JPH0223036A - Power factor regulating method - Google Patents

Power factor regulating method

Info

Publication number
JPH0223036A
JPH0223036A JP63168993A JP16899388A JPH0223036A JP H0223036 A JPH0223036 A JP H0223036A JP 63168993 A JP63168993 A JP 63168993A JP 16899388 A JP16899388 A JP 16899388A JP H0223036 A JPH0223036 A JP H0223036A
Authority
JP
Japan
Prior art keywords
current
point
power factor
adjustment method
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63168993A
Other languages
Japanese (ja)
Other versions
JPH07110107B2 (en
Inventor
Kiyokuma Yamazaki
清熊 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63168993A priority Critical patent/JPH07110107B2/en
Publication of JPH0223036A publication Critical patent/JPH0223036A/en
Publication of JPH07110107B2 publication Critical patent/JPH07110107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE:To prevent hunting corresponding to different capacitors by providing a step for operating a throw-in point and an interrupting point based on set values. CONSTITUTION:An operating section 31 reads in set values from a setting section 30 as well as reactive power and load current detected respectively through a reactive power detecting section 4 and a load current detector 5 and operates a throw-in point QT, an interrupting point QC, interruption current IC, reclosing current IT and reactive factor sintheta. When the load current I increases from below the interruption current IC and exceeds over the reclosing current IT, the process goes to a control step. If the reactive power theta is leading and exceeding over the interruption point QC, an interruption signal is fed to a relay circuit 20 in order to interrupt a specific capacitor. When the reactive power is lagging and exceeding over the throw-in point QT, a specific capacitor is thrown in. Cyclic control is made for identical capacity of capacitors C1-CN while priority control is made for different capacity where throw-in and interruption sequences are reversed, thus preventing the power factor from leading or lagging.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電気回路の無効成分に応じて複数のコンデ
ンサを投入又は遮断し、電気回路の力率を自動的に改善
する力率調整方法に関し、特に取り扱いが簡単で信頼性
の高い力率調整方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a power factor adjustment method that automatically improves the power factor of an electric circuit by turning on or off a plurality of capacitors depending on the reactive components of the electric circuit. In particular, the present invention relates to a power factor adjustment method that is easy to handle and highly reliable.

[従来の技術] 第5図は、例えば特公昭60−47823号公報及び特
公昭81−11058号公報に記載された、一般的な力
率調整装置を示すブロック図である。
[Prior Art] FIG. 5 is a block diagram showing a general power factor adjustment device described in, for example, Japanese Patent Publication No. 47823/1982 and Japanese Patent Publication No. 11058/1981.

図において、(1)は電気回路、(2)は電気回路(1
)の電圧を検出する計器用変圧器、(3)は電気回路(
1)の電流を検出する計器用変流器、(T1)及び(T
2)は電気回路(1)に接続された変圧器、(R1)及
び(R2)は各変圧器(T1)及び〈T2)に接続され
た負荷、(B1)〜(BN)は電気回路(1)に接続さ
れた複数の電磁接触器、(Ll)〜(LH)は各電磁接
触器(B1)〜(BN)に接続された直列リアクトル、
(C1)〜(CN)は各直列リアクトル(Ll)〜(L
N)に接続された力率改善用の複数のコンデンサである
In the figure, (1) is an electric circuit, (2) is an electric circuit (1
), (3) is an electrical circuit (
1) instrument current transformers, (T1) and (T
2) is the transformer connected to the electric circuit (1), (R1) and (R2) are the loads connected to each transformer (T1) and <T2), and (B1) to (BN) are the electric circuit ( 1) a plurality of electromagnetic contactors connected to the electromagnetic contactors (Ll) to (LH) are series reactors connected to each of the electromagnetic contactors (B1) to (BN),
(C1) to (CN) are each series reactor (Ll) to (L
N) are connected to multiple capacitors for power factor correction.

(4)は計器用変圧器(2)及び計器用変流器(3)か
らの各出力に基づいて電気回路(1)の無効電力Qに比
例した電圧信号を出力する無効電力検出部、(5)は計
器用変流器(3)からの出力に基づいて電気回路(1)
に流れる負荷電流Iを検出する負荷電流検出部である。
(4) is a reactive power detection unit that outputs a voltage signal proportional to the reactive power Q of the electric circuit (1) based on each output from the voltage transformer (2) and the voltage current transformer (3); 5) is an electric circuit (1) based on the output from the instrument current transformer (3).
This is a load current detection section that detects a load current I flowing through the load current I.

(6)はコンデンサ(C1)〜(CN)の投入点QTを
設定する投入点設定器、(7)はコンデンサ<CI)〜
(CN)の遮断点Qcを設定する遮断点設定器、(8)
は低負荷状層の判定基準となる遮断電流ICを設定する
電流設定器、(9)は無効電力Qが投入点QTより高い
場合にオン信号を出力する比較器、(10〉は無効電力
Qが遮断点Qcより低い場合にオン信号を出力する比較
器、(11)は負荷電流■が遮断電流■cより低い場合
にオン信号を出力する比較器、(12)はタイマ回路、
(13)はタイマ回路(12)の動作タイミングを設定
するタイマ設定器である。
(6) is a closing point setting device that sets the closing point QT of capacitors (C1) to (CN), and (7) is a capacitor < CI) to
Breaking point setter for setting the breaking point Qc of (CN), (8)
is a current setting device that sets the cut-off current IC, which is a criterion for determining a low-load layer, (9) is a comparator that outputs an on signal when reactive power Q is higher than the input point QT, and (10> is reactive power Q (11) is a comparator that outputs an on signal when the load current (■) is lower than the cutoff current (■c), (12) is a timer circuit,
(13) is a timer setter that sets the operation timing of the timer circuit (12).

(14)は比較器(9)の出力と比較器(11)の反転
出力とタイマ回路(12)の出力との論理項をとる投入
用のアンドゲート、(15)は比較器(10)及び(1
1)の各出力の論理和をとるオアゲート、(16)はオ
アゲ−1−(15)及びタイマ回路〈12)の各出力の
論理積をとる遮断用のアンドゲート、 (17)は比較
器(9)〜(11)の各出力の論理和をとっていずれが
がオンのときにタイマ回路(12)のりセント伏君を解
除するオアゲートである。
(14) is an input AND gate that takes a logical term between the output of the comparator (9), the inverted output of the comparator (11), and the output of the timer circuit (12); (15) is the input gate for the comparator (10) and (1
(16) is an AND gate for logical ANDing of each output of OR-1-(15) and timer circuit <12), (17) is a cut-off AND gate that takes the AND of each output of OR-1-(15) and timer circuit (12), and (17) is a comparator ( This is an OR gate that calculates the logical sum of the respective outputs of 9) to (11) and releases the timer circuit (12) when any of them is on.

