JPS60213057A - Pyroelectric type infrared image pickup device and driving method thereof - Google Patents

Pyroelectric type infrared image pickup device and driving method thereof

Info

Publication number
JPS60213057A
JPS60213057A JP59070432A JP7043284A JPS60213057A JP S60213057 A JPS60213057 A JP S60213057A JP 59070432 A JP59070432 A JP 59070432A JP 7043284 A JP7043284 A JP 7043284A JP S60213057 A JPS60213057 A JP S60213057A
Authority
JP
Japan
Prior art keywords
thin film
pyroelectric
voltage
insulating thin
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59070432A
Other languages
Japanese (ja)
Inventor
Hiromitsu Shiraki
白木 廣光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59070432A priority Critical patent/JPS60213057A/en
Publication of JPS60213057A publication Critical patent/JPS60213057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Abstract

PURPOSE:To simplify constitution, and to increase density by constituting a photoelectric conversion section for a unit cell by a pyroelectric body leaf formed on the upper surface of an insulating thin-film on a semiconductor substrate and a means applying voltage to the leaf and reading charges stored under the insulating thin-film by beam irradiation. CONSTITUTION:A pyroelectric body 108 is formed on an MOS capacitance shaping a light-receiving section for an interline transfer system CCD sensor, and voltage is applied onto the surface of the pyroelectric body. A period when an infrared image is projected and a period when the irradiation of the infrared image is interrupted are equalized approximately. A transfer gate 303 is brought to an ON state during a vertical blanking period, and voltage applied to an electrode 203 on the surface of the pyroelectric body 108 is brought to approximately zero. Charges stored under a gate oxide film 301 are transferred to a vertical register. The transfer gate is turned OFF, voltage is applied to the electrode 203 on the surface of the pyroelectric body 108, and signal charges are stored under the gate oxide film 301. Signal charges are stored under a gate oxide film 201 during the next storage period while charges transferred to the vertical register 105 are read from an output terminal in succession.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は撮像デバイスに関し、特に焦電型赤外線イメー
ジセンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an imaging device, and particularly to a pyroelectric infrared image sensor.

(従来技術とその問題点) 赤外線イメージセンサには赤外線の熱としての性質を利
用する焦電型のものと光量子としての性質を利用する量
子型のものがある。前者は常温で使用できるため温度分
解能が低いにもかかわらず家庭用或は一般民需用として
期待されている。また後者は液体窒素温度への冷却を特
徴とする特許温度分解能が高いため宇宙、防衛用として
期待されている。第1図は従来から最も高性能な焦電型
イメージセンサと考えられているものの構成図である、
このセンサはLiTa0. 、 Pbi’i0. 、 
PZTなどの焦電体表面に温度変化によって生ずる分極
′1荷の変化を電荷転送デバイスを用いて読み出そうと
するもので、NチャネルシリコンICで構成されている
。図において101は継ソース、103はN+領領域1
02はN+ンース101から前記N+領領域03に電子
を転送するための領域、105はCCD垂直レジスター
、104はN+領域103から前記CCD垂直レジスタ
ー105に電子を転送するための領域、106は水平C
CDレジスター、107は出力増巾器である。N+領域
103の上には焦′亀体108が配置されている。第2
図では、この状態を示す断面図であり、201はP型基
板、202は絶縁膜、203は焦電体の上面に形成され
た電極である。
(Prior art and its problems) There are two types of infrared image sensors: pyroelectric type, which utilizes the thermal properties of infrared rays, and quantum type, which utilizes the properties of infrared rays as light quanta. The former can be used at room temperature, so it is expected to be useful for household or general public use, despite its low temperature resolution. The latter is also expected to be used in space and defense applications due to its patented high temperature resolution, which is characterized by cooling to liquid nitrogen temperature. Figure 1 is a block diagram of what is traditionally considered the most high-performance pyroelectric image sensor.
This sensor is LiTa0. , Pbi'i0. ,
This device attempts to read out changes in polarization '1 charge caused by temperature changes on the surface of a pyroelectric material such as PZT using a charge transfer device, and is constructed from an N-channel silicon IC. In the figure, 101 is the joint source, 103 is the N+ region 1
02 is a region for transferring electrons from the N+ area 101 to the N+ region 03, 105 is a CCD vertical register, 104 is a region for transferring electrons from the N+ region 103 to the CCD vertical register 105, and 106 is a horizontal CCD.
CD register 107 is an output amplifier. A focusing body 108 is arranged above the N+ region 103. Second
The figure is a cross-sectional view showing this state, where 201 is a P-type substrate, 202 is an insulating film, and 203 is an electrode formed on the upper surface of the pyroelectric body.

