JPH0256686B2 - - Google Patents

Info

Publication number
JPH0256686B2
JPH0256686B2 JP57158193A JP15819382A JPH0256686B2 JP H0256686 B2 JPH0256686 B2 JP H0256686B2 JP 57158193 A JP57158193 A JP 57158193A JP 15819382 A JP15819382 A JP 15819382A JP H0256686 B2 JPH0256686 B2 JP H0256686B2
Authority
JP
Japan
Prior art keywords
appropriate range
line
power factor
reactive power
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57158193A
Other languages
Japanese (ja)
Other versions
JPS5947934A (en
Inventor
Masaichi Oomori
Kozo Suzuki
Sota Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP57158193A priority Critical patent/JPS5947934A/en
Publication of JPS5947934A publication Critical patent/JPS5947934A/en
Publication of JPH0256686B2 publication Critical patent/JPH0256686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】 本発明は、電力需要家に力率改善用に設けられ
たコンデンサの投入、しや断を制御する自動力率
制御装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an automatic power factor control device that controls turning on and off of a capacitor installed in a power consumer for improving the power factor.

自動力率制御装置は、負荷により生ずる遅れ無
効電力を適切に補償するために、コンデンサを投
入、或はしや断するものであり、工場などの大口
需要家では多く使用されるようになつてきてい
る。従来の自動力率制御装置の或るものは、第1
図に示されるように、無効電力の進み側と遅れ側
とに調整ラインL1,L2を設定して、調整ライン
L1,L2によつて囲まれた適正範囲内に無効電力
が収まるようにコンデンサC1〜C3の投入、しや
断を制御している。+C1、+C2、+C3はコンデンサ
C1〜C3の投入を表し、−C3はコンデンサC3のしや
断を表す。この制御方式においては、調整ライン
L1,L2が一定無効電力に定められているので、
無効電力が連続して増加、或は減少する場合に
は、コンデンサの投入、しや断が迅速に応答しな
い問題点があつた。調整ラインL1,L2の間隔を
狭くすれば、応答が迅速になるが、短周期成分の
負荷変動にも応答してしまうので、それはできな
い。
Automatic power factor control devices turn on or turn off capacitors in order to appropriately compensate for delayed reactive power generated by loads, and are increasingly being used by large-scale consumers such as factories. ing. Some conventional automatic power factor control devices
As shown in the figure, adjustment lines L 1 and L 2 are set on the leading side and the lagging side of reactive power, and the adjustment lines
The turning on and turning off of capacitors C1 to C3 is controlled so that the reactive power falls within the appropriate range surrounded by L1 and L2 . +C 1 , +C 2 , +C 3 are capacitors
It represents the input of C1 to C3 , and -C3 represents the disconnection of the capacitor C3 . In this control method, the adjustment line
Since L 1 and L 2 are set to constant reactive power,
When the reactive power increases or decreases continuously, there is a problem in that the capacitor does not respond quickly to turning on or turning off the capacitor. If the interval between the adjustment lines L 1 and L 2 is narrowed, the response will be faster, but this is not possible because it would also respond to short-period component load fluctuations.

従来の自動力率制御装置の他のものは、第2図
に示されるように、コンデンサC1〜C3別の調整
ラインL11〜L13、L21〜L23を階段状に設定してい
る。これは第1図のものと比較すれば、連続増
加、或は連続減少の時の応答が速くなるが、ま
だ、不十分である。
Other conventional automatic power factor control devices , as shown in FIG . There is. Compared to the one shown in FIG. 1, this makes the response faster when there is a continuous increase or a continuous decrease, but it is still insufficient.

即ち、無効電力が連続増加(連続減少)する場
合に、コンデンサC1〜C3の投入(しや断)が連
続して行われるが、その時の調整ラインは、投入
(しや断)が連続しない時の調整ラインと同一で
あるので、投入(しや断)が連続する時の応答性
は投入(しや断)が連続しない時の応答性と同じ
である。投入(しや断)が連続しない時の応答性
は、短周期成分の負荷変動を考慮してあまり速く
できないので、結局、投入(しや断)が連続する
時の応答性もあまり速くならず、無効電力を小さ
くするためには不十分である。
In other words, when the reactive power increases (continuously decreases), capacitors C 1 to C 3 are successively turned on (shrinked), but the adjustment line at that time is continuously turned on (shrinked). Since the adjustment line is the same as the one when there is no flow, the responsiveness when the inputs (shrinking) are continuous is the same as the responsiveness when the loading (shrinking) is not consecutive. Responsiveness when the inputs (or interruptions) are not continuous cannot be very fast considering short-period component load fluctuations, so in the end, the response when the inputs (or interruptions) are continuous is not very fast either. , is insufficient to reduce reactive power.

