JPH02230769A - Pyroelectric type solid-state image sensing device - Google Patents

Pyroelectric type solid-state image sensing device

Info

Publication number
JPH02230769A
JPH02230769A JP1049856A JP4985689A JPH02230769A JP H02230769 A JPH02230769 A JP H02230769A JP 1049856 A JP1049856 A JP 1049856A JP 4985689 A JP4985689 A JP 4985689A JP H02230769 A JPH02230769 A JP H02230769A
Authority
JP
Japan
Prior art keywords
pyroelectric
signal
film
layer
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1049856A
Other languages
Japanese (ja)
Inventor
Toru Konuma
小沼 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP1049856A priority Critical patent/JPH02230769A/en
Publication of JPH02230769A publication Critical patent/JPH02230769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve dynamic range and S/N ratio by a method wherein electric charge induced on the upper surface of a pyroelectric film is utilized as a signal by storing electric charge induced on the upper surface and the lower surface of the pyroelectric film of a pyroelectric type solid state image sensing device, in different capacitance elements. CONSTITUTION:A p-type diffusion layer 4-2 for the channel of a second reset transistor MR-2 for setting the upper surface of a pyroelectric film 12 connected through an Al layer 11-3 of a first layer and an Al layer 15 of a second layer at an initial voltage Vinit, and an n<+> type diffusion layer 3-3 as a capacitor for integrating a signal induced on the pyroelectric film 12 are provided. An n<+> type diffusion layer 2-4 for the channel of a buried type CCD for transferring the signal induced on the upper surface of the pyroelectric film 12 is formed, and the signal is led out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像装置に係り,特に赤外線画像を撮像す
る固体撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device, and particularly to a solid-state imaging device that captures infrared images.

〔発明の概要〕[Summary of the invention]

本発明は赤外線画像を得るCCD固体撮像素子において
,素子の焦電膜の上面に生ずる電荷と下面に生ずる電荷
をそれぞれ別の容量素子に蓄積しこれを読み出すことに
より,ダイミックレンジ,S/上を向上させたものであ
る。すなわち,従来の焦電型固体撮像装置では,焦電膜
の上面に誘起する電荷はその配線が外部電源に接続され
ているために捨てられることになり,焦電効果によって
誘起した電荷を有効に活用できないという欠点がある。
The present invention uses a CCD solid-state imaging device that obtains infrared images to store the charges generated on the upper surface and the lower surface of the pyroelectric film of the device in separate capacitive elements and read them out. It is an improved version. In other words, in conventional pyroelectric solid-state imaging devices, the charge induced on the top surface of the pyroelectric film is discarded because the wiring is connected to an external power supply, and the charge induced by the pyroelectric effect cannot be used effectively. The drawback is that it cannot be used.

本発明の目的は,焦電効果によって誘起した電荷を全て
活用し,バイアス電荷の除去が簡単に行える焦電型固体
撮像装置を提供することにある。
An object of the present invention is to provide a pyroelectric solid-state imaging device that makes full use of the charges induced by the pyroelectric effect and can easily remove bias charges.

本発明は焦電型固体撮像装置の焦電膜の下面と上面に誘
起する電荷をそれぞれ別の容1素子に蓄積することを特
徴とし,各々の容量素子について,容量素子の初期電圧
設定素子および容量素子からCCDへ電荷の転送を行う
転送送子をそれぞれ設けたものである。
The present invention is characterized in that charges induced on the lower surface and upper surface of the pyroelectric film of a pyroelectric solid-state imaging device are stored in separate capacitive elements, and for each capacitive element, an initial voltage setting element and an initial voltage setting element of the capacitive element are stored. Each device is provided with a transfer element that transfers charge from the capacitive element to the CCD.

その結果,本発明によれば,従来,焦電膜の下面に誘起
する電荷だけを信号として扱い,焦電膜の上面に誘起す
る電荷は捨てていたのに対し,本発明によれば上下,両
面の電荷を信号として扱えるため,ダイナミック・レン
ジおよびS/N比を大幅に向上させることができる。ま
た,各画素ごとに注入されるバイアス電荷は各画素にお
げる焦電膜の上面と下面の信号の差をとることによって
簡単に除去できるため,各画素のバイアス電荷のばらつ
きによって生じる固定パターン雑音を抑制できる。
As a result, according to the present invention, whereas conventionally only the charge induced on the lower surface of the pyroelectric film was treated as a signal and the charge induced on the upper surface of the pyroelectric film was discarded, according to the present invention, the upper and lower Since the charges on both sides can be treated as signals, the dynamic range and S/N ratio can be greatly improved. In addition, since the bias charge injected for each pixel can be easily removed by taking the difference between the signals on the top and bottom surfaces of the pyroelectric film in each pixel, fixed patterns caused by variations in the bias charge in each pixel can be easily removed. Noise can be suppressed.

