JPH02229983A - Vacuum device - Google Patents

Vacuum device

Info

Publication number
JPH02229983A
JPH02229983A JP4930589A JP4930589A JPH02229983A JP H02229983 A JPH02229983 A JP H02229983A JP 4930589 A JP4930589 A JP 4930589A JP 4930589 A JP4930589 A JP 4930589A JP H02229983 A JPH02229983 A JP H02229983A
Authority
JP
Japan
Prior art keywords
vacuum chamber
purge
flow rate
vacuum
slow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4930589A
Other languages
Japanese (ja)
Inventor
Noriyoshi Kajitani
梶谷 憲美
Koji Matsuda
松田 耕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4930589A priority Critical patent/JPH02229983A/en
Publication of JPH02229983A publication Critical patent/JPH02229983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)

Abstract

PURPOSE:To enable independent application of purge processing on each vacuum chamber by a method wherein a plurality of purge valves and a plurality of slow purge valves, through which a plurality of vacuum chambers are respectively communicated to a gas source, are provided, and a plurality of flow rate regulators are communicated to the respective slow purge valves. CONSTITUTION:A vacuum chamber 1 to contain a semiconductor wafer to be processed is communicated to a vacuum chamber 2 to contain a semiconductor wafer through a gas source 3 for purge and purge valves 4 and 5. The vacuum chambers 1 and 2 are communicated to the gas source 3 in a state that slow purge valves 8 and 9 and flow rate regulators 71 and 72, connected to the respective slow purge valves, are located in series therebetween. Since, as noted above, purge processing is independently applied on the vacuum chambers 1 and 2 by a flow rate regulator for an exclusive use at each slow purge valve, a flow rate is held within a given value, a semiconductor wafer is prevented from contamination, and a processing time is also shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体ウェハを処理する真空装置の特にその
パージ用配管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a vacuum apparatus for processing semiconductor wafers, particularly to its purge piping.

〔従来の技術〕[Conventional technology]

第2図は従来の真空装置を示す構成図である。 FIG. 2 is a configuration diagram showing a conventional vacuum device.

図において、(1)は処理すべき半導体ウェハを収容す
る真空室A,(2)は処理終了後の半導体ウエノ1を収
容する真空室B、(3)はパージ用ガス源で、各真空室
(1) (2)内を真空状態から大気圧状態に戻すパー
ジのため各真空室(1) (2)内へ送出するガスが封
入されている。(4)および(5)はパージ用ガス源(
3)とそれぞれ真空室A (1)および真空室B(2)
との間を連通させる配管(6)の途中に挿入されたパー
ジ弁、(7)はその一端がパージ用ガス源(3)に連通
ずる流量調節器、(8)および(9)は流量調節器(7
)の他端とそれぞれ真空室A(1)および真空室B (
2)との間を連通させる配管Q0の途中に挿入されたス
ローパージ弁である。
In the figure, (1) is vacuum chamber A that accommodates semiconductor wafers to be processed, (2) is vacuum chamber B that accommodates semiconductor wafer 1 after processing, and (3) is a purge gas source for each vacuum chamber. (1) (2) A gas is sealed inside each vacuum chamber (1) (2) for purging to return the interior from a vacuum state to an atmospheric pressure state. (4) and (5) are the purge gas source (
3) and vacuum chamber A (1) and vacuum chamber B (2) respectively.
(7) is a flow rate regulator whose one end communicates with the purge gas source (3), (8) and (9) are flow rate regulators. Vessel (7
) and the other end of vacuum chamber A (1) and vacuum chamber B (
2) is a slow purge valve inserted in the middle of piping Q0 that communicates with

次に動作について説明する。今、両真空室(1) (2
)が共に真空状態にあり、これを順次大気圧状態に戻す
場合を考える。当初は真空室A(1)内とパージ用ガス
源(3)との圧力差が大きいので、先ずスローパージ弁
(8)を開け、流量調節器(7)を通して徐々にガスを
真空室A(1)内へ送り込む。流量調節器(7)はその
流体抵抗を適宜調節できるようになっており、ガス流量
を所定の流量範囲内に抑える。これによって、真空室A
(1)内へ流入するガス流が急増して内部でゴミ等を舞
い上げ、収容した半導体ウェハを汚染するのを防止して
いる訳である。
Next, the operation will be explained. Now both vacuum chambers (1) (2
) are both in a vacuum state, and consider the case where they are sequentially returned to an atmospheric pressure state. Initially, there is a large pressure difference between the inside of the vacuum chamber A (1) and the purge gas source (3), so first open the slow purge valve (8) and gradually introduce gas into the vacuum chamber A ( 1) Send it inside. The flow rate regulator (7) is capable of adjusting its fluid resistance as appropriate, and suppresses the gas flow rate within a predetermined flow rate range. By this, vacuum chamber A
(1) This prevents the gas flow flowing into the chamber from rapidly increasing and blowing up dust and the like from contaminating the semiconductor wafers contained therein.

