JPH02231110A - Cutting of columnar ingot - Google Patents

Cutting of columnar ingot

Info

Publication number
JPH02231110A
JPH02231110A JP5325189A JP5325189A JPH02231110A JP H02231110 A JPH02231110 A JP H02231110A JP 5325189 A JP5325189 A JP 5325189A JP 5325189 A JP5325189 A JP 5325189A JP H02231110 A JPH02231110 A JP H02231110A
Authority
JP
Japan
Prior art keywords
ingot
cutting
linear blade
square
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5325189A
Other languages
Japanese (ja)
Inventor
Takehiro Asano
浅野 剛弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M SETETSUKU KK
Original Assignee
M SETETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M SETETSUKU KK filed Critical M SETETSUKU KK
Priority to JP5325189A priority Critical patent/JPH02231110A/en
Publication of JPH02231110A publication Critical patent/JPH02231110A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work

Abstract

PURPOSE:To obtain a good quality wafer by improving precision of a section, by a method wherein a dummy material is arranged on the circumference of a columnar ingot and a sectional form of a part to be processed is brought close to a square form. CONSTITUTION:Dummy materials 12a, 12b comprised of the same material with an ingot 11 or a material whose quality is resembled to that of the ingot 11 are arranged on the circumference of the ingot 11 and a sectional form of a part to be processed is brought close to a square form. Since a form of a section becomes fixed and is of a square, cutting resistance and a change of a load to a linear blade can be reduced extending from the beginning to the end and a wafer whose precision of the section is high becomes obtainable.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、線状刃を用いて加工する円柱状インゴット
の切断方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Field of Industrial Application) This invention relates to a method for cutting a cylindrical ingot using a linear blade.

(f米の技術) 線状刃の鋸によってシリコンインゴ,トを切断すること
は一部太陽電池用ウエファ製造の場合を除き、従来殆ん
ど行なわれていない。その理由は、形状程度に問題があ
シウエ7ア内での厚さむら、平行度や切断面のうねシや
段差を生じ易いからである。
(American technology) Cutting silicon ingots with a saw with a linear blade has rarely been done in the past, except in some cases for manufacturing wafers for solar cells. The reason for this is that problems with the shape tend to cause uneven thickness, parallelism, and ridges or steps on the cut surface within the seam 7a.

(発明が解決しようとする課題) これらの問題を克服するため、従来荷重を検出しあるい
は断面形状から計算により推測するいワユるコンピュー
タitIIJ御法があるが、何れも切断精度に結びつか
ないのが現状である。
(Problem to be solved by the invention) In order to overcome these problems, there is a conventional computer-controlled method that detects the load or estimates it by calculation from the cross-sectional shape, but at present neither of these methods lead to cutting accuracy. It is.

線状刃がいくら撓んでも、線状刃のテンション(Ten
aion)に変化はない。線状刃を用いた鋸は、適当な
撓み角度lこよる垂直ベクトル成分により初めて切断荷
重を生ずるものであるがこれはワークの形状によって線
状刃1本当りの単位荷1が刻々変化する。
No matter how much the linear blade bends, the tension (Ten) of the linear blade
aion) remains unchanged. A saw using a linear blade generates a cutting load only when a vertical vector component is generated by an appropriate deflection angle l, but the unit load 1 per linear blade changes from moment to moment depending on the shape of the workpiece.

第4因は従来の切断方法に用いる巌状刃を備えた鋸によ
る揚合の切断状態を示す説明図である。
The fourth factor is an explanatory diagram showing a state of cutting by a saw equipped with a rock-shaped blade used in a conventional cutting method.