〔従来の技術〕[Conventional technology]

焦電型赤外線センサーでは可視光センサーとは異なりG
eなどの赤外線光学材料を使用した光学レンズを用いて
赤外線画像を結像する。赤外線は熱として焦電膜に吸収
され,膜面には赤外線画像に対応した温度変化分布が生
じる。焦電膜の分極は温度上昇によって減少するため,
その焦電効果によって温度変化分布か膜の表面電荷分布
に変換される。焦電効果は誘電体の時間的温度変化によ
るものであるから,静止物体の撮像には固体撮像素子の
前面に赤外光を時間的に断続するチョノパを設ける必要
がある。赤外光の時間的断続によって焦電膜の温度がΔ
Tだけ変化した時,焦電係数をPTとすると膜面に誘起
する電荷量△QはPT・△Tとなる。△Qは分極の増減
によるものであるから,焦電膜の両側に誘起する電荷竜
の絶対値は等し《,符号は逆である。
Unlike visible light sensors, pyroelectric infrared sensors
An infrared image is formed using an optical lens using an infrared optical material such as e. Infrared rays are absorbed as heat by the pyroelectric film, creating a temperature change distribution on the film surface that corresponds to the infrared image. Since the polarization of the pyroelectric film decreases with increasing temperature,
The pyroelectric effect converts the temperature change distribution into the surface charge distribution of the film. Since the pyroelectric effect is caused by temperature changes over time in a dielectric material, it is necessary to provide a cyonopa in front of the solid-state image sensor to intermittent infrared light in order to image a stationary object. The temperature of the pyroelectric film increases by Δ due to the temporal interruption of infrared light.
When the amount of change is T, the amount of charge ΔQ induced on the film surface becomes PT·ΔT, where PT is the pyroelectric coefficient. Since ΔQ is due to an increase or decrease in polarization, the absolute values of the charge waves induced on both sides of the pyroelectric film are equal (<<, but the signs are opposite).

第7図は従来の赤外線画像を撮像する焦亀型撮像素子の
断面図,第8図(a),第8図(b)はそれそれ異なる
撮像条汗における信号読み出し時の第7図に対応した表
面ポテンシャルであり,斜線部分は電子で充満している
ことを示している。第9図は4相駆勤型の垂直CCDを
用いた時の第7図に対応した等価回路である。同図にお
いて,1はP形半導体基板,2−1は埋め込み型CCD
のチャネル用n一形拡散層,2−2は転送ゲートのチヤ
坏ル用n一形拡散漕,3−1はリセノト・ドレイン( 
RD )用n形拡散層3−2は信号積分容量としてのn
形拡散層,4はリセノト・トランジスタのチャネル用P
形拡散層,5はチャネルストッパ用P 形拡散層,6は
絶縁分離用Si02,7−1は第一層目の多結晶シリコ
ンであり,第7図に示したように第一層目の多結晶シリ
コン7−1と若干重なりをもつ第二層目の多結晶シリコ
ン7−2とでCCD電極を構成している。8は信号電荷
をCCDのチャネルへ転送するための転送ゲート(TG
),9は初期電圧設定用リセット・トランジスタのゲー
ト電極(RG)であり,それぞれ第三層目の多結晶シリ
コンである。11−1はリセット・ドレイン3−1の配
線用第一鳩目Ae層,11−2は焦電膜電極用の第一鳩
目Ag層,12は焦電膜,第9図ではその焦電膜12を
コンテンサと電流源とによって等価的に示している。1
3はニクロム等の熱吸収膜,10および14はSIO2
もしくは,ポリイミドのような層間絶縁膜,15は配線
および遮光用の第二層目Ae層,16&ま外部電源であ
り,リセット・ドレイン3−1にバイアス電圧Vini
tを印加する。17は信号積分用ダイオードである。
Figure 7 is a cross-sectional view of a conventional infrared image sensor that captures infrared images, and Figures 8 (a) and 8 (b) correspond to Figure 7 when reading signals in different imaging striations. The shaded area is filled with electrons. FIG. 9 is an equivalent circuit corresponding to FIG. 7 when a four-phase drive type vertical CCD is used. In the figure, 1 is a P-type semiconductor substrate, 2-1 is an embedded CCD
2-2 is the n-type diffusion layer for the channel of the transfer gate, 3-1 is the recenote drain (
The n-type diffusion layer 3-2 for
type diffusion layer, 4 is P for the channel of the resenoto transistor
5 is a P-type diffusion layer for channel stopper, 6 is Si02 for insulation isolation, 7-1 is the first layer of polycrystalline silicon, and as shown in FIG. A CCD electrode is constituted by the crystalline silicon 7-1 and a second layer of polycrystalline silicon 7-2 which slightly overlaps with each other. 8 is a transfer gate (TG) for transferring signal charges to the CCD channel.
) and 9 are gate electrodes (RG) of reset transistors for initial voltage setting, and are each made of third layer polycrystalline silicon. 11-1 is the first eyelet Ae layer for wiring of the reset drain 3-1, 11-2 is the first eyelet Ag layer for the pyroelectric film electrode, 12 is the pyroelectric film, and the pyroelectric film 12 is shown in FIG. is equivalently shown by a capacitor and a current source. 1
3 is a heat absorption film such as nichrome, 10 and 14 are SIO2
Alternatively, an interlayer insulating film such as polyimide, 15 is a second Ae layer for wiring and light shielding, 16 & is an external power supply, and a bias voltage Vini is applied to the reset drain 3-1.
Apply t. 17 is a signal integrating diode.