また焦電体は電極203を介して一定電位に74イアス
される。また第1図においてN+ソース101、転送領
域102,104、N+領域103、焦電体108は一
つの光電変換エレメントを構成し、このエレメントが水
平、垂直方向に二次元的に配置されている。
Further, the pyroelectric body is energized to a constant potential via the electrode 203. Further, in FIG. 1, the N+ source 101, the transfer regions 102 and 104, the N+ region 103, and the pyroelectric body 108 constitute one photoelectric conversion element, and this element is two-dimensionally arranged in the horizontal and vertical directions.

このデバイスの動作は次の通りである。まずN+ソース
101から電荷転送領域102を介してN+領域103
に一定の電荷が送り込まれてその電位がリセットされる
。このとき焦電体に30〜59Hz でチョップされた
赤外線像が当り始める。赤外線が入射している期間とオ
フしている期間はほぼ等しいとすると焦電体の温度が上
昇し、分極によって生ずる電荷の変化分がN+領領域送
り込まれる。送り込まれる電荷菫は焦電体の温度が最大
になる瞬間、即ちチョッパーがオフする直前に最大にな
る。
The operation of this device is as follows. First, from the N+ source 101 to the N+ region 103 via the charge transfer region 102.
A certain amount of charge is sent to the terminal and its potential is reset. At this time, an infrared image chopped at 30 to 59 Hz begins to hit the pyroelectric body. Assuming that the period during which the infrared rays are incident and the period during which the infrared rays are off are approximately equal, the temperature of the pyroelectric body rises, and a change in charge caused by polarization is sent to the N+ region. The charge violet sent in reaches its maximum at the moment when the temperature of the pyroelectric body reaches its maximum, that is, just before the chopper turns off.

この時分極電荷の変化分QPと前もってN+領領域送り
込まれていた電荷QBの和が、電荷転送領域104を介
して垂直レジスターに送り込まれる。
At this time, the sum of the polarization charge change QP and the charge QB previously sent to the N+ region is sent to the vertical register via the charge transfer region 104.

これらの電荷は通常のインターライン転送方式〇CDセ
ンサの場合と同じようlこ一水平ラインづつ水平CC1
)レジスターに並列転送され出力増巾器107から読み
出される。
These charges are transferred using the normal interline transfer method (as in the case of a CD sensor), where each horizontal line is transferred horizontally to CC1.
) are transferred in parallel to the register and read out from the output amplifier 107.

また、この読み出し期間の最初、すなわちQP+QBが
垂直レジスターに移された直後にN+領域103には再
びソース側より電荷QBが送り込まれて一定電位にリセ
ットされる。このときに赤外線像はチョッパーによって
カットされる。すると焦電体の温度は低下し始め焦電体
はN+領領域ら分極電荷Qpを吸収する。吸収される電
荷が最大になるのは焦電体の温度が最も低下した瞬間、
即ちチョッパーがオンする直前である。このときはQB
 QPだけの電荷が垂直レジスターに送り込まれ、前と
同様の手順で出力端子から読み出される。もちろんQa
 Qpだけの電荷が垂直レジスターに送り込まれる時点
では前のフィールドの電荷はすべて出力端子から読み出
されていなければならない。このような焦電体の温度が
上昇するフィールドと降下するフィールドを交互にくり
返すことによって、撮1象部では常に赤外巌を信号電荷
に変換し出力部からは常に映像信号を読み出すことが出
来る。この場合、−フィールドごとに明暗が反転した映
像信号が得られるがこれを通常の映像信号に変換するの
は容易である。
Further, at the beginning of this read period, that is, immediately after QP+QB is transferred to the vertical register, charge QB is again sent to N+ region 103 from the source side and reset to a constant potential. At this time, the infrared image is cut by a chopper. Then, the temperature of the pyroelectric body begins to decrease, and the pyroelectric body absorbs the polarization charge Qp from the N+ region. The maximum amount of charge is absorbed at the moment when the temperature of the pyroelectric material is the lowest.
That is, just before the chopper is turned on. At this time, QB
The charge of QP is fed into the vertical register and read out from the output terminal in the same manner as before. Of course Qa
At the time when the charge of Qp is sent to the vertical register, all the charges of the previous field must be read out from the output terminal. By alternating fields in which the temperature of the pyroelectric body increases and decreases, it is possible to constantly convert infrared waves into signal charges in the first quadrant and read out video signals from the output section. I can do it. In this case, a video signal in which brightness and darkness are inverted for each -field is obtained, but it is easy to convert this into a normal video signal.