本発明の目的は、上述した問題点を解決し、無
効電力が連続して増加、或は減少する場合に、迅
速に応答することができ、短周期成分の負荷変動
に対しては応答しない自動力率制御装置を提供す
ることである。
The purpose of the present invention is to solve the above-mentioned problems, and to provide an automatic system that can quickly respond when reactive power continuously increases or decreases, and does not respond to short-period component load fluctuations. An object of the present invention is to provide a power factor control device.

この目的を達成するために、本発明は、前回制
御の投入、しや断の別によつて異なる適正範囲を
選択する適正範囲選択手段を設け、前回投入によ
り選択される投入時適正範囲の進み側調整ライン
を、進み力率が所定値となるラインに定め、前回
しや断により選択されるしや断時適正範囲の進み
側調整ラインを、投入時適正範囲の進み側調整ラ
インより大きい進み力率となるラインに定め、投
入時及びしや断時適正範囲の遅れ側調整ライン
を、それぞれの進み側調整ラインから所定無効電
力、遅れ側に離れたラインに定めたことを特徴と
する。
In order to achieve this object, the present invention provides an appropriate range selection means that selects a different appropriate range depending on whether the previous control was turned on or off. The adjustment line is set to a line where the advance power factor becomes a predetermined value, and the advance side adjustment line in the appropriate range of power failure selected by the previous shear failure is set to a line where the advance power factor is greater than the advance side adjustment line in the appropriate range at the time of turning on. It is characterized in that the delay side adjustment line for the proper range for turning on and the shrinking time is set at a line that is a predetermined reactive power distance from each advance side adjustment line on the lag side.

以下、本発明を図示の実施例に基づいて詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第3図は、自動力率制御装置の一般的な設置例
を示す回路図である。配電線1に取引用計器用変
圧変流器2が接続され、更に断路器3及び主しや
断器4を経て管理用計器用変圧変流器5が接続さ
れる。負荷(図示せず)は分岐用しや断器6〜8
及び変圧器9〜11を経て接続される。力率改善
用のコンデンサC1〜C3は、開閉器12〜14及
び直列リアクトル15〜17を経て接続される。
コンデンサC1〜C3に並列に放電用抵抗18〜2
0が接続される。自動力率制御装置21の入力側
は管理用計器用変圧変流器5に接続され、その出
力側は制御器22に接続される。制御器22は開
閉器12〜14を開閉駆動するもので、自動力率
制御装置21の出力手段が直接、開閉器12〜1
4を制御できる場合には必要ない。
FIG. 3 is a circuit diagram showing a typical installation example of an automatic power factor control device. A transaction meter current transformer 2 is connected to the distribution line 1, and further connected to a management meter transformer 5 via a disconnector 3 and a main disconnector 4. The load (not shown) is the branch breaker 6 to 8.
and are connected via transformers 9-11. Capacitors C 1 to C 3 for power factor improvement are connected via switches 12 to 14 and series reactors 15 to 17.
Discharge resistor 18-2 in parallel with capacitor C1 - C3
0 is connected. The input side of the automatic power factor control device 21 is connected to the voltage transformer 5 for management instruments, and the output side thereof is connected to the controller 22. The controller 22 drives the switches 12 to 14 to open and close, and the output means of the automatic power factor control device 21 directly controls the switches 12 to 1.
It is not necessary if 4 can be controlled.

第4図は、本発明の一実施例である自動力率制
御装置23のフロントパネル24を示す。25〜
28は、無効電力が遅れ側、しや断時適正範囲、
投入時適正範囲、進み側、にそれぞれある時に点
灯し、また、試験モード時には自動制御の正常動
作を点滅により表示する制御状態用表示灯、29
は自動モード、手動モード、試験モードのいずれ
かに設定するモード設定スイツチ、30〜32は
コンデンサC1〜C3別に設けられ、投入時に点灯
する表示灯、33〜35はコンデンサC1〜C3
投入、しや断する手動スイツチ、36〜38はコ
ンデンサC1〜C3の容量(単位VA)を設定するコ
ンデンサ容量設定器である。
FIG. 4 shows a front panel 24 of an automatic power factor control device 23, which is an embodiment of the present invention. 25~
28 indicates that the reactive power is on the lagging side, the appropriate range at the time of sagging,
A control status indicator light that lights up when the input is in the proper range and on the advance side, and also blinks to indicate the normal operation of automatic control in the test mode, 29
is a mode setting switch to set to automatic mode, manual mode, or test mode; 30 to 32 are indicator lights that are provided separately for capacitors C 1 to C 3 and light up when they are turned on; 33 to 35 are capacitors C 1 to C 3 36 to 38 are capacitor capacity setting devices for setting the capacitance (unit: VA) of the capacitors C 1 to C 3 .

