JPH02230210A - Single objective stereoscopic microscope - Google Patents

Single objective stereoscopic microscope

Info

Publication number
JPH02230210A
JPH02230210A JP5149189A JP5149189A JPH02230210A JP H02230210 A JPH02230210 A JP H02230210A JP 5149189 A JP5149189 A JP 5149189A JP 5149189 A JP5149189 A JP 5149189A JP H02230210 A JPH02230210 A JP H02230210A
Authority
JP
Japan
Prior art keywords
polarizing plates
polarizing
optical path
polarizing plate
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5149189A
Other languages
Japanese (ja)
Inventor
Kazuhiko Cho
和彦 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5149189A priority Critical patent/JPH02230210A/en
Publication of JPH02230210A publication Critical patent/JPH02230210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To obtain a bright image where stereoscopic effect is properly obtained even in the cases of high and low magnifications by arranging a 1st and a 2nd polarizing plates which have mutually orthogonal vibrating directions at the pupil of an objective or in the vicinity of its conjugate position so that they move forth/back in mutually opposite directions at perpendicular to the optical axis. CONSTITUTION:Light passes through a contact lens 2 and the 1st and 2nd polarizing plates 9 and 10 in the entrance pupil 11 and is converged on a sample surface 4 by a condenser lens 3. The transmitted light is split by a beam splitter 6 into a right and a left beam. Their images are observed with the right and left eyes through 3rd and 4th polarizing plates 12 and 13, a right-angled prism 7, and an ocular 8. When the magnification is low, the polarizing plates 9 and 11 are advanced into the optical path from left and right to put the centers of gravity of visual fields viewed with the left and right eyes away from each other and emphasize the stereoscopic effect, and the presence ratio of the polarizing plates 9 and 10 is increased to make the quantity of dimming large. When the magnification is high, the polarizing plates 9 and 10 are moved away from the optical path to the left and right to suppress the stereoscopic effect and the presence ratio of the polarizing plates 9 and 10 is decreased to make the quantity of dimming small. Consequently, the bright image where stereoscopic effect is properly obtained even in the cases of the high and low magnifications is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、偏光を利用して立体像を観察する単対物立体
視顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a single-objective stereoscopic microscope for observing stereoscopic images using polarized light.

〔従来の技術〕[Conventional technology]

この種従来の単対物立体視顕微鏡として、例えば実公昭
47−18686号公報に記載の如《、コンデンサーレ
ンズの開口絞りの位置或いは対物レンズの射出瞳の位置
に、偏光方向が互いに直角な左右の部分から成る分割偏
光板を配置すると共に、双眼の接眼部の各々の光路中に
、各偏光方向が上記分割偏光板の左右の部分の偏光方向
と夫々一致又は直交する偏光板を夫々配置し、左右の光
路に互いに直角に振動方向を有する偏光を導入して左右
の独立した情報を得ることにより立体感を得るようにし
たものがある。
As described in Japanese Utility Model Publication No. 47-18686, this type of conventional single-objective stereoscopic microscope has a configuration in which the left and right polarization directions are at right angles to each other at the position of the aperture stop of the condenser lens or the position of the exit pupil of the objective lens. A divided polarizing plate consisting of a segment is arranged, and a polarizing plate whose polarization direction coincides with or perpendicular to the polarization direction of the left and right parts of the split polarizing plate is arranged in each optical path of the eyepiece of the binoculars. There is a system in which a three-dimensional effect is obtained by introducing polarized light having vibration directions perpendicular to each other into the left and right optical paths to obtain independent left and right information.

しかし、このような単対物立体視顕微鏡は、各々一方の
振動方向の偏光しが使用できないために光量が半減し、
加えて偏光板そのものの透過率が良くないので、光量不
足で像が暗くなってしまうという問題があった。
However, in such a single-objective stereoscopic microscope, the amount of light is halved because polarization in one vibration direction cannot be used.
In addition, since the transmittance of the polarizing plate itself is not good, there is a problem that the image becomes dark due to insufficient amount of light.