(18)はアンドゲート(14)の出力により付勢され
る投入111ff序回路であり、コンデンサ(C1)〜
(CN)のうちから投入(電気回路に接続)されるコン
デンサを選択するようになっている。(19)はアンド
ゲート(16)の出力により付勢される遮断順序回路で
あり、コンデンサ(C1)〜(CN)のうちから4 断
される(電気回路から切り雛される)コンデンサを選択
するようになっている。
(18) is an input 111ff sequential circuit energized by the output of the AND gate (14), and the capacitor (C1) to
The capacitor to be inserted (connected to the electric circuit) is selected from among (CN). (19) is a cut-off sequential circuit energized by the output of AND gate (16), which selects four capacitors to be cut off (cut out from the electrical circuit) from among capacitors (C1) to (CN). It looks like this.

(20)は投入順序回路(18)及び遮断順序回路(1
9)の出力により駆動されるリレー回路、(^1)〜(
八N)はコンデンサ(C1)〜(CN)に対応して設け
られ、リレー回路(20)により選択的に付勢又は消勢
されるリレー接点である。(21)はリレー接点(^1
)〜(八N)の出力に従って電磁接触器(B1)〜(B
N)を開閉制御する制御回路部であり、各コンデンサ(
C1)〜(CM>を電気回路(1)に対して選択的に接
続又は切り離すようになっている。
(20) is a turn-on sequence circuit (18) and a cut-off sequence circuit (1
The relay circuit driven by the output of 9), (^1) ~ (
8N) is a relay contact provided corresponding to the capacitors (C1) to (CN) and selectively energized or deenergized by the relay circuit (20). (21) is a relay contact (^1
) to (8N) according to the output of electromagnetic contactors (B1) to (B
This is the control circuit section that controls the opening and closing of each capacitor (N).
C1) to (CM>) are selectively connected or disconnected from the electric circuit (1).

次に、第5図に示した従来の力率調整装置の動作につい
て説明する。尚、投入点Qt及び遮断点Qcは、コンデ
ンサ(C1)〜(CN)の容量、計器用変圧器(2)及
び計器用変流器(3)の合成変成比、並びに負荷(R1
)及び(R2)の負荷率等に基づいて予め計算され設定
されている。
Next, the operation of the conventional power factor adjusting device shown in FIG. 5 will be explained. The turning point Qt and the breaking point Qc are determined by the capacitance of the capacitors (C1) to (CN), the composite transformation ratio of the voltage transformer (2) and the current transformer (3), and the load (R1).
) and (R2) are calculated and set in advance based on the load factors, etc.

まず、無効電力検出部(4)は運転中の電気回路(1)
の無効電力Qを検出して比較器(9)及び(10)の比
較端子に入力し、負荷電流検出部(5)は負荷電流■を
検出して比較器(11)の比較端子に入力する。投入点
設定器(6)、遮断点設定器(7)及び電流設定器(8
)は、比較器(9)、(10)及び(11)の各基準端
子に、それぞれ投入点QT、遮断点Qc及び遮断電流■
cに相当する電圧信号を入力する。
First, the reactive power detection unit (4) detects the electrical circuit (1) in operation.
The reactive power Q is detected and inputted to the comparison terminals of comparators (9) and (10), and the load current detection section (5) detects the load current ■ and inputted to the comparison terminal of the comparator (11). . Closing point setting device (6), breaking point setting device (7) and current setting device (8)
) are the closing point QT, the breaking point Qc, and the breaking current ■ to each reference terminal of the comparators (9), (10), and (11), respectively.
Input the voltage signal corresponding to c.

いま、負荷電流Iが遮断電流Ic以上で、比較器(11
)の出力がオフとする。ここで、無効電力Qが投入点Q
Tより高ければ、比較器(9)の出力がオンとなり、オ
アゲート(17)を介してタイマ回路(12)のリセッ
ト状態を解除する。タイマ回路(12)は、タイマ設定
器(13)で設定された時間経過後にオン信号を出力し
、アンドゲート(14)の出力をオンとして投入順序回
路(18)を付勢する。これにより、リレー回路(20
)がリレー接点(^1)〜(^N)を選択的に付勢し、
電磁接触器(B1)〜(ON>を介してコンデンサ(C
1)〜(CN)の中から選択された所定のコンデンサを
電気回路(1)に接続する。
Now, when the load current I is greater than or equal to the breaking current Ic, the comparator (11
) is turned off. Here, the reactive power Q is the input point Q
If it is higher than T, the output of the comparator (9) is turned on and the reset state of the timer circuit (12) is released via the OR gate (17). The timer circuit (12) outputs an on signal after the time set by the timer setter (13) has elapsed, turns on the output of the AND gate (14), and energizes the input sequence circuit (18). As a result, the relay circuit (20
) selectively energizes relay contacts (^1) to (^N),
Capacitor (C
1) A predetermined capacitor selected from among (CN) is connected to the electric circuit (1).

又、無効電力Qが遮断点Qcより低い場合は、比較器(
10)の出力がオンとなり、オアゲート(15)、(1
7)、タイマ回路(12)及びアンドゲート(16)を
介して遮断順序回路(19)が付勢される。これにより
Also, if the reactive power Q is lower than the cutoff point Qc, the comparator (
The output of 10) turns on, and the OR gates (15) and (1
7), the cut-off sequential circuit (19) is activated via the timer circuit (12) and the AND gate (16). Due to this.

リレー回路(20)がリレー接点(^1)〜(八N)を
選択的に消勢し、コンデンサ(C1)〜(C14)の中
から選択されたコンデンサを電気回路(1)から切り屋
す。
The relay circuit (20) selectively deenergizes the relay contacts (^1) to (8N), and removes the capacitor selected from the capacitors (C1) to (C14) from the electrical circuit (1). .