自動力率制御装置23は、第5図に示されるよ
うに、中央演算処理装置39により主要部が構成
される。中央演算処理装置39の構成は、その機
能ブロツクa〜gにより等価的に表される。自動
力率制御装置23は、計器用変圧器40及び交流
器41を内蔵し、これらは管理用計器用変圧変流
器5に接続される。センサ42は、計器用変圧器
40から入力する負荷電圧を表す電圧信号と、変
流器41から入力する負荷電流を表す電流信号と
によつて、ゼロクロスポイント及び電流値を検出
するものである。出力リレー43はコンデンサ
C1〜C3毎に設けられたものである。
As shown in FIG. 5, the main part of the automatic power factor control device 23 is composed of a central processing unit 39. The configuration of the central processing unit 39 is equivalently represented by its functional blocks a to g. The automatic power factor control device 23 incorporates a voltage transformer 40 and an alternator 41, which are connected to a management voltage transformer 5. The sensor 42 detects the zero-crossing point and the current value based on a voltage signal representing the load voltage inputted from the instrument transformer 40 and a current signal representing the load current inputted from the current transformer 41. Output relay 43 is a capacitor
It is provided for each of C 1 to C 3 .

まず、設置された後、はじめて電源スイツチ
(図示せず)が入ると、センサ42によるゼロク
ロスポイント検出からその地域の電源周波数が
50HZであるか、60HZであるかがブロツクaにお
いて判定され、それに同期して自動制御処理が進
行するようにセツトされる。同時にセンサ42が
正常であるかどうかがチエツクされる。ブロツク
bでは、電源周波数がクロツクパルスとして使わ
れることにより計時が行われる。
First, when the power switch (not shown) is turned on for the first time after installation, the sensor 42 detects the zero cross point and the power frequency in the area is determined.
It is determined in block a whether it is 50HZ or 60HZ, and the automatic control process is set to proceed in synchronization with this. At the same time, it is checked whether the sensor 42 is normal. In block b, timekeeping is performed by using the power supply frequency as a clock pulse.

モード設定スイツチ29により自動モードに設
定された場合の動作を説明すると、第5図のブロ
ツクcにおいて自動制御処理の実行が指令され
る。自動制御処理は第6図のフローチヤートのよ
うに行われる。センサ42より例えば1秒毎に電
流値が出力され、中央演算処理装置39において
その電流値の数10秒にわたる平均値(実効値)が
算出される。位相差は、センサ42より電源周波
の1サイクル毎に出力されるゼロクロスポイント
に基づいて中央演算処理装置39において検出さ
れ、同様に数10秒にわたる平均値が算出される。
これらは第5図のブロツクdに相当する。負荷電
圧は変動しないものとして定数に扱われ、電流値
と位相差とから、無効電力が算出される。この算
出は電源周波の数サイクルで済み、第5図のブロ
ツクeに相当する。
The operation when the automatic mode is set by the mode setting switch 29 will be explained. In block c of FIG. 5, execution of automatic control processing is instructed. The automatic control process is performed as shown in the flowchart of FIG. The sensor 42 outputs a current value every second, for example, and the central processing unit 39 calculates the average value (effective value) of the current value over several tens of seconds. The phase difference is detected by the central processing unit 39 based on the zero cross point output from the sensor 42 for each cycle of the power supply frequency, and the average value over several tens of seconds is similarly calculated.
These correspond to block d in FIG. The load voltage is treated as a constant that does not vary, and the reactive power is calculated from the current value and the phase difference. This calculation requires only a few cycles of the power supply frequency and corresponds to block e in FIG.