このような赤外線センサの欠点は1)光電変換エレメン
トの構成が複雑なため、高密度化することが困難なこと
2)バイアス電荷をN+領領域送り込む必要があるため
駆動が複雑なこと3)全デバイス面積に対する焦電体の
面積の比が小さいため赤外線を有効利用できないことで
ある。
The disadvantages of such an infrared sensor are 1) the complicated configuration of the photoelectric conversion element, making it difficult to increase the density; 2) the drive is complicated, as it is necessary to send bias charges to the N+ area; 3) the total The problem is that infrared rays cannot be used effectively because the ratio of the area of the pyroelectric material to the device area is small.

(発明の目的) 本発明の目的はこのような従来の欠点を改善した焦電型
赤外線虚像デバイスとその駆動方法を提供することにあ
る。
(Objective of the Invention) An object of the present invention is to provide a pyroelectric infrared virtual image device and a method for driving the same, which improve the above-mentioned conventional drawbacks.

(発明の構成) 本発明tこよれば、単位セルの光11L変換部が半導体
基板側に設けられた絶縁薄膜とその上面に形成された焦
電体薄片と前記薄片に前記半導体基板より反対側より電
圧を印加する手段よりなり、かつ該光電変換部を半導体
基板側より光照射する手段とこの光照射によって前記絶
縁薄膜下に蓄えられる電荷を順次出力端子より読み出す
手段を併せもつことを特徴とする焦電型赤外線撮像デバ
イスが得られる。
(Structure of the Invention) According to the present invention, the light 11L conversion portion of a unit cell is connected to an insulating thin film provided on a semiconductor substrate side, a pyroelectric thin piece formed on the upper surface of the insulating thin film, and the thin piece on the opposite side from the semiconductor substrate. The method is characterized by comprising a means for applying a voltage to the photoelectric conversion section, and a means for irradiating the photoelectric conversion section with light from the semiconductor substrate side, and a means for sequentially reading out charges stored under the insulating thin film by the light irradiation from an output terminal. A pyroelectric infrared imaging device is obtained.

さらに本発明によれば前記焦電型赤外線撮像デバイスの
前記焦電体薄片に印加する電圧と、前記焦電体薄片に入
射する赤外線像によって、前記焦電体に生ずる分極磁圧
の合成効果としての1圧を前記絶縁薄膜に印加し、前記
光照射Iこよって前記絶縁薄膜に蓄積できる最大電荷鷺
を映像信号として読み出す事を特徴とする前項記載の焦
電型赤外?!Mm像デバイスの駆動法が得られる。
Furthermore, according to the present invention, the combined effect of the polarization magnetic pressure generated in the pyroelectric body by the voltage applied to the pyroelectric thin piece of the pyroelectric infrared imaging device and the infrared image incident on the pyroelectric thin piece is The pyroelectric infrared ? ! A method for driving an Mm image device is obtained.

(実施例) 以下、本発明について一部m例により説明する。(Example) Hereinafter, the present invention will be explained using some examples.

第3図は本発明の一実施例である。不実施例による赤外
線センサもNチャネルシリコンデバイスであるとして説
明する。第3図において301はP型基板201上に形
成されたゲート酸化膜、302は前記ゲート酸化膜上に
形成された焦電体薄膜。
FIG. 3 shows an embodiment of the present invention. An infrared sensor according to a non-embodiment will also be described as an N-channel silicon device. In FIG. 3, 301 is a gate oxide film formed on the P-type substrate 201, and 302 is a pyroelectric thin film formed on the gate oxide film.