一方、負荷電流■が遮断電流ICより低い軽負荷時の場
合は、比較器(11)の出力がオンとなり、オアゲー)
 (17)を介してタイマ回路、(12)を起動すると
共に、アントゲ−1−(14)の出力をオフにする。
On the other hand, in the case of a light load when the load current ■ is lower than the breaking current IC, the output of the comparator (11) turns on and
The timer circuit (12) is activated via (17), and the output of the anime game-1-(14) is turned off.

所定時間経過後にタイマ回路(12)の出力がオンにな
ると、比較器(11)のオン信号はオアゲー) (15
)及びアンドゲート(16)を介して遮断順序回路(1
9)を付勢し、コンデンサ(C1)〜(CN)を電気回
路(1)から順次切り離す。
When the output of the timer circuit (12) turns on after a predetermined period of time has elapsed, the on signal of the comparator (11) turns on (or game) (15
) and the AND gate (16) to block the sequential circuit (1
9) and sequentially disconnect the capacitors (C1) to (CN) from the electric circuit (1).

このようにコンデンサ(C1)〜(CM>を投入又は遮
断することにより、電気回路(1)の力率は自動的に改
善される。尚、電気回路(1)の無効成分として、無効
電力の代わりに無効電流又は力率等を検出した場合も同
様である。
By turning on or cutting off the capacitors (C1) to (CM>) in this way, the power factor of the electric circuit (1) is automatically improved.In addition, as a reactive component of the electric circuit (1), the reactive power The same applies when reactive current, power factor, etc. are detected instead.

[発明が解決しようとする課題] 従来の力率調整方法は以上のように、投入点Qr及び遮
断点Qcを予め設定しているので、煩わしい計算を必要
とし、又、設定値が固定であるためコンデンサ(C1)
〜(CI)が等容量でなければ調整制御できないという
問題点があった。
[Problems to be Solved by the Invention] As described above, in the conventional power factor adjustment method, the closing point Qr and the closing point Qc are set in advance, which requires troublesome calculations, and the set values are fixed. Capacitor (C1)
There was a problem that adjustment control could not be performed unless ~(CI) had the same capacity.

又、軽負荷時においては、負荷電流に基づいて無効電力
と無関係にコンデンサ(C1)〜(CN)を遮断制御す
るため、コンデンサの頻繁なオンオフによるハンチング
動作やコンデンサの遮断による力率の遅れすぎを招くと
いう問題点があった。
In addition, at light loads, capacitors (C1) to (CN) are controlled to be cut off based on the load current, regardless of reactive power, so hunting operations due to frequent on/off of the capacitors and excessive lag in the power factor due to capacitor cutoff are avoided. There was a problem in that it invited

この発明は上記のような問題点を解決するためになされ
たもので、異なる容量のコンデンサに対応できると共に
、設定操作が簡単でハンチング動作等を防止できる力率
調整方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a power factor adjustment method that can accommodate capacitors of different capacities, has easy setting operations, and can prevent hunting operations. .

[課題を解決するための手段] この発明に係る力率調整方法は、合成変成比を含む設定
値に基づいて投入点及び遮断点を演算するステップを備
えたものである。
[Means for Solving the Problems] A power factor adjustment method according to the present invention includes a step of calculating a turning point and a cutting point based on set values including a composite transformation ratio.

又、この発明の別の発明に係る力率PI整方法は。Moreover, a power factor PI adjustment method according to another invention of the present invention is as follows.

合成変成比を含む設定値に基づいて投入点、遮断点、遮
断電流及び遮断;流以上の再投入電流を演算するステッ
プと、負荷T4流が遮断電流以上の場合に負荷電流が遮
断電流以下から増加してきたか否かを判定するステップ
と、負荷電流が遮断電流以下から増加してきた場合に再
投入電流を超過したか否かを判定し、負荷電流が再投入
電流を超過した場合にのみコンデンサの投入制御を可能
にするステップとを備えたものである。
A step of calculating the closing point, the breaking point, the breaking current, and the breaking current or more based on the set value including the composite transformation ratio; The second step is to determine whether the load current has increased from below the cut-off current to whether it has exceeded the re-opening current, and only when the load current exceeds the re-close current, the capacitor is and a step for enabling input control.

[作用コ この発明においては、合成変成比等の値を設定するのみ
で自動的に投入点及び遮断点が演算されるので、設定操
作が容易となり設定ミスは起こらない。
[Function] In this invention, the input point and the cut-off point are automatically calculated by simply setting the value of the composite metamorphic ratio, etc., so the setting operation is easy and no setting errors occur.

又、この発明の別の発明においては、軽負荷時運断制御
後に遮断電流以上の再投入電流と比較することにより、
コンデンサのオンオフの繰り返し回数を減少させ、ハン
チング等を防止する。
Further, in another invention of the present invention, by comparing with the re-opening current which is higher than the breaking current after the light load operation control,
Reduces the number of times the capacitor is turned on and off to prevent hunting, etc.

[実施例] 以下、この発明の一実施例を図について説明する。第1
図はこの発明の実施例が適用される力率制御装置を示す
ブロック図である0図において、(1)〜(5)及び(
20)は前述と同様のものであり、図示しない構成は第
5図に示した通りである。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a block diagram showing a power factor control device to which an embodiment of the present invention is applied.
20) is the same as described above, and the structure not shown is as shown in FIG.

(30)はコンデンサ(C1)〜(CM)の容量や変成
比等を設定する設定部、(31)は無効電力検出部(4
)、負荷電流検出部(5)及び設定部(30)の各出力
信号に基づいてリレー回路(20)を制御する演算処理
部、(32)は無効電力Qの瞬時値や演算処理部(31
)における演算結果等を逐次表示する表示部である。
(30) is a setting section for setting the capacitance and transformation ratio of capacitors (C1) to (CM), and (31) is a reactive power detection section (4
), an arithmetic processing unit that controls the relay circuit (20) based on the output signals of the load current detection unit (5) and the setting unit (30), and (32) a calculation processing unit that controls the instantaneous value of reactive power Q and the arithmetic processing unit (31).
) is a display unit that sequentially displays the calculation results etc.

次に、演算処理部(31)の動作を示す第2図のフロー
チャート図を参照しながら、この発明の一実施例につい
て説明する。
Next, an embodiment of the present invention will be described with reference to the flowchart of FIG. 2 showing the operation of the arithmetic processing section (31).