又、一般に縦倍率は横倍率の二乗で効くため、高倍にな
る程立体感が強調されすぎて非現実的な像になってしま
うという問題があった。
Furthermore, since the vertical magnification is generally effective as the square of the horizontal magnification, there is a problem in that the higher the magnification, the more the three-dimensional effect is emphasized, resulting in an unrealistic image.

そこで、このような問題を解決して単対物立体視顕微鏡
として、例えば特開昭6 2−2 0 8 0 19号
公報に記載の如く、対物レンズの瞳又は該瞳と共役な位
置に、光軸を含む平面で区切った一方の側が第1直線偏
光成分のみを通す領域とそれ以外の偏光成分も通す領域
から成り且つ他方の側が第1直線偏光成分と直交する偏
光方向の第2直線偏光成分のみを通す領域とそれ以外の
偏光成分も通す領域から成る分割偏光板を配置し、双眼
接眼鏡簡の一方の光学系に第1直線偏光成分のみを通す
偏光板を他方の光学系に第2直線偏光成分のみを通す偏
光板を夫々配置したことにより、分割偏光板の一部を所
定の直線偏光成分以外の光が透過し得るようにして透過
光量を増すと共に立体感を適度に減じて現実的なものに
するようにしたものや、特開昭63−113414号公
報に記載の如く、対物レンズの瞳又は該瞳と共役な位置
に、光軸を含む平面で区切った一方の側が第1直線偏光
成分のみを通す領域から成り且つ他方の側が第1直線偏
光成分と直交する偏光方向の第2直線偏光成分のみを通
す領域から成る分割偏光板を配置し、双眼接眼鏡筒の一
方の光学系に光軸のまわりに回動自在な区波長板と第1
直線偏光成分のみを通す偏光板を他方の光学系に光軸の
まわりに回動自在なX波長板と第2直線偏光成分のみを
通す偏光板を夫々配置したことにより、ス波長板を適当
な角度回動せしめて直線偏光を円偏光に変えて振動方向
をくずし、左右の光路の独立性を若干失わせて立体感を
減じるようにしたものが提案されている。
Therefore, to solve this problem, a single-objective stereoscopic microscope was developed, for example, as described in Japanese Patent Application Laid-Open No. 62-208019. a second linearly polarized light component whose polarization direction is orthogonal to the first linearly polarized light component, one side of which is separated by a plane containing the axis, consisting of a region that passes only the first linearly polarized light component and a region that also passes other polarized light components; A split polarizing plate consisting of a region where only the polarized light passes through and a region where the other polarized light components also pass is arranged, and a polarizing plate that passes only the first linearly polarized light component is placed in one optical system of the binocular eyepiece, and a second polarizing plate is placed in the other optical system. By arranging polarizing plates that pass only the linearly polarized light component, a portion of the split polarizing plate allows light other than the predetermined linearly polarized light component to pass through, increasing the amount of transmitted light and moderately reducing the three-dimensional effect. In some cases, as described in Japanese Patent Application Laid-open No. 63-113414, one side separated by a plane containing the optical axis is located at the pupil of the objective lens or at a position conjugate to the pupil. A split polarizing plate is arranged, which consists of a region that passes only a linearly polarized light component, and a region on the other side that passes only a second linearly polarized light component whose polarization direction is perpendicular to the first linearly polarized light component, The system includes a section wave plate that can be rotated around the optical axis and a first wave plate.
By placing a polarizing plate that passes only the linearly polarized light component in the other optical system, and an X wavelength plate that can freely rotate around the optical axis and a polarizing plate that passes only the second linearly polarized light component, it is possible to A device has been proposed in which the direction of vibration is changed by rotating the angle to change the linearly polarized light to circularly polarized light, thereby slightly losing the independence of the left and right optical paths, thereby reducing the three-dimensional effect.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、このような単対物立体視顕微鏡では、高倍で
立体感が強調されすぎることが解決できる反面、低倍で
立体感が不足するという問題があった。又、基本的に常
時光路中にある偏光板の状態が変化しないので、高倍で
像が暗くなってしまうという問題があった。
However, such a single-objective stereoscopic microscope solves the problem of over-emphasizing the stereoscopic effect at high magnifications, but has the problem of insufficient stereoscopic effect at low magnifications. Furthermore, since the state of the polarizing plate that is always in the optical path basically does not change, there is a problem that the image becomes dark at high magnification.