第10図は本従来例の焦電型固体撮像装置の動作を説明
するための赤外光を断続するチョソパーの開閉と駆勤パ
ルスのタイミングである。チョッパーを開いて素子面に
入射赤外光を当てた時,焦電効果によって,焦電膜12
のAe層11−2側に負電荷(電子)が誘起するような
分極処理を行った場合について動作を説明する。第10
図の時刻t1に示したように,チョノパーを閉じた時に
は転送ゲート(TG)8に電圧Vnを印加して転送チャ
ネル2−2をカット・オフし,リセノト・ゲート(RG
)9に電圧V。Mを印加してリセ ノト・トランジスタ
をON状態にすることによって,焦電膜12の両面を短
絡する。リセノト・ドレイン(RD)3−1にはチョッ
パーの開閉によらずVinitを印加するので,焦電膜
12の両面の電圧もVinitになる。次にチョノパー
を開いた時にはりセクト・ゲー}(RG)9に電圧vG
Lを印加してリセソト・トランジスタをOFF状態にし
,信号積分用ダイオード17を7ローティング状態にす
ることによって信号積分を開始する。入射赤外光による
焦電効果で焦電膜12のi層11−2側には電子か遊離
し,ダイオード17に蓄積される0熱吸収膜13側に誘
起する正電荷は第9図に示したように,外部電源16か
ら電子が供給され中和する。信号読み出し時は第10図
の時刻t2で示したように転送ゲート8に電圧vT■{
を印加し,転送チャネル2−2の電位なV r e a
 dにセットする。この時の表面ポテンシャルを第8図
(a)に示す。ダイオード17からCCDチャネル2−
1に転送される電荷Qreadは,焦電効果による電荷
QsigとVreadとVinitの電位差に相当する
一定量のバイアス電荷Qbiasの和になっている。し
たがって信号処理回路で注入された電荷Qbiasに相
当する量だけ減算すればよい。
FIG. 10 shows the timing of the opening/closing of the Chosopar which intermittent infrared light and the driving pulse for explaining the operation of the pyroelectric solid-state imaging device of this conventional example. When the chopper is opened and incident infrared light is applied to the element surface, the pyroelectric film 12 is caused by the pyroelectric effect.
The operation will be described in the case where polarization treatment is performed to induce negative charges (electrons) on the Ae layer 11-2 side. 10th
As shown at time t1 in the figure, when the channel is closed, the voltage Vn is applied to the transfer gate (TG) 8 to cut off the transfer channel 2-2, and the transfer gate (RG) is cut off.
) Voltage V at 9. By applying M and turning on the reset transistor, both sides of the pyroelectric film 12 are short-circuited. Since Vinit is applied to the drain (RD) 3-1 regardless of whether the chopper is opened or closed, the voltage on both sides of the pyroelectric film 12 is also Vinit. Next, when you open the chonopa, the voltage vG will be applied to RG (RG) 9.
Signal integration is started by applying L to turn off the reset transistor and put the signal integration diode 17 into the 7 loading state. Due to the pyroelectric effect caused by the incident infrared light, some electrons are liberated on the i-layer 11-2 side of the pyroelectric film 12, and the positive charges induced on the heat absorption film 13 side, which are accumulated in the diode 17, are shown in FIG. As described above, electrons are supplied from the external power source 16 and neutralized. When reading a signal, a voltage vT{ is applied to the transfer gate 8 as shown at time t2 in FIG.
is applied, and the potential of the transfer channel 2-2, V r e a
Set to d. The surface potential at this time is shown in FIG. 8(a). Diode 17 to CCD channel 2-
The charge Qread transferred to Vread 1 is the sum of the charge Qsig caused by the pyroelectric effect and a certain amount of bias charge Qbias corresponding to the potential difference between Vread and Vinit. Therefore, it is sufficient to subtract an amount corresponding to the charge Qbias injected by the signal processing circuit.

前記とは逆に,チョッパーを開いた時,焦電膜12のA
l層11−2側に正電荷が誘起するような分極処理を行
った場合,チョノパーの開閉と駆動パルスタイミングは
第10図のままでよいが,信号読み出し時の表面ポテン
シャルは第8図(b)のようになる。これは誘起する電
荷の極性が逆になったため,電荷の中和の仕方が異なる
からである。
Contrary to the above, when the chopper is opened, A of the pyroelectric film 12
If polarization treatment is performed to induce positive charges on the l layer 11-2 side, the opening/closing of the chonoper and the drive pulse timing can remain as shown in Figure 10, but the surface potential during signal readout will be as shown in Figure 8 (b). )become that way. This is because the polarity of the induced charges is reversed, so the way the charges are neutralized is different.

この場合は転送電荷Qreadはバイアス電荷Qb i
asと信号電荷Qs igの差になっているため,信号
処理回路で減算すれは信号分を検出できる。
In this case, the transfer charge Qread is the bias charge Qb i
Since it is the difference between as and the signal charge Qsig, the signal can be detected by subtraction in the signal processing circuit.

このような焦電型固体撮像装置の構造および駆動方法は
,例えば実願昭62−138220号明細書に記載され
ていろ。
The structure and driving method of such a pyroelectric solid-state imaging device are described in, for example, Japanese Utility Model Application No. 138220/1983.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本従来例における焦電型固体撮像装置では,信号読み出
し時に毎回一定量のバイアス電荷を注入することによっ
て,嘆膜12の下面,すなわち,Al層11−2側に誘
起する電荷の正負にかかわらずその電荷を信号として扱
うことができるという利点を持つ反面,第9図からもわ
かるように焦電膜12の上面′K誘起する電荷はその配
線が外部電源16に接続されているために捨てられるこ
とになり,焦電効果によって誘起した電荷を有効に活用
できないと(・う欠点がある。また,注入されたバイア
ス電荷Qbiasにばらつきがあると外部回路で効果的
にQbiasが除去できないという欠点がある。
In the pyroelectric solid-state imaging device of this conventional example, by injecting a fixed amount of bias charge every time when reading a signal, regardless of whether the charge induced on the lower surface of the diaphragm 12, that is, on the side of the Al layer 11-2, is positive or negative, Although it has the advantage that the electric charge can be treated as a signal, as can be seen from FIG. Therefore, there is a drawback that the charge induced by the pyroelectric effect cannot be used effectively.Also, if there is variation in the injected bias charge Qbias, the Qbias cannot be effectively removed by an external circuit. be.