所定の時間が経過し、土記圧力差が小さくなると、スロ
ーパージ弁(8)を閉じ、パージ弁(4)を開く。
When a predetermined time has elapsed and the pressure difference becomes smaller, the slow purge valve (8) is closed and the purge valve (4) is opened.

そして、真空室A(1)内が大気圧と同等になるとパー
ジ弁(4)も閉める。
Then, when the pressure inside the vacuum chamber A (1) becomes equal to atmospheric pressure, the purge valve (4) is also closed.

次に真空室B(2)を真空状促から大気圧状態に戻すが
、真空室A(1)の場合と同じ要領で、先ず、スローパ
ージ弁(9)を開け、所定時間経過後、スローパージ弁
(9)を閉めるとともにパージ弁(5)を開け、大気圧
になった後、パージ弁(5)も閉める。
Next, vacuum chamber B (2) is returned to atmospheric pressure from the vacuum state. In the same manner as vacuum chamber A (1), first open the slow purge valve (9), and after a predetermined period of time, the slow purge valve (9) is opened. Close the purge valve (9) and open the purge valve (5), and after reaching atmospheric pressure, close the purge valve (5) as well.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の真空装置は以上のように構成されているので、例
えば、スローパージ弁(8)を開けて真空室A(1)内
をパージしている段階で真空室B(2)内のパージを開
始させようとしてスローパージ弁(9)を新たに囲けた
場合、真空室A (1)内の圧力が真空室B(2)内の
圧力より高いと、真空室A(1)から真空室B(2)へ
向けてガスが急激に流れ込む。
Since the conventional vacuum apparatus is configured as described above, for example, when the slow purge valve (8) is opened to purge the inside of the vacuum chamber A (1), the purge inside the vacuum chamber B (2) can be started. If the slow purge valve (9) is newly enclosed when trying to start, if the pressure in vacuum chamber A (1) is higher than the pressure in vacuum chamber B (2), the pressure will be removed from vacuum chamber A (1) to vacuum chamber B. Gas rapidly flows toward (2).

このため、スローパージとならず所定の流量範囲を越え
、真空室B(2)内でゴミ等が舞い上がり、処理終了後
の半導体ウェハを汚染するという問題点があった。また
、これを防止するには、必ず真空室A(1)のパージが
完了した後、真空室B(2)の処理を開始するようにす
る必要があり、それだけ全体の処理時間が長くなる等の
問題があった。
For this reason, there is a problem in that slow purge does not occur and the flow rate exceeds a predetermined flow rate range, and dust and the like fly up inside the vacuum chamber B(2), contaminating the semiconductor wafer after processing. In addition, to prevent this, it is necessary to start processing vacuum chamber B (2) after purging of vacuum chamber A (1) is completed, which increases the overall processing time, etc. There was a problem.

になされたもので、半導体ウェハの汚染等の費害を生じ
ることなく、各真空室を相互に独立してパージ処理する
ことができる真空装置を得ることを目的とする。
The object of the present invention is to provide a vacuum apparatus capable of independently purging each vacuum chamber without causing costs such as contamination of semiconductor wafers.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る真空装置は、流量調節器を複数個備え、
それぞれを各スローパージ弁毎に連通させたものである
The vacuum device according to the present invention includes a plurality of flow rate regulators,
These are connected to each slow purge valve.

〔作用〕[Effect]