本発明は、上記問題点に鑑み、低倍でも高倍でも適度の
立体感の明るい像が得られるようにした単対物立体視顕
微鏡を提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a single-objective stereoscopic microscope capable of obtaining bright images with appropriate stereoscopic effect at both low and high magnifications.

〔課題を解決するための手段及び作用〕本発明による単
対物立体視顕微鏡の一つは、対物レンズの瞳又は該瞳と
共役な位置若し《はその近傍に、互いに直角な振動方向
を持つ第1及び第2偏光板を光軸と垂直で互いに反対の
方向に進退可能に配置し、前記第1及び第2偏光板の後
方に光路を二分割して左右の接眼鏡簡に導く光路分割部
材を配置し、前記左右の接眼鏡簡の一方の光路中に前記
第1偏光板と直交二コルになる第3偏光板を、他方の光
路中に前記第2偏光板と直交二コルになる第4偏光板を
夫々配置したことにより、低倍時には光路中に左右から
偏光板を進入せしめて左右の眼に入る視野の重心を遠ざ
けて立体感を強調し且つ偏光板の存在する割合を大にし
て減光量を大にし、高倍時には光路中から左右に偏光板
を後退せしめて左右の眼に入る視野の重心を近づけて立
体感を抑制し且つ偏光板の存在する割合を小にして減光
量を小にするようにしたものである。
[Means and effects for solving the problems] One of the single-objective stereoscopic microscopes according to the present invention has vibration directions perpendicular to each other at the pupil of the objective lens, at a position conjugate to the pupil, or in the vicinity thereof. First and second polarizing plates are arranged perpendicular to the optical axis and movable in opposite directions, and the optical path is divided into two behind the first and second polarizing plates to easily guide the left and right eyepieces. a third polarizing plate that is orthogonal to the first polarizing plate in the optical path of one of the left and right eyepieces, and a third polarizing plate that is orthogonal to the second polarizing plate in the other optical path; By arranging the fourth polarizing plate, the polarizing plates enter the optical path from the left and right when the magnification is low, moving the center of gravity of the visual field that enters the left and right eyes away, emphasizing the three-dimensional effect, and increasing the proportion of the polarizing plate. At high magnification, the polarizing plate is moved back from the optical path to the left and right to bring the center of gravity of the field of view that enters the left and right eyes closer to suppress the stereoscopic effect, and the proportion of the polarizing plate is reduced to reduce the amount of light attenuation. It is designed to make it smaller.

又、本発明による単対物立体視顕微鏡の他の一つは、上
記顕微鏡において光路分割部材を振動方向が第1及び第
2偏光板と一致する偏光ビームスプリッタにしたことに
より、上記顕微鏡と同じ作用を得つつも、第3及び第4
偏光板を省略し得る、更に明るい像が得られるようにし
たものである。
Another single objective stereoscopic microscope according to the present invention has the same effect as the above microscope by using a polarizing beam splitter whose vibration direction coincides with the first and second polarizing plates as the optical path splitting member in the above microscope. 3rd and 4th
This allows a brighter image to be obtained without the need for a polarizing plate.

〔実施例〕〔Example〕

以下、図示した各実施例に基づき本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on the illustrated embodiments.