ブロツクfでは、前回のコンデンサ制御が投入
であれば、投入時適正範囲を選択し、しや断であ
れば、しや断時適正範囲を選択する。これらの適
正範囲を第7図に示す。投入時適正範囲の進み側
調整ラインLaは、進み力率が所定値となるライ
ンに定められる。同じく遅れ側調整ラインLbは、
進み側調整ラインLaを遅れ側に所定無効電力の
調整幅Wだけ並行移動したものに定められる。但
し、無効電力零と交わる点Xからは無効電力零の
ラインが遅れ側調整ラインとなる。これにより投
入時適正範囲は調整ラインLa、Lbの間の領域と
なる。調整幅Wは、各コンデンサ容量の150%程
度に定められるのが好ましい。したがつて、コン
デンサC1〜C3の容量が異なる場合には、調整幅
Wはコンデンサ毎に異なるものとなる。
In block f, if the previous capacitor control was ON, the appropriate range at the time of ON is selected, and if it was OFF, the appropriate range at the time of OFF is selected. These appropriate ranges are shown in FIG. The advance side adjustment line La in the appropriate range at the time of turning on is determined to be a line where the advance power factor becomes a predetermined value. Similarly, the lagging side adjustment line Lb is
It is determined by moving the leading side adjustment line La in parallel to the lag side by a predetermined reactive power adjustment width W. However, from the point X where it intersects with zero reactive power, the line of zero reactive power becomes the delay side adjustment line. As a result, the appropriate range at the time of injection is the area between the adjustment lines La and Lb. It is preferable that the adjustment width W is set to about 150% of each capacitor capacity. Therefore, when the capacitances of the capacitors C 1 to C 3 are different, the adjustment width W will be different for each capacitor.

しや断時適正範囲の進み側調整ラインLcは、
進み側調整ラインLaより大きい進み力率となる
ラインに定められる。同じく遅れ側調整ライン
Ldは、進み側調整ラインLcを遅れ側に調整幅W
だけ並行移動したものに定められる。これにより
しや断時適正範囲は調整ラインLc、Ldの間の領
域となる。
The advance side adjustment line Lc of the appropriate range for heat interruption is:
It is determined to be a line with a leading power factor greater than the leading side adjustment line La. Similarly, the lagging side adjustment line
Ld is the adjustment width W from the leading side adjustment line Lc to the delayed side.
It is determined that the object is moved in parallel. As a result, the appropriate range for shrunken time becomes the area between the adjustment lines Lc and Ld.

ブロツクeで算出された無効電力が、選択され
た適正範囲に入つていれば、コンデンサの投入、
しや断は不必要と判断され、出力リレー43の励
磁、非励磁の状態はそのまま保持される。無効電
力が適正範囲から外れていれば、コンデンサの投
入又はしや断が必要と判断され、投入又はしや断
されるべき順序にあるコンデンサC1〜C3に対応
した出力リレーが励磁され、又は非励磁にされ
る。この段階は第5図のブロツクgに相当し、例
えば、電源周波の10数サイクルで終了する。その
結果、無効電力が適正範囲内に入れば、制御状態
用表示灯26又は27が点灯する。
If the reactive power calculated in block e is within the selected appropriate range, the capacitor is turned on.
It is determined that the disconnection is unnecessary, and the energized and de-energized states of the output relay 43 are maintained as they are. If the reactive power is out of the appropriate range, it is determined that it is necessary to turn on or turn off the capacitors, and the output relays corresponding to the capacitors C 1 to C 3 in the order of turning on or turning off are energized. or de-energized. This stage corresponds to block g in FIG. 5, and is completed in, for example, ten or more cycles of the power supply frequency. As a result, if the reactive power falls within the appropriate range, the control status indicator light 26 or 27 lights up.

負荷が連続して増加していく場合には、第7図
に示されるように、コンデンサC1がまず投入さ
れると、それにより投入時適正範囲が選択され
る。したがつて、以後、遅れ無効電力が遅れ側調
整ラインLbに達する毎に、コンデンサC2,C3
順次投入される。その後、負荷が連続して減少し
ていく場合には、進み無効電力が進み調整ライン
Laに達すると、コンデンサC3がしや断され、そ
れによりしや断時適正範囲が選択される。以後、
進み無効電力が進み調整ラインLcに達する毎に、
コンデンサC2、C1が順次しや断される。このよ
うに、無効電力が連続して増加、或は減少する場
合には、進み側調整ラインはLc、遅れ側調整ラ
インがLb、となるので、見掛け上、適正範囲の
調整幅がWより狭いものとなり、応答が迅速にな
る。また、投入、しや断が連続しない場合には、
適正範囲の調整幅Wが確保されるので、短周期成
分の負荷変動には応答しない。
When the load increases continuously, as shown in FIG. 7, capacitor C1 is first turned on, thereby selecting the appropriate range at the time of turning on. Therefore, from now on, every time the delayed reactive power reaches the delayed adjustment line Lb, the capacitors C 2 and C 3 are sequentially turned on. After that, if the load decreases continuously, the reactive power will increase and the adjustment line will increase.
When La is reached, capacitor C 3 is turned off, thereby selecting the appropriate range for the cut-off period. From then on,
Each time the advancing reactive power advances and reaches the adjustment line Lc,
Capacitors C 2 and C 1 are cut off in sequence. In this way, when the reactive power increases or decreases continuously, the leading side adjustment line is Lc and the lagging side adjustment line is Lb, so the adjustment width of the appropriate range is apparently narrower than W. and the response will be quick. In addition, if the loading and unshrinking are not continuous,
Since the adjustment width W within the appropriate range is ensured, it does not respond to load fluctuations of short-period components.