各真空室の内部圧力が異なる状態でそれぞれのスローパ
ージ弁が同時に開けられても、各真空室はそれぞれに専
用の流量調節器を介してパージ用ガス源に連通しており
、圧力差を有する真空室同士が直接連通することはない
。従って、圧力の高い真空室から圧力の低い真空室への
ガスの急激な流れ込みは生じない。
Even if the slow purge valves are opened at the same time when the internal pressures of the vacuum chambers are different, each vacuum chamber is connected to the purge gas source through its own dedicated flow rate regulator, so there will be a pressure difference. Vacuum chambers do not communicate directly with each other. Therefore, a sudden flow of gas from a high pressure vacuum chamber to a low pressure vacuum chamber does not occur.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、従来の第2図のものと異なるのは、流Jl
調節器を含めたスローパージ弁(8バ9)の配管回路で
ある。即ち、この実施例では2個の流!調節器n@を使
用し、流量調節器のはスローパージ弁(8)を直列とな
って真空室A (1)とパージ用ガス源(3)との間に
、そして、流量調節器@はスローパージ弁(9)と直列
となって真空室B(2)とパージ用ガス源(3)との間
に挿入されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, what is different from the conventional one in Figure 2 is the flow Jl.
This is a piping circuit for a slow purge valve (8 bars and 9) including a regulator. That is, in this example, there are two streams! The flow regulator n@ is connected in series with the slow purge valve (8) between the vacuum chamber A (1) and the purge gas source (3), and the flow regulator @ is connected in series between the vacuum chamber A (1) and the purge gas source (3). It is inserted in series with the slow purge valve (9) between the vacuum chamber B (2) and the purge gas source (3).

次に動作について説明する。真空室A (1)のパージ
処理が完了した後、真空室B (2)の処理を関始する
場合の操作は、従来と同様で全く問題はないので説明を
省略する。
Next, the operation will be explained. After the purge process of vacuum chamber A (1) is completed, the operation for starting the process of vacuum chamber B (2) is the same as the conventional method and there is no problem at all, so a description thereof will be omitted.

従って、真空室A(1)のパージ処理途中で真空室B(
2)の処理を開始する場合の動作について以下に説明す
る。即ち、スローパージ弁(8)を囲けて流量調節器(
ハ)を通して徐々にガスを真空室A(1)内へ送り込ん
でいる段階で、更にスローパージ弁(9)を開けて真空
室B(2)のパージ処理を開始したとする。
Therefore, during the purging process of vacuum chamber A(1), vacuum chamber B(
The operation when starting the process 2) will be described below. That is, the slow purge valve (8) is surrounded by a flow rate regulator (
Suppose that at the stage when gas is being gradually fed into the vacuum chamber A (1) through c), the slow purge valve (9) is further opened to start purging of the vacuum chamber B (2).

しかし、この場合は、たとえ真空室A(1)内の圧力と
真空室B(2)内の圧力とに大きな差があったとしても
、真空室B(2)へ流れ込むガス流量は流量調節器四の
みによって決定され、勿論真空室A(1)へ流れ込むガ
ス流量は流量調節器(ハ)のみによって決定され、共に
所定の流量範囲内に収まることになる。
However, in this case, even if there is a large difference between the pressure in vacuum chamber A (1) and the pressure in vacuum chamber B (2), the flow rate of gas flowing into vacuum chamber B (2) is controlled by the flow controller. Of course, the flow rate of gas flowing into the vacuum chamber A(1) is determined only by the flow rate regulator (c), and both fall within a predetermined flow rate range.

このように各真空室(1) (2)はいずれも他方の真
空室の処理段階とは無関係に自己のパージ処理を進める
ことができ、またこのようにしてもガス流量の急増によ
る半導体ウェハの汚染等の不具合は発生しない。
In this way, each of the vacuum chambers (1) and (2) can proceed with its own purge process independently of the processing steps of the other vacuum chamber, and even with this, semiconductor wafer No problems such as contamination will occur.

なお、上記実施例は真空室が2個の場合について説明し
たが、この発明は3個以上の真空室を備えた場合につい
ても同様に適用することができる。
Note that although the above embodiment has been described with reference to a case in which there are two vacuum chambers, the present invention can be similarly applied to a case in which three or more vacuum chambers are provided.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明では、各スローパージ弁毎に専用
の流量調節器を設けるようにしたので、たとえ各真空室
のパージ処理を同時に行っても各真空室へ流れ込むガス
流凰は各専用の流量調節器により所定の流量範囲内に収
まることになり、流入するガス流量の急増による半導体
ウェハの汚染等の不具合は発生せず、また装置の処理時
間も短縮できる。
As described above, in this invention, a dedicated flow rate regulator is provided for each slow purge valve, so even if each vacuum chamber is purged at the same time, the gas flow flowing into each vacuum chamber is controlled by each dedicated flow rate regulator. Since the flow rate is kept within a predetermined range by the flow rate regulator, problems such as contamination of semiconductor wafers due to a sudden increase in the flow rate of the inflowing gas do not occur, and the processing time of the apparatus can also be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における真空装置を示す構
成図、第2図は従来の真空装置を示す構成図である。 図において、(1)は真空室A,(2)は真空室B、(
3)はパージ用ガス源、(4) (5)はパージ弁、(
8バ9)はスローパージ弁、0(自)は流量調節器であ
る。 なお、各図中、同一符号は同一、または相当部分を示す
。 Nへ勺十へ、
FIG. 1 is a block diagram showing a vacuum apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional vacuum apparatus. In the figure, (1) is vacuum chamber A, (2) is vacuum chamber B, (
3) is the purge gas source, (4) (5) is the purge valve, (
8 bar 9) is a slow purge valve, and 0 (own) is a flow rate regulator. In each figure, the same reference numerals indicate the same or corresponding parts. To N, to Tsukiju,