第1図は第1実施例として透過型顕微鏡の光学系を示し
ており、1は光源ランプ、2はコレクタレンズ、3はコ
ンデンサレンズ、4は標本面、5は対物レンズ、6は光
路を二分割するビームスプリッタ、7,7は左右の直角
プリズム、8,8は左右の接眼レンズである。9,lO
は対物レンズ5の瞳と共役な位置であるコンデンサーレ
ンズ3の入射瞳(明るさ絞り)11に光軸Oと垂直で互
いに反対の方向に進退可能に配置された第1及び第2偏
光板であって、これらは第2図に示した如く互いに直角
な振動方向A及びBを夫々有する偏光部9a及び10a
と該偏光部9a及び10aと同じ光路長の透明部9b及
び10bとから成っている。l2及びl3は左右の接眼
鏡筒の光路中例えばビームスブリッタ6と左右の直角プ
リズム7,7との間に夫々配置された第3及び第4偏光
板であって、これらの一方は第1偏光板9の偏光部9a
と他方は第2偏光板10の偏光部10aと夫々直交二コ
ルになっている。尚、第1及び第2偏光板9及び10は
連動して動くことが望ましい。
FIG. 1 shows the optical system of a transmission microscope as a first embodiment, in which 1 is a light source lamp, 2 is a collector lens, 3 is a condenser lens, 4 is a specimen surface, 5 is an objective lens, and 6 is an optical path. The beam splitter 7, 7 is a left and right right angle prism, and 8, 8 is a left and right eyepiece. 9, lO
are first and second polarizing plates arranged in the entrance pupil (aperture stop) 11 of the condenser lens 3, which is a position conjugate with the pupil of the objective lens 5, perpendicular to the optical axis O and movable in opposite directions. As shown in FIG. 2, these are polarizing parts 9a and 10a having vibration directions A and B perpendicular to each other, respectively.
and transparent parts 9b and 10b having the same optical path length as the polarizing parts 9a and 10a. 12 and 13 are third and fourth polarizing plates arranged in the optical path of the left and right eyepiece tubes, for example, between the beam splitter 6 and the left and right right angle prisms 7, 7, and one of them is used for polarizing the first polarized light. Polarizing section 9a of plate 9
and the other are perpendicular Nicols to the polarizing portion 10a of the second polarizing plate 10, respectively. Note that it is desirable that the first and second polarizing plates 9 and 10 move in conjunction with each other.

本実施例は上述の如く構成されているから、光源ランプ
1から出た光はコレクタレンズ2,入射瞳11中の第1
及び第2偏光板9及び10を通りコンデンサーレンズ3
により標本面4に集光せしめられて標本を照明し、それ
を透過した光は対物レンズ5を通りビームスプリッタ6
により左右に分割され、第3偏光板12,直角プリズム
7,接眼レンズ8を介して左の眼で第4偏光板13,直
角プリズム7,接眼レンズ8を介して右の眼で夫々観察
される。
Since this embodiment is configured as described above, the light emitted from the light source lamp 1 is transmitted to the collector lens 2 and the first lens in the entrance pupil 11.
and the condenser lens 3 through the second polarizing plates 9 and 10.
The light is focused on the specimen surface 4 and illuminates the specimen, and the transmitted light passes through the objective lens 5 and is sent to the beam splitter 6.
The image is divided into left and right parts, and is observed with the left eye through the third polarizing plate 12, right-angle prism 7, and eyepiece 8, and with the right eye through the fourth polarizing plate 13, right-angle prism 7, and eyepiece 8. .

そして、第3図(a)に示した如く、第1及び第2偏光
板9及びIOの偏光部9a及び10aが入射瞳ll中に
存在せず透明部9b及びlObだけが存在する場合、左
右の眼は共に入射瞳l1全体の像を観察することになる
即ち左右の眼に入る視野の重心が一致するので、立体感
は生じない。又、この時観察される像は最も明るい。
As shown in FIG. 3(a), when the polarizing parts 9a and 10a of the first and second polarizing plates 9 and IO do not exist in the entrance pupil ll and only the transparent parts 9b and 1Ob exist, the left and right Both eyes observe the entire image of the entrance pupil l1, that is, the centers of gravity of the fields of view entering the left and right eyes coincide, so no stereoscopic effect occurs. Also, the image observed at this time is the brightest.