本実施例によれば、負荷が重くなる時間帯に
は、遅れ無効電力が発生しないので、電力料金を
低減することができ、負荷が軽くなる時間帯に
は、進み無効電力が殆ど発生しないので、受電電
圧の上昇などを防ぐことができる。
According to this embodiment, during times when the load is heavy, no lagging reactive power is generated, so power charges can be reduced, and during times when the load is light, almost no leading reactive power is generated. , it is possible to prevent an increase in the receiving voltage.

図示実施例においては、電流値、位相差、無効
電力を算出するようにしているが、これに限定さ
れるものではなく、別設の無流電力計や電流計か
ら情報をもらうようにしてもよい。
In the illustrated embodiment, the current value, phase difference, and reactive power are calculated, but the invention is not limited to this. Information may also be obtained from a separate no-current wattmeter or ammeter. good.

以上説明したように、本発明によれば、前回制
御の投入、しや断の別によつて異なる適正範囲を
選択する適正範囲選択手段を設け、前回投入によ
り選択される投入時適正範囲の進み側調整ライン
Laを、進み力率が所定値となるラインに定め、
前回しや断により選択されるしや断時適正範囲の
進み側調整ラインLcを、投入時適正範囲の進み
側調整ラインLaより大きい進み力率となるライ
ンに定め、投入時及びしや断時適正範囲の遅れ側
調整ラインLb,Ldを、それぞれの進み側調整ラ
インLa,Lcから所定無効電力W、遅れ側に離れ
たラインに定めたから、無効電力が連続して増
加、或は減少する場合に、迅速に応答することが
でき、短周期成分の負荷変動に対しては応答しな
いようにすることができる。
As explained above, according to the present invention, an appropriate range selection means is provided for selecting a different appropriate range depending on whether the previous control was turned on or off, and the advanced side of the appropriate range at the time of turning selected depending on the previous turning on is provided. adjustment line
Set La to the line where the leading power factor is a predetermined value,
The advance side adjustment line Lc of the appropriate range for shear failure, selected by the previous shear failure, is set to a line that has a lead power factor larger than the advance adjustment line La of the appropriate range at the time of closing, and Since the lagging side adjustment lines Lb and Ld in the appropriate range are set to lines that are separated from the respective leading side adjustment lines La and Lc by a predetermined reactive power W on the lagging side, when the reactive power increases or decreases continuously. It is possible to respond quickly to load fluctuations with short period components, and it is possible to avoid responding to load fluctuations with short period components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の自動力率制御方式を
説明する図、第3図は自動力率制御装置の一般的
な設置例を示す回路図、第4図は本発明の一実施
例のフロントパネルを示す正面図、第5図は同じ
くブロツク図、第6図は同じくフローチヤート、
第7図は本発明の一実施例に係る適正範囲を示す
図である。 12〜14……開閉器、23……自動力率制御
装置、39……中央演算処理装置、43……出力
リレー、C1〜C3……コンデンサ、a〜g……機
能ブロツク、La……投入時適正範囲の進み側調
整ライン、Lb……投入時適正範囲の遅れ側調整
ライン、Lc……しや断時適正範囲の進み側調整
ライン、Ld……しや断時適正範囲の遅れ側調整
ライン、W……調整幅。
Figures 1 and 2 are diagrams explaining a conventional automatic power factor control system, Figure 3 is a circuit diagram showing a typical installation example of an automatic power factor control device, and Figure 4 is an embodiment of the present invention. 5 is a block diagram, and FIG. 6 is a flowchart.
FIG. 7 is a diagram showing an appropriate range according to an embodiment of the present invention. 12-14...Switch, 23...Automatic power factor control device, 39...Central processing unit, 43...Output relay, C1 - C3 ...Capacitor, a-g...Function block, La... ...Adjustment line on the advance side of the appropriate range at the time of injection, Lb...Adjustment line on the lag side of the appropriate range at the time of injection, Lc...Adjustment line on the advance side of the appropriate range at the time of frost failure, Ld...Delay of the appropriate range at the time of frost failure Side adjustment line, W...Adjustment width.