尚、設定部(30)には、コンデンサ(C1)〜(CN
)の容量、合成変成比、負荷率及び需要率等の設定値が
予め設定されるが、これらはほぼ自動的に決定する値で
あり、設定操作が容易で設定ミスを招くおそれは全くな
い。又、演算処理部(31)には、必要な演算プログラ
ム等が予め格納されている。
Note that the setting section (30) includes capacitors (C1) to (CN
), the set values for the capacity, synthetic transformation ratio, load factor, demand factor, etc. are set in advance, but these are values that are almost automatically determined, so the setting operation is easy and there is no risk of setting errors. Further, necessary calculation programs and the like are stored in advance in the calculation processing section (31).

まず、演算処理部(31)は、無効電力検出部(4)及
び負荷電流検出部(5)で検出された無効電力Q及び負
荷電流Iと共に、設定部(30)からの設定値を読込み
(ステップSl)、無効電力Qに対する投入点Qr及び
遮断点Qc、負荷電流Iに対する遮断電流IC及び再投
入電流I7、並びに無効率sinθ等を演算する(ステ
ップS2)。
First, the arithmetic processing unit (31) reads the setting values from the setting unit (30) along with the reactive power Q and load current I detected by the reactive power detection unit (4) and load current detection unit (5) ( Step Sl), the turning point Qr and breaking point Qc for the reactive power Q, the breaking current IC and the re-turning current I7 for the load current I, the inefficiency sin θ, etc. are calculated (Step S2).

一般に、有効電力Wと遅れ無効電力Q及び力率eO5θ
との間には、 Q = W X [(1/cos”θ)  l]l/2
  、、・■の関係が成立する。ここで、 cosθ≧0.995 即ち、力率が99.5%以上は四捨五入されて100%
と見なされ、このときの遅れ無効電力QはQ!=iWX
0.1        ”’■となる。
In general, active power W, delayed reactive power Q and power factor eO5θ
Between, Q = W X [(1/cos”θ) l] l/2
The following relationship holds true. Here, cosθ≧0.995, that is, power factor of 99.5% or more is rounded to 100%.
The delayed reactive power Q at this time is Q! =iWX
0.1 ”'■.

又、需要率KJ及び負荷率KRと、最大需要電力P、、
設備容量PC1及び成る期間の平均電力PAとの間には
、 K J= (P M/ P c) X 100   −
・・■KR−(PA/ PM)X100    、、、
■の関係が成立する。■及び0式より、最大需要電力P
、及び平均電力PAは、 P 、= P cX K 、7x too      
・・・■P A= PMX KRX 100     
−@で表わされる。ここで、設備容量pcは等価的に合
成変成比に相当しており、又、最大需要電力P、及び平
均電力PAは、負荷電流I又は需要率に、I及び負荷率
KRから、算出した値から求まる。従って、■式の有効
電力Wの値として、0式又は0式で求めた値PM又はP
Aを代入すれば投入点QTが求まる。
In addition, the demand factor KJ, the load factor KR, and the maximum demand power P,
Between the installed capacity PC1 and the average power PA for the period, K J = (P M / P c) x 100 -
・・■KR-(PA/PM)X100 ,,,
The relationship ■ holds true. From ■ and formula 0, maximum power demand P
, and the average power PA is P , = P cX K , 7x too
...■P A= PMX KRX 100
−Represented by @. Here, the installed capacity pc equivalently corresponds to the composite transformation ratio, and the maximum demand power P and average power PA are the values calculated from the load current I or the demand rate, I and the load rate KR. Determined from. Therefore, as the value of the active power W in formula (■), the value PM or P obtained by formula 0 or formula
By substituting A, the input point QT can be found.

このとき、どちらを代入するかは設定部(30)からの
情報により決定される。又、コンデンサ(C1)〜(C
N)の中で次に制傳されるコンデンサの容ICにハンチ
ング防止係数を乗じた値と■式から算出された投入点Q
Tとの和により遮断点Qcが求まる。
At this time, which one to substitute is determined by information from the setting section (30). Also, capacitors (C1) to (C
The input point Q calculated from the value obtained by multiplying the capacitance IC of the next capacitor in N) by the anti-hunting coefficient and the formula
The cutoff point Qc is determined by the sum with T.

又、投入点QT及び遮断点Qcを決定するための制御中
心線を設定1v(30)内に予め設定しておき、コンデ
ンサ容量Cと無効電力Qとに基づいて投入点QT及び遮
断点Qcを設定してもよい。例えば、コンデンサを遮断
する前の進み無効電力の絶対値Q0と、遮断後の遅れ無
効電力の絶対値Q、とを比較し、 Q、=Q。
In addition, the control center line for determining the turning point QT and the cutting point Qc is set in advance within the setting 1v (30), and the turning point QT and the cutting point Qc are determined based on the capacitor capacity C and the reactive power Q. May be set. For example, compare the absolute value Q0 of the leading reactive power before shutting off the capacitor with the absolute value Q of the lagging reactive power after shutting off, Q,=Q.

となる場合に、そのコンデンサを遮断するように遮断点
Qcを設定することができる。もし、力率を進みぎみに
制御したい場合は、遮断点Qcに相当する進み無効電力
Qoの値に、α〈〉1)なる係数を乗算しておけばよく
、逆に遅れぎみに制御したい場合は、β(〈1)なる係
数を乗算しておけばよい。
In this case, a cutoff point Qc can be set to cut off the capacitor. If you want to control the power factor in a more advanced manner, just multiply the value of the leading reactive power Qo corresponding to the cutoff point Qc by a coefficient α〈〉1).On the other hand, if you want to control the power factor more slowly may be multiplied by a coefficient β (<1).

次に、負荷電流■が遮断電流IC以上か否かを判定しく
ステップS3)、遮断電流Ic以上であれば負荷電流I
が遮断電流1c以下から増加してきたが否かを判定する
(ステップS4)、そして、遮断電流Ic以下から増加
してきた場合は、更に、負荷電流■が再投入電流I7を
超過したか否かを判定しくステップS5)、再投入電流
I7を超過していれば次のステップS6に進む。
Next, it is determined whether the load current (■) is greater than or equal to the breaking current IC (step S3), and if the load current (I) is greater than or equal to the breaking current Ic, the load current I
It is determined whether or not the load current has increased from below the breaking current 1c (step S4). If the current has increased from below the breaking current Ic, it is further determined whether the load current has exceeded the re-opening current I7. If it is determined that the re-turning current I7 is exceeded (step S5), the process proceeds to the next step S6.