次に、第3図(b)に示した如く、偏光部9a及び10
aを中央部に透明部分l4を残す状態で入射瞳ti中に
進入させた場合、入射瞳11の偏光部9a又は偏光部1
0aと重ならない部分即ち第3偏光板l2又は第4偏光
板l3によって遮光されない部分は夫々右のD字形部分
と左の逆D字形部分となり、左右の眼に入る視野の重心
が若干離れるので、左右の眼が視差を持って像を観察す
ることになり、若干立体感のある見え方となる。又、こ
の時、入射瞳11中の偏光部98又偏光部10aの存在
する部分即ち第3偏光板12又は第4偏光板l3によっ
て遮光される部分が三日月形部分として生じるので、観
察される像は少し暗《なる。
Next, as shown in FIG. 3(b), the polarizing parts 9a and 10
When a enters the entrance pupil ti with a transparent part l4 left in the center, the polarizing part 9a of the entrance pupil 11 or the polarizing part 1
The part that does not overlap with 0a, that is, the part that is not blocked by the third polarizing plate l2 or the fourth polarizing plate l3, becomes a D-shaped part on the right and an inverted D-shaped part on the left, and the centers of gravity of the visual fields entering the left and right eyes are slightly separated, so The left and right eyes observe the image with parallax, resulting in a slightly three-dimensional appearance. Also, at this time, the part where the polarizing part 98 or the polarizing part 10a exists in the entrance pupil 11, that is, the part blocked by the third polarizing plate 12 or the fourth polarizing plate l3, is formed as a crescent-shaped part, so that the observed image It gets a little dark.

次に、第3図(C)に示した如く、偏光部9a及び10
aを夫々入射瞳11の半分を占める状態にさせた場合、
第3偏光板12又は第4偏光板l3によって遮光されな
い部分が夫々左右の半円形部分になり、左右の眼に入る
視野の重心が更に離れるので、第3図(b)の状態より
立体感が強調される。
Next, as shown in FIG. 3(C), the polarizing parts 9a and 10
When a is made to occupy half of the entrance pupil 11,
The portions that are not blocked by the third polarizing plate 12 or the fourth polarizing plate l3 become semicircular portions on the left and right, respectively, and the center of gravity of the field of view entering the left and right eyes becomes further apart, resulting in a three-dimensional effect compared to the state shown in FIG. 3(b). emphasized.

又、この時、第3偏光板12又は第4偏光板13によっ
て遮光される部分も半円形部分となるので、観察される
像は第3図(blの状態より暗くなる。
Furthermore, at this time, the portion blocked by the third polarizing plate 12 or the fourth polarizing plate 13 also becomes a semicircular portion, so the observed image becomes darker than the state shown in FIG. 3 (bl).

更に、第3図(d)に示した如く、偏光部9a及びtO
aを夫々入射瞳11の半分を越えて占める状態にさせた
場合、第3偏光板12又は第4偏光板l3によって遮光
されない部分が夫々左右の三日月形部分になり、左右の
眼に入る視野の重心が一層離れるので、第3図(Clの
状態より立体感が強調される。又、この時、第3偏光板
l2又は第4偏光板l3によって遮光される部分はD字
形部分又は逆D字形部分になるので、観察される像は第
3図(e)の状態より暗くなる。
Furthermore, as shown in FIG. 3(d), the polarizing section 9a and tO
When a is made to occupy more than half of the entrance pupil 11, the portions that are not blocked by the third polarizing plate 12 or the fourth polarizing plate l3 become left and right crescent-shaped parts, respectively, and the field of view entering the left and right eyes is Since the center of gravity is further apart, the three-dimensional effect is emphasized compared to the state of Figure 3 (Cl).In addition, at this time, the part that is blocked by the third polarizing plate l2 or the fourth polarizing plate l3 is a D-shaped part or an inverted D-shaped part. 3(e), the observed image becomes darker than the state shown in FIG. 3(e).

従って、高倍から低倍にかけて第3図(a)の状態から
(b), (Cl, (d)の状態に変化させるように
すれば、高倍では立体感が抑制された明るい像が得られ
、低倍では明る過ぎない立体感の強調された像が得られ
る。
Therefore, by changing the state shown in Figure 3 (a) to the states shown in (b) and (Cl, (d)) from high magnification to low magnification, a bright image with suppressed stereoscopic effect can be obtained at high magnification. At low magnifications, images with an enhanced three-dimensional effect that are not too bright can be obtained.