Claims (1)

【特許請求の範囲】 半導体ウェハを収容する複数個の真空室、この真空室内
へ送出して上記真空室内を真空状態から大気圧状態に戻
すパージのためのガスを封入するパージ用ガス源、それ
ぞれの一端が上記各真空室に連通しそれぞれの他端が上
記パージ用ガス源に連通する複数個のパージ弁、および
それぞれの一端が上記各真空室に連通し他端が流量調節
器を介して上記パージ用ガス源に連通する複数個のスロ
ーパージ弁を備え、上記両弁を順次操作することにより
所定の流量範囲内でパージを行うものにおいて、 上記流量調節器を複数個備え、それぞれを上記各スロー
パージ弁に連通させるようにしたことを特徴とする真空
装置。
[Scope of Claims] A plurality of vacuum chambers that house semiconductor wafers, a purge gas source that fills a purge gas that is sent into the vacuum chambers and returns the vacuum chambers from a vacuum state to an atmospheric pressure state, respectively. a plurality of purge valves, one end of which communicates with each of the vacuum chambers and the other end of each of which communicates with the purge gas source; one end of each of which communicates with each of the vacuum chambers, and the other end of which communicates with each of the vacuum chambers, and the other end communicates with each of the vacuum chambers through a flow rate regulator; A device comprising a plurality of slow purge valves communicating with the purge gas source, and purging within a predetermined flow rate range by sequentially operating both of the valves, comprising a plurality of the flow rate regulators, each of which is connected to the A vacuum device characterized by communicating with each slow purge valve.
JP4930589A 1989-03-01 1989-03-01 Vacuum device Pending JPH02229983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4930589A JPH02229983A (en) 1989-03-01 1989-03-01 Vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4930589A JPH02229983A (en) 1989-03-01 1989-03-01 Vacuum device

Publications (1)

Publication Number Publication Date
JPH02229983A true JPH02229983A (en) 1990-09-12

Family

ID=12827231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4930589A Pending JPH02229983A (en) 1989-03-01 1989-03-01 Vacuum device

Country Status (1)

Country Link
JP (1) JPH02229983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095193A (en) * 1997-09-22 2000-08-01 Smc Corporation Smooth vent valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095193A (en) * 1997-09-22 2000-08-01 Smc Corporation Smooth vent valve
DE19842820B4 (en) * 1997-09-22 2012-08-16 Smc Corp. Shock-free acting vent valve

Similar Documents

Publication Publication Date Title
JP3486821B2 (en) Processing apparatus and method of transporting object to be processed in processing apparatus
JP2002329674A (en) Valve control system for semiconductor treatment chamber
JP4298025B2 (en) Vacuum pressure control system
JPH02229983A (en) Vacuum device
JP2019046998A (en) Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
JPH02125421A (en) Heat treatment apparatus
JPH0118152B2 (en)
JP2715134B2 (en) Processing method
JPH0969515A (en) Vacuum processing system for semiconductor production system
JPH05251543A (en) Semiconductor processor
KR100478012B1 (en) Gas providing system of ALD process module
KR100481794B1 (en) Gas providing system of ALD process module
JPH085545Y2 (en) Semiconductor manufacturing equipment
JPH0250421A (en) Gas feeder
JPS6024017A (en) Adjustment of processing gas pressure
KR0181904B1 (en) Exhausting system of chemical vapour deposition equipment
JPH0635544A (en) Mixture gas flow rate control method
JPH0510131B2 (en)
JPH11186355A (en) Load locking mechanism, substrata processing device and substrate processing method
JPH01237366A (en) Vacuum device
JPH10237654A (en) Vapor growth device
JPH06256948A (en) Vacuum treating device
JP2000114186A (en) Semiconductor manufacturing apparatus and wafer- processing method
JP2001227657A (en) Process gas supply unit
KR0183822B1 (en) Semiconductor equipment