304は前記焦電体薄膜上に形成された電極に電圧を1
′4J加するための配線手段を示す。また305は単位
セルをホし、303はトランスファーゲートである。第
4図は単位セルの水平方向断面図を示し、401は垂直
CODレジスターの転送電極、402はフィールド酸化
膜、403はトランスファーゲート303および垂直C
CDレジスターに対応する領域のゲート酸化膜、404
は電極間を分離する酸化膜である。第3図および第4図
から解るように単位セルはP型基板201.ゲート酸化
膜301、焦″14を体薄膜108、電極203.配線
手段304よりなる光電変換部とトランスファーゲート
と垂直レジスターの一部よりなる。また第3図には示さ
れていないが、デバイスは裏面より可視光或は近赤外光
によってパルス的に照射できるようになりている。
304 applies a voltage of 1 to the electrode formed on the pyroelectric thin film.
The wiring means for adding '4J is shown. Further, 305 is a unit cell, and 303 is a transfer gate. FIG. 4 shows a horizontal cross-sectional view of a unit cell, in which 401 is a transfer electrode of a vertical COD register, 402 is a field oxide film, 403 is a transfer gate 303 and a vertical COD register.
Gate oxide film in the region corresponding to the CD register, 404
is an oxide film that separates the electrodes. As can be seen from FIGS. 3 and 4, the unit cell is a P-type substrate 201. It consists of a gate oxide film 301, a focus 14, a body thin film 108, an electrode 203, a photoelectric conversion section consisting of a wiring means 304, a transfer gate, and a part of a vertical register.Although not shown in FIG. Visible light or near-infrared light can be irradiated in pulses from the back side.

以上、述べたようにこのデバイスは通常のインターライ
ン転送方式CODセンサの受光部を形成するMO8容量
の上に焦電体を形成し、その表面に電圧を印加する手段
を設けた構成になっている。
As mentioned above, this device has a structure in which a pyroelectric material is formed on the MO8 capacitor that forms the light receiving part of a normal interline transfer type COD sensor, and a means for applying a voltage to the surface of the pyroelectric material is provided. There is.

またデバイスに入射する赤外線像は大略30〜60Hz
 でチョップされており、赤外線像が入射している期間
と切断している期間はほぼ等しいとする。
In addition, the infrared image that enters the device has a frequency of approximately 30 to 60 Hz.
It is assumed that the period during which the infrared image is incident and the period during which the infrared image is cut are approximately equal.

このデバイスは通常のインターライン方式の(、”CD
センサと似た動作をするので、それに順じて動作を説明
する。まず垂直ブランキング期間lこトランスファーゲ
ート303をオン状態にし、かつ焦電体表面の電極20
3に印加されている電圧をゼロ近くにして、ゲート酸化
膜301下に蓄えられた電荷を垂直レジスターに移す。
This device uses the normal interline method (, “CD
Since it operates similarly to a sensor, we will explain its operation accordingly. First, during the vertical blanking period, the transfer gate 303 is turned on, and the electrode 203 on the surface of the pyroelectric body is turned on.
The voltage applied to the gate oxide film 301 is brought close to zero, and the charges stored under the gate oxide film 301 are transferred to the vertical register.

次にトランスファーゲートをオフし、かつ焦電体表面の
電極203に電圧を印加してゲート酸化膜301下に信
号電荷を蓄積できるにする。次の蓄積期間にはゲート酸
化膜201下に信号電荷が蓄積される一方、垂直レジス
ター105に移された電荷が順次出力端子より読み出さ
れる。
Next, the transfer gate is turned off and a voltage is applied to the electrode 203 on the surface of the pyroelectric body so that signal charges can be accumulated under the gate oxide film 301. In the next accumulation period, signal charges are accumulated under the gate oxide film 201, while the charges transferred to the vertical register 105 are sequentially read out from the output terminal.