尚、第1及び第2偏光板9及び10は各々透明部9b及
びlObを有しているため、両偏光板9及びlOの重な
り量の違いによる光路長差は生じず、光路長差による不
具合は生じない。
Note that since the first and second polarizing plates 9 and 10 have transparent portions 9b and 10, respectively, there is no difference in optical path length due to the difference in the amount of overlap between both polarizing plates 9 and 10, and problems caused by the difference in optical path length do not occur. does not occur.

第4図は第2実施例としてズーム式の反射型顕微鏡の光
学系を示しており、これは対物光学系として対物ズーム
レンズ5′を用い、その瞳l5に第1偏光板9′と第2
偏光板10’とを光軸Oと垂直で互いに反対の方向に進
退可能に配置している。第1偏光板9′及び第2偏光板
10’は、第5図に示した如く中央部に互いに直角な振
動方向A及びBの偏光部9’a及び10’aを夫々有し
、それらの両側に該偏光部9’a及び10′aと同じ光
路長の透明部9’b及び10’bを夫々有している。又
、第1及び第2偏光板9′及び10’の後には対物ズー
ムレンズ5′による像を正立像にするためのダハプリズ
ム16が配置され、更にその後に光路分割部材として偏
光ビームスブリツタ6′が配置され、偏光ビームスブリ
ツタ6′の振動方向は第1及び第2偏光板と一致してい
る。
FIG. 4 shows an optical system of a zoom-type reflection microscope as a second embodiment, which uses an objective zoom lens 5' as an objective optical system, and has a first polarizing plate 9' and a second polarizing plate in its pupil l5.
A polarizing plate 10' is arranged perpendicular to the optical axis O and movable in opposite directions. As shown in FIG. 5, the first polarizing plate 9' and the second polarizing plate 10' have polarizing parts 9'a and 10'a in the vibration directions A and B perpendicular to each other in the center, respectively. Transparent parts 9'b and 10'b having the same optical path length as the polarizing parts 9'a and 10'a are provided on both sides, respectively. Further, a roof prism 16 is arranged after the first and second polarizing plates 9' and 10' to make the image formed by the objective zoom lens 5' an erect image, and further after that, a polarizing beam splitter 6' is arranged as an optical path splitting member. are arranged, and the vibration direction of the polarizing beam splitter 6' coincides with that of the first and second polarizing plates.

尚、第1及び第2偏光板9′及び10’は連動して動く
ことが望ましい。
Note that it is desirable that the first and second polarizing plates 9' and 10' move in conjunction with each other.

本実施例は上述の如く構成されているから、図示しない
照明系により照明された標本面4からの光は対物ズーム
レンズ5′,瞳15中の第1及び第2偏光板9′及び1
0′を通りダハプリズム16により正立像とされ、偏光
ビームスプリッタ6′で左右に分割され、各直角プリズ
ム7及び接眼レンズ8を介して左右の眼で夫々観察され
る。そして、基本的には第1実施例と同じ原理により、
第6図(a)の場合は立体感が無く且つ像が最も明るく
、第6図(bl, (CL (d)の順に正体で立体感
が強くなり且つ像が暗くなり、第6図(e),げ),(
勅の順に標本の高い部位がへこんだように見える偽体で
立体感が減じ且つ像が明るくなり、第6図(h)で再び
立体感が無《且つ像が最も明るくなる。偽体の観察は、
複製を見る時などに正常に見えるので非常に便利である
Since this embodiment is configured as described above, the light from the specimen surface 4 illuminated by the illumination system (not shown) is transmitted through the objective zoom lens 5', the first and second polarizing plates 9' in the pupil 15, and the
0', the beam is converted into an erect image by the roof prism 16, split into left and right by the polarizing beam splitter 6', and observed by the left and right eyes through the right-angle prisms 7 and eyepieces 8, respectively. Basically, based on the same principle as the first embodiment,
In the case of Fig. 6(a), there is no stereoscopic effect and the image is the brightest, and in the order of Fig. 6(bl, (CL) (d), the stereoscopic effect becomes stronger and the image becomes darker, and Fig. 6(e) ),Ge),(
In the order of the height, the high part of the specimen appears to be depressed, the three-dimensional effect decreases and the image becomes brighter, and in Figure 6 (h), the three-dimensional effect becomes absent again and the image becomes the brightest. Observation of fake bodies is
This is very convenient because it looks normal when viewing a copy.