ステップS4においては、負荷電流■が遮断電流Ic以
下から(軽負荷時の遮断制御後に)増加したと判定され
た場合、ステップS5で再投入電流I7を超過したこと
を判定したときのみ、投入可能な次の制御ステップへ進
むようになっている。
In step S4, if it is determined that the load current ■ has increased from below the interrupting current Ic (after the interrupting control during light load), it is possible to close only when it is determined in step S5 that the re-energizing current exceeds I7. It is now possible to proceed to the next control step.

尚、遮断電流Ic及び再投入電流I7の値は、ステップ
S2において演算され、遮断電流rcは、算出された遮
断点Qc又は投入点Qtのうち絶対値の大きい方を合成
変成比及び計測回路電圧Vで除することによって求まる
。軽負荷遮断レベルとなる遮断電流ICは、コンデンサ
容量Cに相当する値であり、投入点Qt及び遮断点Qc
の値に応じて演算且つ変更可能となっている。又、再投
入電流11は、例えば遮断電流1cに2I/2を乗じて
遮断電流IC以上となるように設定されており、遮断電
流ICに対しヒステリシスを持たせてハンチングを防止
している。
The values of the cut-off current Ic and the re-opening current I7 are calculated in step S2, and the cut-off current rc is determined by combining the calculated cut-off point Qc or the cut-off point Qt, whichever has a larger absolute value, with the combined transformation ratio and the measured circuit voltage. It is found by dividing by V. The breaking current IC at the light load breaking level is a value corresponding to the capacitor capacitance C, and the turning point Qt and the breaking point Qc
It can be calculated and changed depending on the value of . Further, the re-turning current 11 is set to be equal to or higher than the interrupting current IC by multiplying the interrupting current 1c by 2I/2, for example, and gives hysteresis to the interrupting current IC to prevent hunting.

次に、無効電力が進みか否かを判定しくステップSO)
、進みであれば無効電力Qが遮断点Qcを超過したか否
かを判定しくステップS7)、超過していればリレー回
路(20)に遮断信号を出力して所要のコンデンサを遮
断しくステップS8)、超過していなければそのままス
テップS1に戻る。
Next, it is determined whether the reactive power is advancing or not (step SO)
, if the reactive power Q has exceeded the cutoff point Qc, it is determined in step S7), and if it has exceeded it, a cutoff signal is output to the relay circuit (20) to cut off the required capacitor (step S8). ), if not exceeded, the process returns to step S1.

ステップS6において、進みでない(遅れ)と判定さ−
れな場合は、無効電力Qが投入点QTを超過したか否か
を判定しくステップS9)、投入点Qtを超過していれ
ば投入信号を出力して所要のコンデンサを投入しくステ
ップ510)、又、超過していなければそのままスター
トに戻る。
In step S6, it is determined that there is no advance (delay).
If not, it is determined whether or not the reactive power Q exceeds the input point QT (step S9), and if it exceeds the input point Qt, an input signal is output to input the required capacitor (step 510). Also, if the limit has not been exceeded, return to the start.

ステップS8及びS10におけるオンオフ動作において
は、コンデンサ(C1)〜(CM)の容量が全て等しけ
れば、オンオフ回数を均一にするためのサイクリック制
御を行ない、又、各容量が異なる場合は、小さい容量の
コンデンサから順に優先制御を行ない投入順序と遮断順
序を逆にしており、軽負荷時における極端な進み力率又
は遅れ力率の発生を防止している。
In the on/off operations in steps S8 and S10, if the capacitances of the capacitors (C1) to (CM) are all equal, cyclic control is performed to equalize the number of on/off times, and if the capacitances are different, a small capacitance Priority control is performed in order from the capacitors onwards, and the turn-on and turn-off orders are reversed to prevent the occurrence of extreme leading or lagging power factors during light loads.

ステップS4において負荷電流Iが遮断電流■c以下か
ら増加していない(軽負荷による遮断でない)と判定さ
れた場合はステップS6に進む。
If it is determined in step S4 that the load current I has not increased from below the cutoff current ■c (the cutoff is not due to a light load), the process proceeds to step S6.

又、ステップS3において負荷電流Iが遮断電流1c以
下と判定された場合は、無効電力Qが進みが否かを判定
しくステップ511)、遅れであればステップS1に戻
り、進みであれば無効率sinθが演算値以上か否かを
判定する(ステップ512) 、もし演算値未満であれ
ばステップS1に戻り、演算値以上であれば、ステップ
S8に進みコンデンサ(C1)〜(CM)を順次遮断す
る。これにより、負荷電流Iが遮断;流IC未満であっ
ても、無効率sinθが演算値より小さい場合はコンデ
ンサ(CI)〜(CN)が遮断されず、力率eollθ
の遅れすぎは発生しない。
If it is determined in step S3 that the load current I is less than or equal to the cutoff current 1c, it is determined whether or not the reactive power Q is ahead (step 511); if it is delayed, the process returns to step S1; if it is ahead, it is inefficient. Determine whether sin θ is greater than or equal to the calculated value (step 512). If it is less than the calculated value, return to step S1; if it is greater than or equal to the calculated value, proceed to step S8 and sequentially shut off capacitors (C1) to (CM). do. As a result, the load current I is cut off; even if the current I is less than the current IC, if the inefficiency sin θ is smaller than the calculated value, the capacitors (CI) to (CN) are not cut off, and the power factor eollθ
Too much delay will not occur.