Claims (1)

【特許請求の範囲】[Claims] 1 無効電力が適正範囲から外れた時に、コンデ
ンサの投入、しや断を判断し、指令する制御手段
を備えた自動力率制御装置において、前回制御の
投入、しや断の別によつて異なる適正範囲を選択
する適正範囲選択手段を設け、前回投入により選
択される投入時適正範囲の進み側調整ラインLa
を、進み力率が所定値となるラインに定め、前回
しや断により選択されるしや断時適正範囲の進み
側調整ラインLcを、投入時適正範囲の進み側調
整ラインLaより大きい進み力率となるラインに
定め、投入時及びしや断時適正範囲の遅れ側調整
ラインLb,Ldを、それぞれの進み側調整ライン
La,Lcから所定無効電力W、遅れ側に離れたラ
インに定めたことを特徴とする自動力率制御装
置。
1. In an automatic power factor control device equipped with a control means that determines whether to turn on or turn off a capacitor and issues a command when the reactive power is out of the appropriate range, the power factor control device is equipped with a control means that determines whether to turn on or turn off a capacitor when the reactive power is out of the appropriate range. Proper range selection means is provided to select the range, and the advancing side adjustment line La of the appropriate range at the time of input selected by the previous input is provided.
is set to a line where the advance power factor becomes a predetermined value, and the advance side adjustment line Lc in the appropriate range for shear failure selected by the previous shear failure is set to a line where the advance power factor is larger than the advance side adjustment line La in the appropriate range at the time of turning on. The lagging side adjustment lines Lb and Ld of the appropriate range at the time of input and during the cooling time are set as the lines that will become the rate, and the respective advancing side adjustment lines
An automatic power factor control device characterized in that a predetermined reactive power W is set on a line separated from La and Lc on the lag side.
JP57158193A 1982-09-13 1982-09-13 Automatic power factor controller Granted JPS5947934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158193A JPS5947934A (en) 1982-09-13 1982-09-13 Automatic power factor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158193A JPS5947934A (en) 1982-09-13 1982-09-13 Automatic power factor controller

Publications (2)

Publication Number Publication Date
JPS5947934A JPS5947934A (en) 1984-03-17
JPH0256686B2 true JPH0256686B2 (en) 1990-11-30

Family

ID=15666298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158193A Granted JPS5947934A (en) 1982-09-13 1982-09-13 Automatic power factor controller

Country Status (1)

Country Link
JP (1) JPS5947934A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214425A (en) * 1989-02-13 1990-08-27 Suzuki Motor Co Ltd Charge controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166437A (en) * 1979-06-13 1980-12-25 Matsushita Electric Ind Co Ltd Automatic power factor control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166437A (en) * 1979-06-13 1980-12-25 Matsushita Electric Ind Co Ltd Automatic power factor control device

Also Published As

Publication number Publication date
JPS5947934A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
US5450309A (en) Method and device for switching inverters in parallel
US4413189A (en) Demand reduction system for regulated electric utility distribution circuits
US20040172204A1 (en) Automatic transfer switch system with synchronization control
US6121758A (en) Adaptive synchronous capacitor switch controller
JP2009033967A (en) Power system protective device
US4540931A (en) Variable transformer and voltage control system
US5838077A (en) Control system for switching loads on zero crossing
US4956583A (en) Control system for electrical lighting
US4494010A (en) Programmable power control apparatus responsive to load variations
JPH0256686B2 (en)
CA2280385C (en) Control arrangement and method for high-speed source-transfer switching system
EP0760177B1 (en) Recovery of transmitted power in an installation for transmission of high-voltage direct current
JP3316771B2 (en) Power system voltage control method and device
JPH0261049B2 (en)
JPS5947932A (en) Automatic power factor controller
CN105322854A (en) Automatic regulation system and method for elevator transformer voltage
JPH0256685B2 (en)
EP1597944B1 (en) Apparatus for power control in lighting systems
US2252452A (en) Control system
JPH0259484B2 (en)
US2591605A (en) Electric power supply system
JPS63314136A (en) Purchasing energy controller
JPH0199444A (en) Power source distributor
US1977384A (en) Automatic synchronizer
US2546181A (en) Electrical circuit