尚、本実施例は偏光ビームスプリッタ6′により偏光を
分離することができるので、上記第3及び第4偏光板l
2及びl3は省略することができる。又、偏光ビームス
プリッタ6′は光量損失がほぼなく偏光を分離すること
ができるため、通常の透過率の低い偏光板を用いる場合
よりも明るい像が観察できるという利点がある。
In addition, in this embodiment, since the polarized light can be separated by the polarizing beam splitter 6', the third and fourth polarizing plates l
2 and l3 can be omitted. Furthermore, since the polarizing beam splitter 6' can separate polarized light with almost no loss of light quantity, it has the advantage that a brighter image can be observed than when using a normal polarizing plate with low transmittance.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による単対物立体視顕微鏡は、低倍
でも高倍でも適度の立体感の明るい像が得られるという
実用上重要な利点を有している。
As described above, the single-objective stereoscopic microscope according to the present invention has the practically important advantage of being able to obtain bright images with appropriate stereoscopic effect at both low and high magnifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例の光学系を示す図、第2図及び第3
図は第1実施例の第1及び第2偏光板及びその動作状態
を示す図、第4図は第2実施例の光学系を示す図、第5
図及び第6図は第2実施例の第1及び第2偏光板及びそ
の動作状態を示す図である。 1・・・・光源ランプ、2・・・・コレクタレンズ、3
・・・・コンデンサーレンズ、4・・・・標本面、5・
・・・対物レンズ、5′・・・・対物ズームレンズ、6
・・・・ビームスプリッタ、6′・・・・偏光ビームス
プリッタ、7・・・・直角プリズム、8・・・・接眼レ
ンズ、9,9′・・・・第1偏光板、10.10’・・
・・第2偏光板、11・・・・入射瞳、l2・・・・第
3偏光板、13・・・・第4偏光板、14・・・・透明
部分、15・・・・瞳、l6・・・・ダハプリズム。 =0 一7( 矛4図 ユj4
Figure 1 is a diagram showing the optical system of the first embodiment, Figures 2 and 3 are diagrams showing the optical system of the first embodiment.
The figures show the first and second polarizing plates and their operating states in the first embodiment, Figure 4 shows the optical system in the second embodiment, and Figure 5 shows the optical system in the second embodiment.
FIG. 6 is a diagram showing the first and second polarizing plates of the second embodiment and their operating states. 1... Light source lamp, 2... Collector lens, 3
...Condenser lens, 4...Specimen surface, 5.
...Objective lens, 5'...Objective zoom lens, 6
... Beam splitter, 6'... Polarizing beam splitter, 7... Right angle prism, 8... Eyepiece, 9, 9'... First polarizing plate, 10.10'・・・
...Second polarizing plate, 11...Entrance pupil, l2...Third polarizing plate, 13...Fourth polarizing plate, 14...Transparent part, 15...Pupil, l6...Dach prism. =0 17( spear 4 figure yuj4

Claims (2)