上記の信号電荷の蓄積は次のようにおこなわれる。まず
、蓄積期間の最初に焦′亀体に赤外線が当り始めてその
温度が上昇し、蓄積期間の終りには焦電体の分極によっ
てその表裏に電位差vPが発生する。今vPは焦電体1
08表面に−、ゲート酸化膜301表面に十であるとす
る。この時、ゲート酸化膜301下に蓄えることのでき
る最大の電荷量Qは、分極がないときに蓄えられる電荷
QBと分極による電荷QPの和憂こなる。今焦寛体のセ
ル当りの電気容量をCP、ゲート酸化膜のセル当りの容
量をCOX、蓄積時に焦電体表面に印加される電圧をV
とすると Qa=V/(Cp+Cox) 、Qp=”’/Coxで
あるから、 となる。即ちゲート酸化膜301下に蓄積できる電荷量
は焦電体に発生する電圧vPによって変化させることが
できる。このデバイスに蓄積期間の終りに裏面より光を
照射すると、照射量が十分大きければ、ゲート酸化膜の
下には(1)式で表わされる量の電荷すなわち赤外線像
の強度に比例した電荷が蓄積されることlこなる。
The accumulation of the signal charges described above is performed as follows. First, at the beginning of the storage period, infrared rays begin to hit the pyroelectric body, causing its temperature to rise, and at the end of the storage period, a potential difference vP is generated between the front and back sides of the pyroelectric body due to polarization of the pyroelectric body. Now vP is pyroelectric 1
It is assumed that - on the surface of the gate oxide film 301 and - on the surface of the gate oxide film 301. At this time, the maximum amount of charge Q that can be stored under the gate oxide film 301 is the sum of the charge QB stored when there is no polarization and the charge QP due to polarization. Now, the capacitance per cell of the pyroelectric body is CP, the capacitance per cell of the gate oxide film is COX, and the voltage applied to the surface of the pyroelectric body during storage is V.
Then, since Qa=V/(Cp+Cox) and Qp=''/Cox, the following equation holds.That is, the amount of charge that can be accumulated under the gate oxide film 301 can be changed by the voltage vP generated in the pyroelectric body. When this device is irradiated with light from the back side at the end of the storage period, if the irradiation amount is large enough, an amount of charge expressed by equation (1) will accumulate under the gate oxide film, that is, a charge proportional to the intensity of the infrared image. I will do what is done to me.

次の蓄積期間には焦電体の温度は下降するのでゲート酸
化膜の下−こは の電荷が蓄積されることになる。これらの電荷も前フィ
ールドと全く同じように読み出すことができる。
During the next accumulation period, the temperature of the pyroelectric body decreases, so that the charges under the gate oxide film are accumulated. These charges can also be read out in exactly the same way as the previous field.

以上述べたように本実施例においては出力端子から読み
出されてくる信号はフィールドごとに位相が反転してい
る。従って一フイールドおきに出力信号の位相を反転さ
せるような処理やフィールド間の差をとるような信号処
理が必要である。
As described above, in this embodiment, the phase of the signal read from the output terminal is inverted for each field. Therefore, processing to invert the phase of the output signal every other field or signal processing to take the difference between fields is required.

本発明は次のような形態においても実施することができ
る。
The present invention can also be implemented in the following forms.

ta) pチャネルデバイス 前記実施例はnチャネルデバイスの場合について説明し
たが、本発明はpチャネルの場合についても適用できる
。ただし焦電体の自発分極の向きを前記実施例のままに
rると焦電体の温度が上昇するフィールドでQa Qp
、下降するフィールドでQa+Qpの信号がそれぞれ読
み出されることになる。
ta) P-channel device Although the above embodiments have been described in the case of an n-channel device, the present invention can also be applied to the case of a p-channel device. However, if the direction of the spontaneous polarization of the pyroelectric body is kept as in the previous example, Qa Qp
, signals of Qa+Qp are read out in the falling fields, respectively.

tb) 前記実施例においては焦電体はゲート酸化膜の
上に島状−こ設けられていたが、PVF’、などにより
なる有機物焦電体をデバイス全面に設けその上から電圧
を印加することも可能である。
tb) In the above embodiment, the pyroelectric material was provided in the form of an island on the gate oxide film, but it is possible to provide an organic pyroelectric material made of PVF' or the like over the entire surface of the device and apply a voltage from above. is also possible.