本発明の目的は,焦電効果によって誘起した電荷を全て
活用し,バイアス電荷の除去が簡単に行える焦市型固体
撮像装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a focused solid-state imaging device that makes full use of the charges induced by the pyroelectric effect and can easily remove bias charges.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の目的を達成するため,焦電型固体撮像装
置の焦電膜12の下面と上面に誘起する電荷をそれぞれ
別の容量素子に蓄積し,各々の容量素子について,容量
素子の初期電圧設定素子および容量素子からCCDへ電
荷の転送を行う転送送子をそれぞれ設けたものである。
In order to achieve the above object, the present invention accumulates charges induced on the lower surface and upper surface of the pyroelectric film 12 of a pyroelectric solid-state imaging device in separate capacitive elements, and A transfer transmitter is provided for transferring charge from the voltage setting element and the capacitive element to the CCD.

〔作用〕[Effect]

その結果,従来捨てていた焦′wL膜の上面に誘起する
電荷も信号として利用できるようになり,ダイナミック
・レンジおよびS/N比を大幅に向上させることができ
る。また,各画素ごとに注入さ゛酔バイアス電荷は各画
素における焦電膜の上面と下面の信号の差をとることに
よって除去できるため,各画素のバイアス電荷のぱらつ
きによって生じる固定パターン雑音を抑制できる。
As a result, the charge induced on the top surface of the focal film, which was conventionally discarded, can now be used as a signal, making it possible to significantly improve the dynamic range and S/N ratio. Furthermore, the injected bias charge for each pixel can be removed by taking the difference between the signals on the top and bottom surfaces of the pyroelectric film in each pixel, so fixed pattern noise caused by variations in the bias charge in each pixel can be suppressed.

〔実施例〕〔Example〕

以下,実施例を用いて本発明を説明する。 The present invention will be explained below using examples.

第1図は本発明の焦電型固体撮像装置の画素部断面図,
第2図はそれに対応した表面ポテンシャルであり,斜線
部分は電子で充満して(・ることを示す。第3図は4相
駆動型の垂直CCDを用いた時の第1図に対応した等価
回路である。4−1はi配線11−2と接続されている
焦t膜12の下面を初期電圧Vinitに設定するため
の第一のリセノト・トランジスタ(MRI)のチャネル
用P形拡散J*,9−1はMRIのゲート電極である0
4−2は第一層目の1’層11−3,第二層目のAl+
脅ISを通して接続されている焦電膜12の上面を初期
電圧Vinitに設定するための第二のりセノト・トラ
ンジスタ(MR2)のチャネル用P形拡散層,9−2は
MR2のゲート電極,3−3は焦”j::’qi&,1
2の上面に誘起する.信号の積分用答量としてのn 形
拡散層である02−4は焦電膜12の上面に誘起した信
号を転送するための埋め込み型CCDのチャネル用n一
形拡散層,2−3は転送ゲートのチャネルである。8−
1.8−2はそれぞれCODに電荷を転送するためのゲ
ート電極,第3図の17−1.17−2は信号積分用ダ
イオードである。ここでは第3図のようにMHI,MR
2のゲート電極9−1.9−2はそれぞれリセットゲ−
}(RG)端子に接続し,ゲート電極8−1,8−2は
それぞれ転送ゲート(TG)端子に接続している場合を
考える。
FIG. 1 is a cross-sectional view of the pixel part of the pyroelectric solid-state imaging device of the present invention.
Figure 2 shows the corresponding surface potential, and the shaded area shows that it is filled with electrons. 4-1 is a P-type diffusion J* for the channel of the first recenote transistor (MRI) for setting the lower surface of the pyro-t film 12 connected to the i-wire 11-2 to the initial voltage Vinit. , 9-1 is the MRI gate electrode 0
4-2 is the first layer 1' layer 11-3 and the second layer Al+
9-2 is the gate electrode of MR2; 9-2 is the gate electrode of MR2; 3 is jiao"j::'qi&,1
2 is induced on the top surface. 02-4 is an n-type diffusion layer as an integral quantity of a signal, and 2-3 is an n-type diffusion layer for a channel of an embedded CCD for transferring a signal induced on the upper surface of the pyroelectric film 12. This is the gate channel. 8-
1.8-2 are gate electrodes for transferring charge to the COD, and 17-1.17-2 in FIG. 3 are signal integrating diodes. Here, as shown in Figure 3, MHI, MR
The second gate electrodes 9-1 and 9-2 are reset gate electrodes 9-1 and 9-2, respectively.
} (RG) terminal, and the gate electrodes 8-1 and 8-2 are each connected to a transfer gate (TG) terminal.