【特許請求の範囲】[Claims] (1)対物レンズの瞳又は該瞳と共役な位置若しくはそ
の近傍に、互いに直角な振動方向を持つ第1及び第2偏
光板を光軸と垂直で互いに反対の方向に進退可能に配置
し、前記第1及び第2偏光板の後方に光路を二分割して
左右の接眼鏡筒に導く光路分割部材を配置し、前記左右
の接眼鏡筒の一方の光路中に前記第1偏光板と直交ニコ
ルになる第3偏光板を、他方の光路中に前記第2偏光板
と直交ニコルになる第4偏光板を夫々配置して成る単対
物立体視顕微鏡。
(1) first and second polarizing plates having vibration directions perpendicular to each other are disposed in the pupil of the objective lens or at a position conjugate with the pupil or in the vicinity thereof so as to be movable in directions perpendicular to the optical axis and opposite to each other; An optical path dividing member is disposed behind the first and second polarizing plates to divide the optical path into two and guide the optical path to the left and right eyepiece tubes, and the optical path of one of the left and right eyepiece tubes is perpendicular to the first polarizing plate. A single-objective stereoscopic microscope comprising a third polarizing plate having a Nicol polarization and a fourth polarizing plate having a Nicol orthogonal to the second polarizing plate disposed in the other optical path.
(2)対物レンズの瞳又は該瞳と共役な位置若しくはそ
の近傍に、互いに直角な振動方向を持つ第1及び第2偏
光板を光軸と垂直で互いに反対の方向に進退可能に配置
し、前記第1及び第2偏光板の後方にこれらの偏光板と
振動方向が一致していて光路を二分割して左右の接眼鏡
筒に導く偏光ビームスプリッタを配置して成る単対物立
体視顕微鏡。
(2) first and second polarizing plates having vibration directions perpendicular to each other are disposed in the pupil of the objective lens or in a position conjugate with the pupil or in the vicinity thereof so as to be movable in directions perpendicular to the optical axis and opposite to each other; A single-objective stereoscopic microscope comprising a polarizing beam splitter arranged behind the first and second polarizing plates, whose vibration direction matches the polarizing plates, and which splits the optical path into two and guides the optical path to the left and right eyepiece tubes.
JP5149189A 1989-03-03 1989-03-03 Single objective stereoscopic microscope Pending JPH02230210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5149189A JPH02230210A (en) 1989-03-03 1989-03-03 Single objective stereoscopic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5149189A JPH02230210A (en) 1989-03-03 1989-03-03 Single objective stereoscopic microscope

Publications (1)

Publication Number Publication Date
JPH02230210A true JPH02230210A (en) 1990-09-12

Family

ID=12888441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5149189A Pending JPH02230210A (en) 1989-03-03 1989-03-03 Single objective stereoscopic microscope

Country Status (1)

Country Link
JP (1) JPH02230210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256659A (en) * 2006-03-23 2007-10-04 Olympus Corp Illuminator and stereomicroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256659A (en) * 2006-03-23 2007-10-04 Olympus Corp Illuminator and stereomicroscope

Similar Documents

Publication Publication Date Title
US4761066A (en) Stereoscopic optical system
US20110080536A1 (en) Stereoscopic image display apparatus
US5592328A (en) Illumination system and method for a high definition light microscope
EP0921751A1 (en) Apparatus and method for stereoscopic endoscopy
US6020993A (en) 3-D photo attachment for a 2-D light microscope
JPH06123853A (en) Optical device
US5701198A (en) Confocal incident light microscope
US5305139A (en) Illumination system and method for a high definition 3-D light microscope
US5867312A (en) Illumination system and method for a 3-D high definition light microscope
JPH02230210A (en) Single objective stereoscopic microscope
CN111474699B (en) Operation microscope with programmable aperture
US5548441A (en) Illumination system and method for a high definition light microscope
JPS63167318A (en) Stereoscopic microscope
JPH0526171B2 (en)
JPS6217722A (en) Single objective stereoscopic vision binocular microscope
JPS61226722A (en) Stereomicroscope
Bagnell Differential interference contrast microscopy
CN220025022U (en) Ophthalmic surgical microscope system
WO1995029419A1 (en) Illumination system and method for a high definition light microscope
JPH046005Y2 (en)
JPH04156412A (en) Stereoscopic microscope
JP3089304B2 (en) Light microscope
JPH075372A (en) Stereo-microscope
JP2583465B2 (en) Stereo microscope
JPS61226723A (en) Stereomicroscope