尚、無効率sinθは、無効電力Qを負荷電流■に計測
回路電圧Vを乗じた皮相電力で除することにより得られ
、 sinθ=Q/VI で表わされる。又、無効率の演算値は、遮断点Qcをコ
ンデンサ容量Cに相当する値で除することにより求まる
。従って、ステップS12は、Q/VI≧Qc/C であるか否かを判定していることになる。このとき、判
定基準となる無効率演算値(Qc/C)内のコンデンサ
容量Cは、設定された値であってもよく、又、任意の係
数τを乗じた値(τC)であってもよい 第3図及び第4図は、有効電力Wを横軸、無効電力Qを
縦軸にとり、制御領域を図式的に示した説明図である。
Incidentally, the inefficiency sin θ is obtained by dividing the reactive power Q by the apparent power obtained by multiplying the load current ■ by the measurement circuit voltage V, and is expressed as sin θ=Q/VI. Further, the calculated value of inefficiency can be found by dividing the cutoff point Qc by a value corresponding to the capacitance C. Therefore, step S12 determines whether Q/VI≧Qc/C. At this time, the capacitor capacitance C in the inefficiency calculation value (Qc/C) that serves as the judgment criterion may be a set value, or may be a value (τC) multiplied by an arbitrary coefficient τ. FIGS. 3 and 4 are explanatory diagrams schematically showing control regions, with active power W taken on the horizontal axis and reactive power Q taken on the vertical axis.

制御領域は、遮断点Qc、投入点QT、遮断1!流lc
、及びコンデンサ容JIC等の値によって異なり、例え
ば、第3図は遮断点Qc及び投入点QTの絶対値が等し
い場合、第4図は異なる場合を示している。
The control area is cutoff point Qc, closing point QT, cutoff 1! flow lc
For example, FIG. 3 shows a case where the absolute values of the cutoff point Qc and the closing point QT are equal, and FIG. 4 shows a case where they are different.

図において、半円Eは遮断電流tcに相当する値を半径
とした軽負荷領域を示しており、第3図においては横軸
(制御中心線)及び縦軸の交点0を中心とし、第4図に
おいては遮断点Qcと投入点QTとの中間点Mを中心と
している。
In the figure, a semicircle E indicates a light load region with a radius corresponding to the breaking current tc, and in FIG. In the figure, the center point is a midpoint M between the cutoff point Qc and the input point QT.

(40)はステップS12における判定基準(無効率演
算値)に相当する直線、斜線部(41)は遮断点Qc以
下且つ無効率演算値(40)以上の軽負荷時運断制御!
¥域、斜線部(42)は半円E以内且つ投入点Qr以下
の軽負荷時非投入制御領域である。従って、遮断制御領
域は、遮断点Qc以上の領域と軽負荷時の遮断制御領域
(41)との和で表わされ、投入制御領域は、投入点Q
r以下の領域から軽負荷時非制御領域(42)を減じた
領域で表わされる。又、遮断制御領域と投入制御τ域と
で挾まれた領域は非制御領域である。この非制御領域の
幅は、例えば半円Eの半径即ち遮断電流ICと等しい。
(40) is a straight line corresponding to the judgment criterion (inefficiency calculation value) in step S12, and the shaded part (41) is light load operation interruption control when the cutoff point Qc is below and the inefficiency calculation value (40) is above!
The shaded area (42) in the ¥ range is a light load non-closing control area within the semicircle E and below the closing point Qr. Therefore, the cutoff control area is expressed as the sum of the area above the cutoff point Qc and the light load cutoff control area (41), and the closing control area is expressed as the sum of the area above the cutoff point Qc and the cutoff control area (41) at light load.
It is expressed as an area obtained by subtracting the light load non-control area (42) from the area below r. Further, the area sandwiched between the shutoff control area and the closing control τ area is a non-control area. The width of this uncontrolled region is, for example, equal to the radius of the semicircle E, that is, the interrupting current IC.

尚、上記実施例では、コンデンサ(C1)〜(CN)の
界隈を設定部(30)に設定したが、コンデンサ容量C
は投入前及び投入後の無効電力を比較することにより算
出できるので、この演′H,tI!能を演算処理#(3
1)に含ませれば特に設定しなくてもよい。
In the above embodiment, the area of the capacitors (C1) to (CN) is set in the setting section (30), but the capacitor capacitance C
can be calculated by comparing the reactive power before and after turning on, so this expression 'H,tI! Calculating function #(3
If it is included in 1), there is no need to set it in particular.

又、1台の力率調整装置を制御する場合について説明し
たが、外部の中央制御装W(図示せず)を介して複数台
の力率調整装置を制御し、各力率調整装置毎に優先順位
をつけて投入(又は遮断)するようにしてバンク数を拡
張してもよい。
In addition, although the case where one power factor adjustment device is controlled has been described, multiple power factor adjustment devices are controlled via an external central control device W (not shown), and each power factor adjustment device is controlled individually. The number of banks may be expanded by prioritizing input (or shutoff).

この場合、中央制御装置から禁止指令を取り込むための
禁止指令インタフェースを各演算処理部に設けると共に
、1つの演算処理部の制御下にあるコンデンサが全て投
入(又は遮ffr)されたときに投入完了信号(又は遮
断完了信号)を中央制御装置に出力するようにすればよ
い、これにより、中央制御装置は、投入完了信号(又は
遮断完了信号)を出力中の演算処理部(31)に投入禁
止指令(又は遮断禁止指令)を出力し、投入(又は遮断
)の完了した力率調整装置を投入(又は遮断)動作させ
ることはない。
In this case, each arithmetic processing unit is provided with a prohibition command interface for receiving the prohibition command from the central control unit, and the closing is completed when all capacitors under the control of one arithmetic processing unit are turned on (or shut off ffr). The signal (or shut-off completion signal) may be output to the central control unit, so that the central control unit prohibits input to the arithmetic processing unit (31) that is currently outputting the shut-off completion signal (or shut-off completion signal). A command (or shutoff prohibition command) is output, and the power factor adjustment device that has been turned on (or shut off) is not turned on (or shut off).

[発明の効果〕 以上のようにこの発明によれば、少なくとも合成変成比
を含む設定値に基づいて投入点及び遮断点を演算するス
テップを設けたので、任意台数のコンデンサを制御でき
ると共に、設定操作等の取り汲いが容易な力率調整方法
が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, since the step of calculating the turning point and the cutting point based on the setting value including at least the composite transformation ratio is provided, it is possible to control any number of capacitors, and the setting This has the effect of providing a power factor adjustment method that is easy to operate and manage.