第4図において、1は例えばシリコン等の円柱この線状
刃の撓み角度とワーク形状によって線状刃の垂直方向か
らの横ずれによる自己修復機能も異なってくる。すなわ
ち、切断面のう鉛りに犬き〈影響してくる。第5図はワ
ーク1に対する線状刃2の関係を示す。図中3は多溝ロ
ーラ、0は撓み角度を示している。
In FIG. 4, 1 is a cylindrical cylinder made of silicon or the like.The self-repairing function of the linear blade due to lateral deviation from the vertical direction varies depending on the bending angle of the linear blade and the shape of the workpiece. In other words, it has a significant effect on the corrosion of the cut surface. FIG. 5 shows the relationship of the linear blade 2 to the workpiece 1. In the figure, 3 indicates a multi-groove roller, and 0 indicates a deflection angle.

一方向線状刃走行方式では砥粒の侵入および破砕、切粉
の増加等で入口と出口ではこの撓み角度θも異なってく
る。すなわち線状刃2の荷重も異なる。
In the unidirectional linear blade running system, the deflection angle θ also differs at the entrance and exit due to the intrusion and crushing of abrasive grains, increase in chips, etc. That is, the load on the linear blade 2 is also different.

また線状刃の接線荷重は砥粒の粒度(新しいものと古い
もので異なる)、油の粘度、比重、切粉の増加等使用回
数によって変化するので、形状計算値方式ではこれら全
べての因子を取込むことは不可能である。
In addition, the tangential load of a linear blade changes depending on the particle size of the abrasive grains (different between new and old ones), viscosity of oil, specific gravity, increase in chips, etc., so the shape calculation value method takes into account all of these factors. It is impossible to incorporate factors.

この発明は上記各問題点を解決するためになされたもの
で、切断面の精度が高く良質のウエファを得られる円柱
状インゴットの切断方法を提供しようとするものである
The present invention was made to solve the above-mentioned problems, and it is an object to provide a method for cutting a cylindrical ingot, which allows obtaining wafers of high quality with high precision of the cut surface.

[発明の構成] (課題を解決するための手段) n トの切断方法において、円柱状インゴットの周囲にダミ
材を配置し被加工部の断面形状を角形に近ずけることを
特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) n A cutting method characterized in that a dummy material is arranged around a cylindrical ingot so that the cross-sectional shape of the processed part approaches a square shape. It is.

(作 用) この発明の切断方法は被加工部の断面形状を角形に近ず
けているので、正方形状のワークの場合と同様に切断面
が一定で最初から最後まで切削抵抗および線状刃に対す
る荷重の変化を少ないものとすることができる。したが
って安定・した切削精度が得られ切断面の精度の高いウ
エファを得ることができる。
(Function) Since the cutting method of this invention makes the cross-sectional shape of the workpiece close to a square shape, the cutting surface is constant and the cutting resistance and linear cutting edge are constant from the beginning to the end, just like in the case of a square workpiece. It is possible to reduce the change in the load against the load. Therefore, stable cutting accuracy can be obtained, and a wafer with a highly accurate cut surface can be obtained.

(実施例) 以下、図面を参照してこの発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

ワークlおよび線状刃ユ“および多溝ローラ1の関係は
第4崗の構成とほぼ同様であるが、ワークjとして第1
図に示すように、円柱状インゴ,ト11の周囲にこのイ
ンゴット11と同一材料または性質の近い材料よりなる
ダミー材12m,12b f配設して被加工部の断面形
状を角形Cこ近ずける。
The relationship between the work l, the linear blade unit, and the multi-groove roller 1 is almost the same as that of the fourth roller, but the first
As shown in the figure, dummy materials 12m and 12b made of the same material as that of the ingot 11 or materials with similar properties are placed around the cylindrical ingot 11, so that the cross-sectional shape of the workpiece is made into a rectangular shape. Let's go.

第1図はダミー材12m,12b f円柱状インゴット
11の両側に配置したものであるが、第2図lこ示すよ
うにダミー材12a,12bを上下側lこ配置するよう
Iこしてもよい。
In Figure 1, the dummy materials 12m and 12b are arranged on both sides of the cylindrical ingot 11, but it is also possible to arrange the dummy materials 12a and 12b on the upper and lower sides as shown in Figure 2. .