tel 前記実施例においては、デバイスに光を照射し
た後ゲート酸化膜下に蓄積された電荷を垂直レジスター
に移して読み出しているので、垂直レジスターで転送し
なければならない電荷は、ゲート酸化膜下に蓄積された
電荷と光照射によって垂直レジスターに蓄積された電荷
の和になり大きな転送容量が必要になる。従ってデバイ
スへの光照射の後垂直レジスターに蓄積された電荷を出
力端子から読み出し、その後ゲート酸化膜下に蓄積され
た電荷を垂直レジスターに移す駆動法を用いれば、垂直
レジスターの巾を狭くでき、その結果光電変換部の面積
を広く出来るので有利である。
tel In the above embodiment, after the device is irradiated with light, the charge accumulated under the gate oxide film is transferred to the vertical register and read out. This is the sum of the accumulated charge and the charge accumulated in the vertical register due to light irradiation, and a large transfer capacity is required. Therefore, by using a driving method that reads out the charge accumulated in the vertical register from the output terminal after irradiating the device with light, and then transfers the charge accumulated under the gate oxide film to the vertical register, the width of the vertical register can be narrowed. As a result, the area of the photoelectric conversion section can be increased, which is advantageous.

(dj 実施例においCは、通常のシリコン基板を用い
る場合について説明してきたが、焦1体の温度変化を敏
感にするためシリコン基板を数十ミクロン以下の厚さに
することもできる。
(dj In the embodiment, the case where C uses a normal silicon substrate has been described, but the silicon substrate can also be made to have a thickness of several tens of microns or less in order to make the crystal body sensitive to temperature changes.

tell 実施例においては焦電体はその1M度が上昇
するとゲート酸化膜下に蓄積できる電#量が増大する極
性に配置されていたが、これと反対極性にしてもほぼ同
等なデバイス動作が期待できる。但し、この場合は温度
上昇するフィールドではQa Qp降下するフィールド
でQB+QPの電荷が読み出されることになる。
In the example, the pyroelectric material was arranged with a polarity such that the amount of charge that can be accumulated under the gate oxide film increases as the pyroelectric material increases by 1M degrees, but almost the same device operation is expected even if the polarity is the opposite. can. However, in this case, in the field where the temperature rises, the charges of QB+QP are read out in the field where Qa and Qp drop.

ff) 実施例ではインターライン方式のデバイス構成
について説明したが、本発明はフレーム転送方式にも適
用できる。即ち、フレーム転送方式の光電変換部に本実
施例で説明した光電変換部の構造を用いて、垂直COD
レジスターを構成し、その下部に通常のCCDメモリー
を設ければよい。この構成では、光電変換部において赤
外線像に対応した電荷を蓄積し、それを垂直ブランキン
グ期間にメモリ部に高速転送し1次のフィールド期間に
一水平ラインずつ水平レジスターを介して信号を読みと
ることになる。
ff) In the embodiment, an interline system device configuration has been described, but the present invention can also be applied to a frame transfer system. That is, by using the structure of the photoelectric conversion unit explained in this example for the frame transfer type photoelectric conversion unit, vertical COD
It is sufficient to construct a register and provide a normal CCD memory below it. In this configuration, charges corresponding to an infrared image are accumulated in the photoelectric conversion section, transferred at high speed to the memory section during the vertical blanking period, and signals are read out one horizontal line at a time via the horizontal register during the first field period. become.

tgl 実施例においてはQB+QPが読み出されるフ
ィールドとQB QPが読み出されるフィールドを交互
に行っていたが、いずれかのフィールドだけを間欠的に
行ってもよい。
In the tgl embodiment, the field from which QB+QP is read and the field from which QB QP is read are performed alternately, but only one of the fields may be read intermittently.

