JPH02229443A - Semiconductor element connection - Google Patents

Semiconductor element connection

Info

Publication number
JPH02229443A
JPH02229443A JP5065189A JP5065189A JPH02229443A JP H02229443 A JPH02229443 A JP H02229443A JP 5065189 A JP5065189 A JP 5065189A JP 5065189 A JP5065189 A JP 5065189A JP H02229443 A JPH02229443 A JP H02229443A
Authority
JP
Japan
Prior art keywords
semiconductor element
superelastic
insulating substrate
solder
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5065189A
Other languages
Japanese (ja)
Other versions
JP2709501B2 (en
Inventor
Takahide Ono
恭秀 大野
Hiroaki Otsuka
広明 大塚
Yoshio Ozeki
大関 芳雄
Keisuke Watanabe
敬介 渡辺
Takashi Kanamori
孝史 金森
Yasuo Iguchi
泰男 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Oki Electric Industry Co Ltd
Original Assignee
Nippon Steel Corp
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Oki Electric Industry Co Ltd filed Critical Nippon Steel Corp
Priority to JP1050651A priority Critical patent/JP2709501B2/en
Publication of JPH02229443A publication Critical patent/JPH02229443A/en
Application granted granted Critical
Publication of JP2709501B2 publication Critical patent/JP2709501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3473Plating of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/426Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in substrates without metal

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To prevent this connection from being broken and cut by a method wherein an insulating substrate in which a through hole has been made by using a superelastic material is laid between a semiconductor element and a wiring substrate, the superelastic material is used in a part, in the semiconductor element, which is subjected to a thermal strain and a deformation is repeated in an elastic range even against a repeated strain. CONSTITUTION:A hole is made in an insulating substrate 6 by using a very small drill or by an etching operation; then, electroless-plated copper 7 is formed on the whole surface of the insulating substrate 6. Then, a plated resist 10 is formed in parts other than a conductor by using a photolithographic operation. Cu-34.7wt.% Zn-3.0wt.% Sn as a superelastic alloy 8 is formed by using an electroplating operation in a part where the electroless-plated copper has been exposed. Then, a solder 9 as a bonding material is electroplated. Then, the plated resist 10 is removed; the solder 9 is subjected to an etching resist processing; after that, the electroless-plated copper 7 other than the conductor is etched by using a solution of ammonium persulfate or the like. The completed insulating substrate provided with a superelastic through hole is aligned with connection electrodes 4 between a semiconductor element 1 and a wiring substrate 2; this assembly is heated in a reflow furnace; both electrodes are solder-bonded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子の接続方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for connecting semiconductor elements.

(従来の技術) 従来の半導体素子のフリップチップ接続の概略構造を第
3図に示す。図中の1は半導体素子,2は配線基板,3
ははんだバンプ,4は半導体素子lと配線基板2のそれ
ぞれに設けられた電極であり、A−xは半導体素子の中
心を示している。
(Prior Art) FIG. 3 shows a schematic structure of a conventional flip-chip connection of semiconductor elements. In the figure, 1 is a semiconductor element, 2 is a wiring board, and 3 is a semiconductor element.
1 is a solder bump, 4 is an electrode provided on each of the semiconductor element 1 and the wiring board 2, and A-x indicates the center of the semiconductor element.

フリップチップ接続は、半導体素子1と配線基板2の電
極4の電気的接続を、はんだバンプ3を加熱溶融する一
括接続で行えるので、ワイヤボンディング法に比べて作
業性が優れている。又、ワイヤボンディング法及びTA
B (Tape AutomatedBonding)
法のように電極配置が半導体素子の周辺に限定されない
ので、大幅に接続端子数を増大できるという特徴をもっ
ている。
Flip-chip bonding is superior in workability to the wire bonding method because the electrical connection between the semiconductor element 1 and the electrodes 4 of the wiring board 2 can be made in one batch by heating and melting the solder bumps 3. In addition, wire bonding method and TA
B (Tape Automated Bonding)
Since the electrode arrangement is not limited to the periphery of the semiconductor element as in the method, it has the feature that the number of connection terminals can be greatly increased.

しかしながら、この接続構造では第4図に示すように、
温度変化が生じた場合半導体素子1と配線基板2との熱
膨張係数の差による寸法ずれBが発生し、はんだバンプ
3に剪断歪みを生じ接続信顧性が低下する。
However, with this connection structure, as shown in Figure 4,
When a temperature change occurs, a dimensional deviation B occurs due to the difference in thermal expansion coefficients between the semiconductor element 1 and the wiring board 2, causing shear strain in the solder bumps 3 and reducing connection reliability.