第1図もしくはwJz図の構成をとると、切断面の形状
が一定となりしかも角形であるから、切断作業の最初か
ら最後まで切削抵抗および線状刃に対する荷重の変化を
少いもQとすることができるので切断面の精度の高いウ
エファを得ることができる。
When the configuration shown in Figure 1 or wJz diagram is adopted, the shape of the cut surface is constant and square, so the change in cutting resistance and load on the linear blade can be kept at least Q from the beginning to the end of the cutting operation. Therefore, a wafer with a highly accurate cut surface can be obtained.

!1図および第2図は加工する円柱状インゴット11が
1個の場合を示しているが、インゴットが2個の場合に
は、第3図のような構成をとることができる。
! 1 and 2 show the case where one cylindrical ingot 11 is to be processed, but when there are two ingots, a configuration as shown in FIG. 3 can be adopted.

線で示すようζこダミ材22e.22dを両側に配置す
ることもできる。
As shown by the line, the ζ-dami material 22e. 22d can also be placed on both sides.

しかし線状刃を用いた鋸による半導体用シリコンインゴ
ットの切断は、遊離砥粒の押付けによる他のボリシング
、ラッピング工程と異なり加工破砕層及び結晶学的ダメ
ージに非常に小さい特長がある。
However, cutting silicon ingots for semiconductors with a saw using a linear blade has the advantage that, unlike other boring and lapping processes that involve pressing loose abrasive grains, the processing fracture layer and crystallographic damage are extremely small.

したがって、切削精度さえ(特にウネリ)保てれば、通
常のウエファの製造の如く次工程のラッピング、場合に
よってはボリシングさえも省略でき、ダメージ層が上述
したように非常に少いのでエッチングによシこれらダメ
ージ層の取代及び切代が従来の円周刃の0. 3 mm
.に比べ、線状刃の径れと性質の近い材料會用いたダミ
材であり、このような構成をとることにより一鳩効率的
に精度の高いウエファを得ることができる。
Therefore, as long as the cutting accuracy (particularly the undulations) can be maintained, the next step of lapping, and in some cases even boring, can be omitted as in normal wafer manufacturing. The machining allowance and cutting allowance of the damaged layer are 0. 3 mm
.. Compared to this, the dummy material is made of a material that has properties similar to the diameter of the linear blade, and by adopting this configuration, it is possible to efficiently obtain wafers with high precision.

なお、切断面の精度を上げるために、さらに破り得る利
点がある。
Note that it has the advantage of being able to be further broken to increase the precision of the cut surface.

第6図(1)はシリコン単結晶r丸型インゴットを通常
の方法で切断した場合の切断面を表面帆さ計で側定した
ものである。
FIG. 6(1) shows the cut surface of a silicon single crystal round ingot cut by a conventional method, as measured by a surface roughness meter.

第6図fb)は上記インゴットヲ第1図に示したようl
こダミ材12a,12bを設けて切断した場合の切断面
を表面Jtで測定したものである。
Figure 6fb) is the ingot as shown in Figure 1.
The cut surface obtained when cutting with the dummy materials 12a and 12b provided is measured at the surface Jt.

第6図f&)とfb) t比較することによりこの発明
方法lこよる場合が切断面の精度6こおいて著しく改善
されていることを知ることができる。
By comparing FIG. 6f&) and fb)t, it can be seen that the accuracy of the cut surface is significantly improved when the method according to the present invention is used.

なお、この発明は上記各実施例に限定されるものではな
く教旨を変更しない範囲1こおいて、異なる構成をとる
こともできる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and may have different configurations without changing the spirit of the invention.