(発明の効果) 以上述べたように本発明は、光電変換部が通常のインタ
ーライン方式デバイスのMO8型ホトダイオード上に焦
電体を形成しただけの非常に簡単な構成をもち容易に密
度を向上させることができる。また駆動法も通常のイン
ターライン方式(、’CI)とほぼ同じ程度の簡単さで
あり、受光領域も公仰例としてあげた第1図の場合より
5/2倍程度高感度化されている、
(Effects of the Invention) As described above, the present invention has a very simple structure in which the photoelectric conversion section is just a pyroelectric material formed on the MO8 type photodiode of a normal interline type device, and the density can be easily improved. can be done. In addition, the driving method is almost as simple as the normal interline method (,'CI), and the light receiving area is about 5/2 times more sensitive than the case shown in Figure 1, which was given as an official example. ,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の焦電型赤外線撮像デバイスの構成図で1
01はソース、102,104は電荷転送領域、103
はN+拡散層、105は垂直レジスター、106は水平
レジスター、107は出力アンプ、108は焦電体であ
る。第2図は第1図の焦電体部分の断面図で201はP
基板、202は絶縁膜、203は電極である。第3図は
本発明の実施例であり、301はゲート酸化膜、302
は焦電体薄膜、303はトランスファーゲート、304
は電極を接続する配線手段である。第4区は本発明の単
位セルの断面図であり、401はCOD垂直レジスター
の転送電極、402はフィールド酸化膜、403はトラ
ンスファーゲート部および垂直レジスタ一部のゲート電
極、404は電極間絶縁膜である。
Figure 1 is a configuration diagram of a conventional pyroelectric infrared imaging device.
01 is the source, 102 and 104 are charge transfer regions, 103
is an N+ diffusion layer, 105 is a vertical register, 106 is a horizontal register, 107 is an output amplifier, and 108 is a pyroelectric body. Figure 2 is a cross-sectional view of the pyroelectric part in Figure 1, and 201 is P
A substrate, 202 is an insulating film, and 203 is an electrode. FIG. 3 shows an embodiment of the present invention, in which 301 is a gate oxide film, 302
is a pyroelectric thin film, 303 is a transfer gate, 304
is a wiring means for connecting the electrodes. The fourth section is a cross-sectional view of the unit cell of the present invention, 401 is a transfer electrode of the COD vertical register, 402 is a field oxide film, 403 is a gate electrode of the transfer gate part and a part of the vertical register, 404 is an interelectrode insulating film It is.

Claims (1)

【特許請求の範囲】 +11 単位セルの光電変換部が半導体基板上に設けら
れた絶縁薄膜とその上面に形成された無電体薄片と前記
薄片lこ前記半導体基板と反対側より゛電圧を印加する
手段よりなり、かつ該光電変換部を半導体基板側より光
照射する手段と、この光照射によって前記絶縁薄膜下に
蓄えられる電荷を順次出力端子より読み出す手段を併せ
もつことを特徴とする焦電赤外線撮像デバイス。 (2) 単位セルの光[変換部が半導体基板上に設けら
れた絶縁薄膜とその上面に形成された焦電体薄片と前記
薄片に前記半導体基板と反対側より電圧を印加する手段
よりなり、かつ該光電変換部を半導体基板側より光照射
する手段と、この光照射によって前記絶縁薄膜下に蓄え
られる電荷を順次出力端子より読み出す手段を併せもつ
焦電型赤外線撮像デバイスの駆動において、前記焦電体
薄片に印加する電圧と、前記焦電体薄片lこ入射する赤
外線像によって前記焦電体に生ずる分極電圧の合成効果
としての電圧を前記絶縁薄膜に印加し、前記光照射によ
って前記絶縁薄膜に蓄積出来る最大電荷量を映像信号と
して読み出すことを特徴とする前項記載の焦電型赤外線
撮像デバイスの駆動法。
[Claims] +11 A photoelectric conversion section of a unit cell applies a voltage to an insulating thin film provided on a semiconductor substrate, an inert thin piece formed on the upper surface of the insulating thin film, and the thin piece from the side opposite to the semiconductor substrate. pyroelectric infrared rays comprising: means for irradiating the photoelectric conversion section with light from the semiconductor substrate side; and means for sequentially reading out charges accumulated under the insulating thin film by the light irradiation from an output terminal. Imaging device. (2) The unit cell's light [conversion unit consists of an insulating thin film provided on a semiconductor substrate, a pyroelectric thin film formed on the upper surface of the insulating thin film, and means for applying a voltage to the thin film from the side opposite to the semiconductor substrate, Further, in driving a pyroelectric infrared imaging device having means for irradiating the photoelectric conversion section with light from the semiconductor substrate side and means for sequentially reading out charges accumulated under the insulating thin film by the light irradiation from an output terminal, A voltage is applied to the insulating thin film as a composite effect of a voltage applied to the electric thin film and a polarization voltage generated in the pyroelectric body by an infrared image incident on the pyroelectric thin film, and the insulating thin film is irradiated with light. A method for driving a pyroelectric infrared imaging device according to the preceding item, characterized in that the maximum amount of charge that can be accumulated in a pyroelectric infrared imaging device is read out as a video signal.
JP59070432A 1984-04-09 1984-04-09 Pyroelectric type infrared image pickup device and driving method thereof Pending JPS60213057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070432A JPS60213057A (en) 1984-04-09 1984-04-09 Pyroelectric type infrared image pickup device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070432A JPS60213057A (en) 1984-04-09 1984-04-09 Pyroelectric type infrared image pickup device and driving method thereof