又、この発明の別の発明によれば、合成変成比を含む設
定値に基づいて投入点、遮断点、遮断電流及び遮断電流
以上の再投入電流を演算するステップと、負荷電流が遮
断電流以上の場合に負荷電流が遮断電流以下から増加し
てきたか否かを判定するステップと、負荷電流が遮[r
?It流以下から増加してきた場合に再投入電流を超過
したか否かを判定し、負荷電流が再投入電流を超過した
場合にのみコンデンサの投入制御を可能にするステップ
とを設けなので、軽負荷時3I!!断制tIl後の再投
入によるオンオフの繰り返し回数を減少させてハンチン
グ等を防止できる力率調整方法が得られる効果がある。
According to another invention of the present invention, the step of calculating the closing point, the breaking point, the breaking current, and the re-turning current that is higher than the breaking current based on a set value including the composite transformation ratio; a step of determining whether the load current has increased from below the cutoff current in the case of
? A step is provided in which it is determined whether the re-turning current has been exceeded when the load current has increased from below the It current, and the capacitor closing control is enabled only when the load current exceeds the re-turning current. Time 3I! ! This has the effect of providing a power factor adjustment method that can prevent hunting and the like by reducing the number of on-off repetitions due to re-input after shutoff tIl.

【図面の簡単な説明】 第1図はこの発明の一実施例が適用される力率調整装置
を示すブロック図、第2図は第1図内のの演算処理部の
動作を示すフローチャート図、第3図はこの発明の一実
施例の制御領域を示す説明図、第4図は遮断点及び投入
点の絶対値が異なる場合の制御領域を示す説明図、第5
図は一般的な力率調整装置を示すブロック図である。 (1)・・・電気回路    (4)・・・無効電力検
出部(5)・・・負荷電流検出部 (20)・・・リレ
ー回路(30)・・・設定部     (31)・・演
算処理部(32)・・・表示部     Q・・無効電
力Qr・・・投入点      Qc・・・遮断点■・
・・負荷電流     IC・・・遮断電流1、・・・
再投入を流 (C1)〜(CN)・・・コンデンサ S2・・・演算するステップ S3・・・負荷電流を遮断電流と比較するステップS4
・・・軽負荷時運断制御後を判定するステップS5・・
・負荷電流を再投入電流と比較するステップS6.Sl
l・・・無効電力が進みかを判定するステップS7・・
・無効電力を遮断点と比較するステップS9・・・無効
電力を投入点と比較するステップS12・・・無効率を
演算値と比較するステップ尚、図中、同一符号は同−又
は相当部分を示す。 市2図 第1図 t:電気9酪 形3図 邊れ 第4図 勧
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a block diagram showing a power factor adjustment device to which an embodiment of the present invention is applied; FIG. 2 is a flowchart showing the operation of the arithmetic processing section in FIG. 1; FIG. 3 is an explanatory diagram showing the control area of one embodiment of the present invention, FIG. 4 is an explanatory diagram showing the control area when the absolute values of the cutoff point and the closing point are different, and FIG.
The figure is a block diagram showing a general power factor adjustment device. (1)... Electric circuit (4)... Reactive power detection section (5)... Load current detection section (20)... Relay circuit (30)... Setting section (31)... Calculation Processing section (32)... Display section Q... Reactive power Qr... Turning point Qc... Cutting point ■.
...Load current IC...Breaking current 1,...
Re-turn on current (C1) to (CN)... Capacitor S2... Step S3 to calculate... Step S4 to compare load current with cut-off current
...Step S5 to determine after operation interruption control at light load...
- Step S6 of comparing the load current with the re-turning current. Sl
l...Step S7 to determine whether the reactive power is advancing...
・Step S9 of comparing the reactive power with the cut-off point...Step S12 of comparing the reactive power with the input point...Step of comparing the inefficiency with the calculated value Note that in the drawings, the same reference numerals indicate the same - or equivalent parts. show. City 2 figure 1 figure t: Electricity 9 dairy figure 3 side figure 4 figure t

Claims (10)