[発明の効来コ この発明によれば、切断面の精度が高く良質のウエファ
を得られる円柱状インゴットの切断方法を提供すること
ができる。
[Effects of the Invention] According to the present invention, it is possible to provide a method for cutting a cylindrical ingot, which allows obtaining wafers of high quality with high precision of the cut surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のワーク部分の構成を示す
断面図、第2図はこの発明の他の実施例のワーク部分の
構成を示す断面図、第3図はこの発明のさらに異なる実
施例のワーク部分の構成を示す断面図、第4図は従来の
切断方法に用いられる線状刃を備えた鋸の場合の切断状
態を示す説明図、第5図は従来の切断方法Cこおける線
状刃の撓み角の説明図、第6図(&)はシリコン単結晶
丸型インゴットt通常の方法で切断した場合の切断面を
表面粗方軒で測定した場合の特性図、同図fb)は同じ
インゴットをこの発明の第1の実施例lこよって切断し
た場合の切断面金表面粗さ計で測定した場合の特性図で
ある。 1.11.21m,2lb−円柱形インゴット2・・・
線状刃 3・・・多溝ローラ 12a,12b,22a”!2d−ダミ材手続補正書く
方式) 第 図 特許庁長官 吉 田 文 毅 殿 l.事件の表示 特願平1−53251号 2.発明の名称 円柱形インゴットの切断方法 3.補正をする者 事件との関係  特許出願人 エム・セテック株式会社 4.代理人 住所 東京都大田区西蒲11fl7T[l 5 0番3号■1
村ビル319} 第 図 5.補正命令の日付(発送日) 平成1年5月308 7.補正の内容 (1)代理権を証明ずる書面(委任状)通り提出する. (2)願書添付の図面に第6図(a),別紙の通り追加
する. を別紙C b を 出願人 エム・セテック株式会社 宮ぞH1 奉壬゛ (a) (b) lI6図
FIG. 1 is a sectional view showing the structure of a workpiece according to an embodiment of the present invention, FIG. 2 is a sectional view showing the structure of a workpiece according to another embodiment of the invention, and FIG. 3 is a sectional view showing the structure of a workpiece according to another embodiment of the invention. 4 is an explanatory diagram showing the cutting state in the case of a saw equipped with a linear blade used in the conventional cutting method. FIG. 5 is a sectional view showing the structure of the workpiece part of the embodiment. Figure 6 (&) is an explanatory diagram of the deflection angle of a linear blade in a silicon single crystal round ingot. fb) is a characteristic diagram when the same ingot was cut according to the first embodiment of the present invention and the cut surface was measured using a gold surface roughness meter. 1.11.21m, 2lb-cylindrical ingot 2...
Linear blade 3...Multi-groove rollers 12a, 12b, 22a"! 2d - Dummy material procedure correction writing method) Figure Fumi Takeshi Yoshida, Commissioner of the Patent Office l. Indication of the case Patent Application No. 1-53251 2. Name of the invention Method for cutting cylindrical ingots 3. Relationship with the case of the person making the amendment Patent applicant M Setec Co., Ltd. 4. Agent address 11fl7T Nishikan, Ota-ku, Tokyo [l 5 0-3 ■1
Village Building 319} Figure 5. Date of amendment order (shipment date) May 308, 1999 7. Contents of amendment (1) Submit the document certifying the power of attorney (power of attorney) as is. (2) Add Figure 6 (a) to the drawings attached to the application as shown in the attached sheet. Attachment C b Applicant M Setec Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ローラ間に張設された線状刃を用いる円柱状インゴット
の切断方法において、円柱形インゴットの周囲にダミ材
を配置し被加工部の断面形状を角形に近ずけることを特
徴とする円柱状インゴットの切断方法。
A method for cutting a cylindrical ingot using a linear blade stretched between rollers, which is characterized by arranging a dummy material around the cylindrical ingot so that the cross-sectional shape of the processed part approaches a square shape. How to cut an ingot.
JP5325189A 1989-03-06 1989-03-06 Cutting of columnar ingot Pending JPH02231110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5325189A JPH02231110A (en) 1989-03-06 1989-03-06 Cutting of columnar ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325189A JPH02231110A (en) 1989-03-06 1989-03-06 Cutting of columnar ingot