第4図は本発明の焦電型固定撮像襄置の動作を説明する
ためのチヲッパの開閉と撮像素子を駆動するパルスのタ
イミング図である。チョッパを開いて素子面に入射赤外
光を当て焦電膜の温度が上昇した時,焦電効果によって
焦電膜12の下面に負電荷(t子)が誘起するように分
極処理を行った場合について動作を説明する。
FIG. 4 is a timing diagram of the opening and closing of the chopper and the pulses for driving the imaging device, for explaining the operation of the pyroelectric fixed imaging device of the present invention. When the chopper was opened and incident infrared light was applied to the element surface and the temperature of the pyroelectric film rose, polarization treatment was performed so that negative charges (t-sons) were induced on the lower surface of the pyroelectric film 12 by the pyroelectric effect. The operation will be explained for each case.

第4図の時刻taで示したように,垂直帰線期間開(・
た状態に移る間にリセットゲー}(RG’)に電圧VG
}Iを印加してリセット・トランジスタMRl,MR2
をON状態にして焦電膜12の両面を短絡し,電圧なV
initにセントする。次にリセット・ゲート( RG
 )に電圧VGLを印加してリセント・トランジスタM
RI,MR2をOFF状態にする。転送ゲート(TG)
はオフ(t圧VTLを印加)であり,信号積分用ダイオ
ード17−1.17−2はフローティング状態になるた
め,信号積分を開始する。焦電膜12の下面には負電荷
,上面には正電荷が誘起するため,ダイオード17−1
(もし《は拡散層3−2)の電位は低下し,ダイオード
17−2(もしくは拡散層3−3)の電位は上昇丁る。
As shown at time ta in Figure 4, the vertical blanking period is open (・
During the transition to the reset state, the voltage VG is applied to the reset gate (RG').
}Apply I to reset transistors MRl, MR2
is turned ON, both sides of the pyroelectric film 12 are short-circuited, and the voltage V
Cent to init. Next, reset gate (RG
) by applying voltage VGL to the recent transistor M
Turn RI and MR2 off. Transfer gate (TG)
is off (t pressure VTL is applied), and the signal integration diodes 17-1, 17-2 are in a floating state, so signal integration is started. Since negative charges are induced on the bottom surface of the pyroelectric film 12 and positive charges are induced on the top surface, the diode 17-1
(If <<, the potential of the diffusion layer 3-2) decreases, and the potential of the diode 17-2 (or the diffusion layer 3-3) increases.

次の垂直帰線期間内の時刻tbにおいて転送ケート(T
G)をオン(t圧VTHを印加し,蓄積電荷を読み出す
。この時の第1図に対応した表面ポテンシャルが第2図
である。CCDチャネル2−1に転送する電荷Qrea
dはQbias+ Qsig, C C Dチャネル2
−4に転送する電荷焦電膜12の下面に誘起する電荷量
+ Q”igは焦電膜の上面に誘起する電荷量, Qb
iasはダイオード17−1.17−2  の初期電圧
Vinitと信号読み出し時の転送チャネル2−2. 
2−3の電圧Vreadによって決まるバイアス電荷量
である。Vreadは転送ゲー}(tG)に加える電圧
VTHによって決まる。ダイオード17−1.17−2
からの電荷転送が終了する(ダイオード17−1.17
−2の電圧がVreadになる)と,転送ゲートをオフ
する。
Transfer cell (T
G) is turned on (t pressure VTH is applied and the accumulated charge is read out. The surface potential corresponding to Fig. 1 at this time is shown in Fig. 2. The charge Qrea transferred to the CCD channel 2-1
d is Qbias+Qsig, C C D channel 2
Charge transferred to −4 Amount of charge induced on the lower surface of the pyroelectric film 12 + Q”ig is an amount of charge induced on the upper surface of the pyroelectric film, Qb
ias is the initial voltage Vinit of the diode 17-1.17-2 and the transfer channel 2-2.
This is the bias charge amount determined by the voltage Vread of 2-3. Vread is determined by the voltage VTH applied to the transfer gate (tG). Diode 17-1.17-2
The charge transfer from the diode 17-1.17 is completed.
-2 voltage becomes Vread), the transfer gate is turned off.

次にリセット・トランジスタMHI,MR2をON状態
にし,再びダイオード17−1.17−2を初期電圧V
initに設定する。チョッパを閉じ, リセット・ト
ランジスタMHI,MR2をOFF状態にして信号蓄積
が開始する。この時,チョッパが閉じて赤外光を遮断す
るため,焦電膜12の温度は低下し,前の7ィールドと
は逆の電荷が誘起する。すなわち焦電ml2の上面には
負電荷,下面Kは正電荷が誘起する。時刻tcにて再び
転送ゲートをオンした時の表面ポテンシャルは,時刻t
bヘ<ける表面ポテンシャルを示した第2図の左右を反
転した形になる。すなわち,CCDチャネル2−1に転
送する電荷QreadはQbias−Qsig,CCD
チャネル2−4に転送する電荷Qread はQb i
as −4− Q’s ig ト7’.Cる。このよう
に本発明によれば,チョッパの開閉によらず焦電膜12
の上面に生じる電荷と下面に生じる電荷をそれぞれ取り
出すことができるようになる。
Next, the reset transistors MHI and MR2 are turned on, and the diodes 17-1 and 17-2 are set to the initial voltage V again.
Set to init. The chopper is closed, reset transistors MHI and MR2 are turned off, and signal accumulation begins. At this time, the chopper closes to block infrared light, so the temperature of the pyroelectric film 12 decreases, and a charge opposite to that of the previous 7 fields is induced. That is, negative charges are induced on the upper surface of the pyroelectric ml2, and positive charges are induced on the lower surface K. The surface potential when the transfer gate is turned on again at time tc is
This is a left-right inverted version of Fig. 2, which shows the surface potential on b. That is, the charge Qread transferred to the CCD channel 2-1 is Qbias-Qsig, CCD
The charge Qread transferred to channels 2-4 is Qb i
as -4- Q's ig to7'. Cru. As described above, according to the present invention, the pyroelectric film 12
It becomes possible to take out the charges generated on the top surface and the charges generated on the bottom surface.

