en) Bracket for mounting a thruster to a boat
US11319044B2 (en) Bracket for mounting a thruster to a boat
CN108945353A (en) The diving boost motor of handheld tape shooting function
JP7499496B2 (en) Underwater Survey Equipment
KR20200004948A (en) Underwater wheelchair for scuba diving for disabled people
RU2104210C1 (en) Unmanned submersible vehicle
US11173985B2 (en) Bracket for mounting a thruster to a boat
US4897064A (en) Head-fitting swimming apparatus
JPH08169398A (en) Unmanned submersible machine
CN113501112A (en) Muddy water imaging unmanned remote control submersible and design method thereof
CN109562816B (en) Underwater navigation robot
CN2711040Y (en) Multiple ships combination towboat
CN109501981A (en) The diving boost motor of handheld tape shooting function
WO2022255904A1 (en) Remotely operated unmanned underwater vehicle
JPH0348959Y2 (en)