Publications (1)

Publication Number Publication Date
JPH02231110A true JPH02231110A (en) 1990-09-13

Family

ID=12937572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325189A Pending JPH02231110A (en) 1989-03-06 1989-03-06 Cutting of columnar ingot

Country Status (1)

Country Link
JP (1) JPH02231110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301688A (en) * 2006-05-12 2007-11-22 Naoetsu Electronics Co Ltd Workpiece cutting method
CN102083598A (en) * 2008-06-19 2011-06-01 信浓电气制炼株式会社 Fret bar for ingot slicing, ingot to which fret bar is stuck, and ingot cutting method using fret bar
WO2011145390A1 (en) * 2010-05-18 2011-11-24 三菱電機株式会社 Processing object retainer, wire electric discharge processing device, thin sheet production method, and semiconductor wafer production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301688A (en) * 2006-05-12 2007-11-22 Naoetsu Electronics Co Ltd Workpiece cutting method
CN102083598A (en) * 2008-06-19 2011-06-01 信浓电气制炼株式会社 Fret bar for ingot slicing, ingot to which fret bar is stuck, and ingot cutting method using fret bar
WO2011145390A1 (en) * 2010-05-18 2011-11-24 三菱電機株式会社 Processing object retainer, wire electric discharge processing device, thin sheet production method, and semiconductor wafer production method
CN102892539A (en) * 2010-05-18 2013-01-23 三菱电机株式会社 Workpiece retainer, wire electric discharge machining device, thin-plate manufacturing method, and semiconductor-wafer manufacturing method
JP5460864B2 (en) * 2010-05-18 2014-04-02 三菱電機株式会社 Wire electric discharge machining apparatus and thin plate manufacturing method
CN102892539B (en) * 2010-05-18 2014-11-12 三菱电机株式会社 Wire electric discharge machining device and thin-plate manufacturing method
US9833854B2 (en) 2010-05-18 2017-12-05 Mitsubishi Electric Corporation Workpiece retainer, wire electric discharge machining device, thin-plate manufacturing method, and semiconductor-wafer manufacturing method

Similar Documents

Publication Publication Date Title
JP5853081B2 (en) Method for simultaneously cutting multiple wafers from a workpiece
US9555516B2 (en) Method for processing an edge of a glass plate
JP6132621B2 (en) Method for slicing semiconductor single crystal ingot
KR100887269B1 (en) Semiconductor wafers with highly precise edge profile and method for producing them
TW201206853A (en) Cutter wheel for scribing fragile material substrate and method of manufacturing the same
TW201016423A (en) Method for simultaneously cutting a compound rod of semiconductor material into a multiplicity of wafers
JPH02231110A (en) Cutting of columnar ingot
TW201831267A (en) Glass plate, and method for producing glass plate
JPWO2018155644A1 (en) Cutting insert and cutting tool provided with the same
TWI596665B (en) Methods for mounting an ingot on a wire saw machine
US5975990A (en) Method of producing semiconductor wafers
JPH11192452A (en) Coating device, working for coater die, jig for coater die, grinding device, and coated product
JP3070430B2 (en) Cutting method and apparatus using multi-wire saw
EP0054481A1 (en) Method of producing cutting edges, and inserts or other cutting materials having these cutting edges
JP2008036771A (en) Grinding wheel for hard fragile substrate
EP2656953B1 (en) Wire saw and wire for cutting a material
JPH0242322Y2 (en)
US20220371065A1 (en) Unknown
JPS6024552Y2 (en) round blade tools
JPH11277399A (en) Working roller for wire saw and manufacture of the same
JPH01188214A (en) Method and device for machining groove
JPH02182406A (en) Device for controlling cross sectional shape of semiconductor
JPH0516189U (en) Slitter knife
JPS6021124Y2 (en) round blade tools
JPS6340602A (en) Plastic working method for hard steel wire rod