Publications (1)

Publication Number Publication Date
JPS60213057A true JPS60213057A (en) 1985-10-25

Family

ID=13431310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070432A Pending JPS60213057A (en) 1984-04-09 1984-04-09 Pyroelectric type infrared image pickup device and driving method thereof

Country Status (1)

Country Link
JP (1) JPS60213057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209980A (en) * 1986-03-10 1987-09-16 Shimadzu Corp Light ray photographing device
US5589705A (en) * 1992-03-24 1996-12-31 Seiko Instruments Inc. Real-time semiconductor radiation detector
US8878256B2 (en) 2013-01-07 2014-11-04 Semiconductor Components Industries, Llc Image sensors with multiple output structures
US8878255B2 (en) 2013-01-07 2014-11-04 Semiconductor Components Industries, Llc Image sensors with multiple output structures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209980A (en) * 1986-03-10 1987-09-16 Shimadzu Corp Light ray photographing device
US5589705A (en) * 1992-03-24 1996-12-31 Seiko Instruments Inc. Real-time semiconductor radiation detector
US5757040A (en) * 1992-03-24 1998-05-26 Seiko Instruments Inc. Real-time semiconductor radiation detector
US8878256B2 (en) 2013-01-07 2014-11-04 Semiconductor Components Industries, Llc Image sensors with multiple output structures
US8878255B2 (en) 2013-01-07 2014-11-04 Semiconductor Components Industries, Llc Image sensors with multiple output structures

Similar Documents

Publication Publication Date Title
US6504141B1 (en) Adaptive amplifier circuit with enhanced dynamic range
JPS63164266A (en) Circuit used for thermal image generator
US4314275A (en) Infrared time delay with integration CTD imager
JPS614376A (en) Solid-state image pickup device
JPS5831669A (en) Solid-state image pickup device
US3873836A (en) Charge coupled radiation detector imaging system
JPH0868860A (en) X-ray image sensor
JPS60213057A (en) Pyroelectric type infrared image pickup device and driving method thereof
JPS6161589B2 (en)
US4311906A (en) Mosaic of radiation detectors read by a semiconductor device and a picture pickup system comprising a mosaic of this type
JPS6042666B2 (en) solid state imaging device
JP2000111653A (en) Radiation two-dimensional detector
JPS60152180A (en) Motion picture camera using solid-state image pickup device
JP2967704B2 (en) Infrared imaging device
JPH02137267A (en) Pyroelectric type infrared solid state image sensor and its driving method
JP2605856B2 (en) Pyroelectric infrared imaging device and driving method thereof
EP0066020B1 (en) Infrared energy detector system utilizing a charge transfer device sensor
EP0065599B1 (en) Infrared imaging system with infrared detector matrix, and method of imaging infrared energy
US20210218910A1 (en) Image detector with lateral electronic collection
JPS60214169A (en) Pyroelectric type infrared ray image pickup device
JPH02158168A (en) Pyroelectric infrared ray solid state image sensor and driving method therefor
JPS5820504B2 (en) Kotai Satsuzou Sochi
JPH02206284A (en) Driving method for matrix type infrared solid-state image pickup device
JPH05243544A (en) X-ray detection solid-state image sensing device
JPH06339084A (en) Solid-state image pickup element