焦電膜12の上面と下面に生じる電荷の絶対値は等し《
,符号は逆である。したがって信号に重畳させたバイア
ス電荷Qbiasを除去するにはQread − Qr
eadもしくはQread − Q,read  を行
えはQsig + Qsigが得られる。第5図は本発
明の焦電型固体撮像素子の信号処理回路の一例を示した
ブロック図である。101は焦電型固体撮像素子,10
2は撮像素子の駆動回路,103はフ゛リアンプ,10
4はプリアンプ出力PとQの差分を出力する減算回路,
105,106はアナログ・スイッチ等による分離回路
,107は極性反転回路,108はGe等の赤外レンズ
,109は赤外光を時間的に断続するチョッパ,110
はチョッパの開閉と分離回路の動作を制御する制御回路
である。
The absolute values of the charges generated on the top and bottom surfaces of the pyroelectric film 12 are equal.
, the sign is opposite. Therefore, to remove the bias charge Qbias superimposed on the signal, Qread − Qr
If ead or Qread - Q,read is performed, Qsig + Qsig is obtained. FIG. 5 is a block diagram showing an example of a signal processing circuit of a pyroelectric solid-state image sensor according to the present invention. 101 is a pyroelectric solid-state image sensor, 10
2 is a drive circuit for the image sensor, 103 is a amplifier, 10
4 is a subtraction circuit that outputs the difference between preamplifier outputs P and Q;
105 and 106 are separation circuits using analog switches, etc., 107 is a polarity reversal circuit, 108 is an infrared lens made of Ge, etc., 109 is a chopper that temporally interrupts infrared light, 110
is a control circuit that controls the opening and closing of the chopper and the operation of the separation circuit.

第4図には制御回路110から出力されるコントロール
信号CHOP・1,CHOP・2のタイミングを他の駆
勤パルスと共に示している。第6図(a)は第5図のP
点における波形であり,ここではCCDチャネル2−1
で転送してきた電荷Qreadに対応するように示して
ある。一同様にCCDチャネル2−4で転送してきた電
荷Q readに対応している。チョノパが開いている
期間に蓄積した電荷はチョッパが閉じている期間にバイ
アス電荷Qbiasと共に順次撮像素子から出力される
。チョッパが閉じている時の波形は第6図の左半分,チ
ョッパが開いている時の波形は第5図の右半分のように
なる。撮像素子101から出力された2本の信号線はそ
れぞれブリアンプ103を通り,減算回路104に入力
する0減算回路104の出力である第5図のR点での波
形は第6図(C)のようになる。このように各画素ごと
に注入されたに除去できる。次に制御回路110からは
第4図に示したようにチョッパの開閉に同期したサンプ
リング・パルスCHOP・1,CHOP・2をそれぞれ
分離回路105,106に入力し,信号の流れの経路を
選択する。チョッパが閉じている期間ではCHOP・1
をlOWレベルvCL,CHOP・2をhighレベル
VC}Iにして分離回路105を遮断し,信号は分離回
路106を通過する0また,チョッパが開いている期間
ではCHOP・1をVCH,CHOP・2をVCLにし
て分離回路106を遮断し,信号は分離回路105を通
って反転回路107に入るために第5図のS点での波形
は,第6図(d)のようになる。さらにローパスフィル
タを通して同期信号を付加すればビデオ信号として扱う
ことができる。
FIG. 4 shows the timing of the control signals CHOP.1 and CHOP.2 output from the control circuit 110 together with other drive pulses. Figure 6(a) is P of Figure 5.
This is the waveform at CCD channel 2-1.
It is shown to correspond to the charge Qread transferred by . Similarly, it corresponds to the charge Q read transferred by the CCD channel 2-4. The charges accumulated during the period when the chopper is open are sequentially output from the image sensor together with the bias charge Qbias during the period when the chopper is closed. The waveform when the chopper is closed is shown in the left half of Figure 6, and the waveform when the chopper is open is shown in the right half of Figure 5. The two signal lines output from the image sensor 101 each pass through a pre-amplifier 103, and the waveform at point R in FIG. 5, which is the output of the zero subtraction circuit 104, is input to the subtraction circuit 104 as shown in FIG. 6(C). It becomes like this. In this way, the implanted particles can be removed for each pixel. Next, as shown in FIG. 4, the control circuit 110 inputs sampling pulses CHOP-1 and CHOP-2 synchronized with the opening and closing of the chopper to separation circuits 105 and 106, respectively, to select the signal flow path. . CHOP・1 during the period when the chopper is closed
is set to lOW level vCL, CHOP・2 to high level VC}I to shut off the separation circuit 105, and the signal passes through the separation circuit 106.0 Also, during the period when the chopper is open, CHOP・1 is set to VCH, CHOP・2 Since the signal is set to VCL to cut off the separation circuit 106 and the signal passes through the separation circuit 105 and enters the inversion circuit 107, the waveform at point S in FIG. 5 becomes as shown in FIG. 6(d). Furthermore, if a synchronization signal is added through a low-pass filter, it can be treated as a video signal.