【特許請求の範囲】[Claims] (1)電気回路の無効成分を投入点及び遮断点と比較し
、前記無効成分の大きさに応じて、前記電気回路に接続
された複数のコンデンサを投入又は遮断する力率調整方
法において、合成変成比を含む設定値に基づいて前記投
入点及び前記遮断点を演算するステップを備えたことを
特徴とする力率調整方法。
(1) In a power factor adjustment method, a reactive component of an electric circuit is compared with a turning point and a cutting point, and a plurality of capacitors connected to the electric circuit are turned on or off depending on the magnitude of the reactive component. A power factor adjustment method comprising the step of calculating the turning point and the cutting point based on set values including a transformation ratio.
(2)電気回路の無効成分を投入点及び遮断点と比較す
ると共に、前記電気回路の負荷電流を遮断電流と比較し
、前記無効成分及び前記負荷電流の大きさに応じて、前
記電気回路に接続された複数のコンデンサを投入又は遮
断する力率調整方法において、 合成変成比を含む設定値に基づいて、前記投入点、前記
遮断点、前記遮断電流、及び前記遮断電流以上の再投入
電流を演算するステップと、前記負荷電流が前記遮断電
流以上の場合に前記負荷電流が前記遮断電流以下から増
加してきたか否かを判定するステップと、 前記負荷電流が前記遮断電流以下から増加してきた場合
に前記再投入電流を超過したか否かを判定し、前記負荷
電流が前記再投入電流を超過した場合にのみ前記コンデ
ンサの投入制御を可能にするステップと、 を備えたことを特徴とする力率調整方法。
(2) Comparing the reactive component of the electric circuit with the turning point and the breaking point, and comparing the load current of the electric circuit with the breaking current, and depending on the magnitude of the reactive component and the load current, In a power factor adjustment method for turning on or cutting off a plurality of connected capacitors, the turning point, the breaking point, the breaking current, and a re-turning current higher than the breaking current are set based on a set value including a composite transformation ratio. calculating whether or not the load current has increased from below the breaking current when the load current is above the breaking current; and when the load current has increased from below the breaking current A power factor characterized by comprising: determining whether or not the re-turning current has been exceeded, and enabling closing control of the capacitor only when the load current exceeds the re-turning current. Adjustment method.
(3)負荷電流が遮断電流未満且つ無効成分が進みの場
合に電気回路の無効率が演算値以上か否かを判定するス
テップを備え、前記無効率が前記演算値以上の場合にコ
ンデンサを遮断制御することを特徴とする特許請求の範
囲第2項記載の力率調整方法。
(3) A step of determining whether the inefficiency of the electric circuit is greater than or equal to the calculated value when the load current is less than the cutoff current and the reactive component is leading, and the capacitor is cut off when the inefficiency is greater than or equal to the calculated value. The power factor adjustment method according to claim 2, characterized in that the power factor adjustment method is controlled.
(4)遮断電流は、遮断点又は投入点のうち絶対値の大
きい方に基づいて演算されることを特徴とする特許請求
の範囲第2項又は第3項記載の力率調整方法。
(4) The power factor adjustment method according to claim 2 or 3, wherein the cut-off current is calculated based on the cut-off point or the turn-on point, whichever has a larger absolute value.
(5)遮断電流は、投入点及び遮断点に応じて演算且つ
変更されることを特徴とする特許請求の範囲第2項又は
第3項記載の力率調整方法。
(5) The power factor adjustment method according to claim 2 or 3, wherein the breaking current is calculated and changed depending on the turning point and breaking point.
(6)投入点及び遮断点は、次に制御されるコンデンサ
の容量に基づいて演算されることを特徴とする特許請求
の範囲第1項乃至第5項のいずれかに記載の力率調整方
法。
(6) The power factor adjustment method according to any one of claims 1 to 5, characterized in that the turn-on point and the cut-off point are calculated based on the capacitance of the capacitor to be controlled next. .
(7)コンデンサの容量は、設定値として予め設定され
ることを特徴とする特許請求の範囲第6項記載の力率調
整方法。
(7) The power factor adjustment method according to claim 6, wherein the capacitance of the capacitor is set in advance as a set value.
(8)コンデンサの容量は、前記コンデンサの投入時及
び遮断時の各無効成分を比較することにより演算される
ことを特徴とする特許請求の範囲第6項記載の力率調整
方法。
(8) The power factor adjustment method according to claim 6, wherein the capacitance of the capacitor is calculated by comparing each reactive component when the capacitor is turned on and when the capacitor is turned off.
(9)複数のコンデンサの容量が等しい場合は、前記各
コンデンサのオンオフ回数を均一にするためのサイクリ
ック制御を行ない、前記コンデンサの容量が異なる場合
は、小さい容量のコンデンサから順に優先制御すること
により投入順序と遮断順序とを逆にすることを特徴とす
る特許請求の範囲第1項乃至第8項のいずれかに記載の
力率調整方法。
(9) If the capacitances of multiple capacitors are the same, perform cyclic control to equalize the number of times each capacitor is turned on and off; if the capacitances of the capacitors are different, prioritize control in descending order of capacitance. 9. A power factor adjustment method according to any one of claims 1 to 8, characterized in that the turn-on order and the cut-off order are reversed.
(10)制御対象となる全てのコンデンサが投入又は遮
断された場合に、投入完了信号又は遮断完了信号を出力
して次の制御動作に入らないようにしたことを特徴とす
る特許請求の範囲第1項乃至第9項のいずれかに記載の
力率調整方法。
(10) When all the capacitors to be controlled are turned on or cut off, a closing completion signal or a cutting completion signal is output to prevent the next control operation from starting. The power factor adjustment method according to any one of items 1 to 9.
JP63168993A 1988-07-08 1988-07-08 Power factor adjustment method Expired - Lifetime JPH07110107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168993A JPH07110107B2 (en) 1988-07-08 1988-07-08 Power factor adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168993A JPH07110107B2 (en) 1988-07-08 1988-07-08 Power factor adjustment method

Publications (2)

Publication Number Publication Date
JPH0223036A true JPH0223036A (en) 1990-01-25
JPH07110107B2 JPH07110107B2 (en) 1995-11-22

Family

ID=15878363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168993A Expired - Lifetime JPH07110107B2 (en) 1988-07-08 1988-07-08 Power factor adjustment method

Country Status (1)

Country Link
JP (1) JPH07110107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942759B2 (en) * 2005-11-16 2012-05-30 サポーテック カンパニー リミテッド Abdomen fixing tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114542U (en) * 1984-01-09 1985-08-02 株式会社明電舎 Remote monitoring control device
JPS61176932U (en) * 1985-04-24 1986-11-05
JPS63198538A (en) * 1987-02-10 1988-08-17 三菱電機株式会社 Automatic power factor regulating controller
JPS63228926A (en) * 1987-03-15 1988-09-22 オムロン株式会社 Automatic power factor regulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114542U (en) * 1984-01-09 1985-08-02 株式会社明電舎 Remote monitoring control device
JPS61176932U (en) * 1985-04-24 1986-11-05
JPS63198538A (en) * 1987-02-10 1988-08-17 三菱電機株式会社 Automatic power factor regulating controller
JPS63228926A (en) * 1987-03-15 1988-09-22 オムロン株式会社 Automatic power factor regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942759B2 (en) * 2005-11-16 2012-05-30 サポーテック カンパニー リミテッド Abdomen fixing tool

Also Published As

Publication number Publication date
JPH07110107B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
CN108649592B (en) Multifunctional automatic phase changing system and method for medium and low voltage line
CN101689759A (en) Be used for regulating automatically the potential device of the voltage of three phase mains
CA2376911A1 (en) One or all phases recloser control
JPH0223036A (en) Power factor regulating method
CN105067900A (en) Method and device for detecting lack of null line in three-phase power supply
CN205583706U (en) Three -phase unbalanced load adjusting device
CN104242250B (en) The relay protecting method and system of a kind of modularization multi-level converter
Nassaj et al. Prevention of voltage instability by adaptive determination of tap position in OLTCs
EP0760177B1 (en) Recovery of transmitted power in an installation for transmission of high-voltage direct current
JP4633951B2 (en) Single-phase three-wire electric circuit load limiter
JP7457608B2 (en) voltage regulator
JPH03265428A (en) Method and apparatus for controlling working power
JPH0256686B2 (en)
CN107623328A (en) A kind of method for reducing closed loop network electric current
JP2569791B2 (en) Charger
CN106094705A (en) The adjusting means of a kind of motor, motor and control method thereof
JPH0261049B2 (en)
JP2734751B2 (en) Digital type time limit relay
JPH04194550A (en) Control of power load of electric water heater
JPH0224711A (en) System voltage/invalid power control device
JPH08171431A (en) Power factor improvement device
JPH1023670A (en) Method for controlling output of non-utility feeding device and output controlling device
JP2621212B2 (en) Automatic power factor adjustment device
JP2900582B2 (en) Automatic bus breaker breaker
SU1713014A1 (en) Method of automatic transformer-voltage regulation