以上,本発明を実施例にもとすき具体的に説明したが,
その喪旨を逸脱しない範囲において変形可能である。
The present invention has been specifically explained above using examples, but
Modifications may be made within the scope of the spirit of the mourning.

例えば,第1図では焦t膜12の上面と接続している第
二層目のAl層15は第一層目のAej曽11一3と接
続しているが,第一層目のAl層11−3と第二層目の
Al層15の中間に設けた第三層目のAI!!層を介し
て接続しても良い。また,配線用導体に,l,MOS}
ランジスタやCCDのゲート用に多結晶シリコンを用い
た場合について説明したが, Mo , W, Ti 
, Ta等の高融点金鵬,またはその高融点金属のシリ
サイド層によって形成しても良い。
For example, in FIG. 1, the second Al layer 15 connected to the top surface of the focal film 12 is connected to the first layer Aejso 11-3; The third layer of AI provided between 11-3 and the second Al layer 15! ! They may be connected through layers. In addition, for the wiring conductor, l, MOS}
We have explained the case where polycrystalline silicon is used for transistors and CCD gates, but Mo, W, Ti
, a high melting point metal such as Ta, or a silicide layer of the high melting point metal.

また,第1図に示したようにP形半導体基板の主表面に
n一形のCCDチャネル等の素子を形成したが,n形半
導体基板の主表面にP形の半導体領域を形成し,そのP
形半導体領域中にn一形のCCDチャネル等の素子を形
成しても良い0これまで説明してき.た半導体の導電形
をすべて逆にしても良い。さらに焦電膜の分極を逆にし
てもかまわない。第3図では,リセット・トランジスタ
MRl,,MR2のゲート電極は一つの端子RGにまと
めた場合について説明したが,別々の端子としても良い
。端子TGについても同様である。第4同じであるが,
チョノパの開閉周期はフレーム周期の整数倍であっても
良い。また,チョッパの開期間と開期間とが異なる長さ
であっても良い。
Furthermore, as shown in Fig. 1, elements such as an n-type CCD channel are formed on the main surface of a P-type semiconductor substrate, but a P-type semiconductor region is formed on the main surface of an n-type semiconductor substrate, and P
Elements such as n-type CCD channels may be formed in the type semiconductor region. All the conductivity types of the semiconductors may be reversed. Furthermore, the polarization of the pyroelectric film may be reversed. In FIG. 3, the gate electrodes of the reset transistors MRl, MR2 are combined into one terminal RG, but they may be separate terminals. The same applies to the terminal TG. The fourth is the same, but
The opening/closing period of the chonopa may be an integral multiple of the frame period. Further, the open period and the open period of the chopper may have different lengths.

第5図では減算器104を用いたが,P点とQ点での信
号の差分を増幅する差動増幅器で代替しても良い。
Although the subtracter 104 is used in FIG. 5, it may be replaced by a differential amplifier that amplifies the difference between the signals at point P and point Q.

〔発明の効果〕〔Effect of the invention〕

以上説明したように,従来,焦電膜の下面に誘起する電
荷だけを信号として扱い,焦電膜の上面に誘起する電荷
は捨てていたのに対し,本発明によれば上下,両面の電
荷を信号として扱えるためダイナミック・レンジおよび
S/N比を大幅に向上させることができる。また,各画
素ごとに注入されるバイアス電荷は各画素における焦電
膜の上面と下面の信号の差をとることによって簡単に除
去できるため,各画素のバイアス電荷のばらつきによっ
て生じる固定パターン雑音を抑制できる0
As explained above, in the past, only the charges induced on the bottom surface of the pyroelectric film were treated as signals, and the charges induced on the top surface of the pyroelectric film were discarded, but according to the present invention, the charges on the top, bottom, and both sides Since it can be treated as a signal, the dynamic range and S/N ratio can be greatly improved. In addition, the bias charge injected for each pixel can be easily removed by taking the difference between the signals on the top and bottom surfaces of the pyroelectric film in each pixel, suppressing fixed pattern noise caused by variations in the bias charge of each pixel. Can do 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焦電型固体撮像装置の断面図,第2図
は本発明の焦電型固体撮像装置の表面ボテンシャル図,
第3図は本発明の焦電型固体撮像装置の等価回路図,第
4図は本発明によるパルス・タイミング図,第5図は本
発明の実施例における体撮像装置の例を示すための断面
図であり,第8図(t)(b)lは従来の固体撮像装置
の表面ポテンシャル図,第9図は従来の固体撮像装置の
等価回路図,第10図は従来例におけるパルス・タイミ
ング図である。 1二基板,3−1:リセットトレイン拡散層,3−2.
  3−3:積分答量拡散層,4−1:初期電圧設定用
第1リセソトトランジスタ,4−2:初期電圧設定用第
2リセットトランジスタ,5:チャネルストッパ,6:
絶縁分離層,  8−1.  8−2:ゲート電極,9
−1:MHIゲート電極,9−2:MR2ゲート電極,
10:絶縁膜,11−1.11−2,11−3 :Al
配線,12:焦電膜,第2図 第3図 /一9 第4図 第5図 第6図 ←ナラ・ノハo: P千1 −ラ− ←ナヨッパ二開 一一 第8図 第9図 第10図
FIG. 1 is a cross-sectional view of the pyroelectric solid-state imaging device of the present invention, and FIG. 2 is a surface potential diagram of the pyroelectric solid-state imaging device of the present invention.
FIG. 3 is an equivalent circuit diagram of a pyroelectric solid-state imaging device of the present invention, FIG. 4 is a pulse timing diagram of the present invention, and FIG. 5 is a cross-sectional diagram showing an example of a body imaging device according to an embodiment of the present invention. 8(t)(b)l are surface potential diagrams of a conventional solid-state imaging device, FIG. 9 is an equivalent circuit diagram of a conventional solid-state imaging device, and FIG. 10 is a pulse timing diagram in the conventional example. It is. 12 substrates, 3-1: reset train diffusion layer, 3-2.
3-3: Integral response diffusion layer, 4-1: First reset transistor for initial voltage setting, 4-2: Second reset transistor for initial voltage setting, 5: Channel stopper, 6:
Insulating separation layer, 8-1. 8-2: Gate electrode, 9
-1: MHI gate electrode, 9-2: MR2 gate electrode,
10: Insulating film, 11-1.11-2, 11-3: Al
Wiring, 12: Pyroelectric film, Fig. 2 Fig. 3/19 Fig. 4 Fig. 5 Fig. 6 ← Nara Noha o: P111 -Ra - ← Nayoppa Nikai 11 Fig. 8 Fig. 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 1、第一導電型の半導体基板の主表面に光学情報を蓄積
する容量素子群、該容量素子の初期電圧設定素子、焦電
気性を示す誘電体によって形成された焦電素子からなる
光電変換素子群を形成し、前記容量素子群に蓄積された
信号電荷を順次転送する信号電荷転送素子を集積化した
固体撮像装置において、該焦電素子の膜の上面に誘起す
る電荷、および該焦電素子の膜の下面に誘起する電荷を
それぞれ別の容量素子に蓄積し、各々の容量素子につい
て、容量素子の初期電圧設定素子および容量素子から信
号電荷転送素子へ電荷の転送を行う転送素子をそれぞれ
設けたことを特徴とした焦電型固体撮像装置。
1. A photoelectric conversion element consisting of a capacitive element group that stores optical information on the main surface of a semiconductor substrate of a first conductivity type, an initial voltage setting element for the capacitive element, and a pyroelectric element formed of a dielectric material exhibiting pyroelectricity. In a solid-state imaging device that integrates signal charge transfer elements that form a group and sequentially transfer signal charges accumulated in the capacitive element group, charges induced on the upper surface of a film of the pyroelectric element and the pyroelectric element Charges induced on the lower surface of the film are stored in separate capacitive elements, and each capacitive element is provided with an initial voltage setting element for the capacitive element and a transfer element for transferring charge from the capacitive element to a signal charge transfer element. A pyroelectric solid-state imaging device characterized by:
JP1049856A 1989-03-03 1989-03-03 Pyroelectric type solid-state image sensing device Pending JPH02230769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049856A JPH02230769A (en) 1989-03-03 1989-03-03 Pyroelectric type solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049856A JPH02230769A (en) 1989-03-03 1989-03-03 Pyroelectric type solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH02230769A true JPH02230769A (en) 1990-09-13

Family

ID=12842698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049856A Pending JPH02230769A (en) 1989-03-03 1989-03-03 Pyroelectric type solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH02230769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590647A (en) * 1991-09-30 1993-04-09 Hamamatsu Photonics Kk Infrared detector
JPH0590648A (en) * 1991-09-30 1993-04-09 Hamamatsu Photonics Kk Infrared detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590647A (en) * 1991-09-30 1993-04-09 Hamamatsu Photonics Kk Infrared detector
JPH0590648A (en) * 1991-09-30 1993-04-09 Hamamatsu Photonics Kk Infrared detector

Similar Documents

Publication Publication Date Title
US5471515A (en) Active pixel sensor with intra-pixel charge transfer
US20120200752A1 (en) Solid-state image pickup device
JPH11504761A (en) Flat panel image element
JPS5846070B2 (en) solid-state imaging device
US5757008A (en) Infrared-ray image sensor
Hynecek BCMD-An improved photosite structure for high-density image sensors
JPH0518265B2 (en)
JP3623728B2 (en) Cumulative chemical / physical phenomenon detector
EP0073144B1 (en) Solid state image sensor
US5034608A (en) Infrared sensor operable without cooling
JPS59108464A (en) Solid-state image pickup element
JPS59108462A (en) Solid-state image pickup element having electrostatic induction transistor
JPH02230769A (en) Pyroelectric type solid-state image sensing device
JPH03106183A (en) Pyroelectric type solid-state image pickup element
JPH02183678A (en) Drive method for charge detection circuit
US5452003A (en) Dual mode on-chip high frequency output structure with pixel video differencing for CCD image sensors
JPH0414967A (en) Driving method for pyroelectric solid-state image pickup device
JPS61228667A (en) Solid-state image pick-up device
JPH04265080A (en) Driving method for pyroelectric solid-state image pickup device
JPH04342178A (en) Pyroelectric type solid-state imaging device
JPS60213057A (en) Pyroelectric type infrared image pickup device and driving method thereof
JPH04125965A (en) Semiconductor device
JPS60100886A (en) Two-dimensional solid-state pickup device and its signal detection method
JPS56162886A (en) Solid state image pickup device
JPS6354764A (en) Pyroelectric monolithic infrared ray solid state image sensing device