剪断歪みは、はんだバンプ3と半導体素子1との中心距
離の増加とともに増大するため、はんだバンプ3の許容
しうる剪断歪み量からはんだバンプ3を配置できる領域
が制限され、多端子化ならびに大面積の半導体素子への
適用が困難であった。
Since shear strain increases as the distance between the centers of the solder bumps 3 and the semiconductor element 1 increases, the area in which the solder bumps 3 can be placed is limited due to the amount of shear strain that the solder bumps 3 can tolerate. It has been difficult to apply this method to semiconductor devices.

このはんだバンプの剪断歪みを低減させる手段として、
半導体素子と熱膨張係数の近い配線基板材料を用いる方
法が考えられるが、配線基板材料が制限されてしまうと
いう欠点がある。
As a means to reduce the shear strain of solder bumps,
A possible method is to use a wiring board material with a coefficient of thermal expansion close to that of the semiconductor element, but this method has the disadvantage that the wiring board material is limited.

一方、ポリイミドフィルムで支持したはんだバンプを重
ねて多段バンプを形成し、剪断歪みを低減する方法(特
開昭62−293730号公報)が提案されている。
On the other hand, a method has been proposed (Japanese Unexamined Patent Publication No. 62-293730) in which shearing strain is reduced by stacking solder bumps supported by polyimide films to form multistage bumps.

しかしながら、はんだバンプを積み重ねるため、必要部
材の増加、接続工数の増加に伴う価格上昇という欠点が
ある。
However, since the solder bumps are stacked, there is a drawback that the number of required members increases and the number of connection steps increases, resulting in an increase in price.

又、第5図は金属バンプを圧力で当接させて電気的接続
を得る半導体素子接続構造である。第5図において、半
導体素子lと配線基板2のそれぞれの電極4上には金属
バンプ13が形成されている。この金属バンプ13には
収縮性樹脂5の硬化時の収縮力により圧力が加わり、金
属バンプ13同士が機械的に接触し電気的接続が得られ
る。
Further, FIG. 5 shows a semiconductor element connection structure in which electrical connection is obtained by bringing metal bumps into contact with each other under pressure. In FIG. 5, metal bumps 13 are formed on the electrodes 4 of the semiconductor element 1 and the wiring board 2, respectively. Pressure is applied to the metal bumps 13 by the shrinkage force of the shrinkable resin 5 during curing, and the metal bumps 13 come into mechanical contact with each other to establish electrical connection.

しかしながら、この接続構造では金属バンプ13の高さ
がバラックと電気的接続が得られない箇所が往ずる。又
、収縮性樹脂5の熱膨張係数は金属バンプに比べて大き
いため、温度変化が生じると圧力が弱まり、金属バンブ
の接触が不安定になるので接続信転性に欠けるという問
題点があった。
However, in this connection structure, the height of the metal bump 13 often makes it impossible to establish electrical connection with the barracks. Furthermore, since the coefficient of thermal expansion of the shrinkable resin 5 is larger than that of the metal bumps, when a temperature change occurs, the pressure weakens and the contact between the metal bumps becomes unstable, resulting in a lack of connection reliability. .

(発明が解決しようとする課題) 本発明では、上記に述べた半導体素子と配線基板の間に
発生する大きな剪断歪み,バンプ高さのバラツキ及び収
縮性樹脂との熱膨張係数の差による圧力変動に対して電
気的接続の信頬性が高く、しかも微細接続が可能な安価
な半導体素子接続方法を提供するものである。
(Problems to be Solved by the Invention) In the present invention, pressure fluctuations due to the large shear strain that occurs between the semiconductor element and the wiring board, variations in bump height, and the difference in thermal expansion coefficient with the shrinkable resin are solved. The present invention provides an inexpensive semiconductor element connection method that provides high reliability of electrical connections and allows fine connections.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体素子と配線基板とを電気的に接続する
方法であって、前記半導体素子と配線基板との間に超弾
性材料でスルーホールを形成した絶縁基板を介在させる
ことを特徴とする半導体素子接続方法を要旨とするもの
である。
The present invention is a method for electrically connecting a semiconductor element and a wiring board, characterized in that an insulating substrate having through holes formed with a superelastic material is interposed between the semiconductor element and the wiring board. The gist of this article is a semiconductor element connection method.

本発明では、前述の課題を解決するために、超弾性材料
を介在させた半導体素子実装構造とし、絶縁基板に接続
ピッチと同間隔に穴をあけ超弾性金属でスルーホール構
造を形成し、半導体素子と配線基板の間にアライメント
し、はんだ又は外部からの加圧で接続を得る方法である
In order to solve the above-mentioned problems, the present invention has a semiconductor element mounting structure with a superelastic material interposed therebetween, holes are made in an insulating substrate at the same intervals as the connection pitch, and a through-hole structure is formed with a superelastic metal. This method aligns the element and the wiring board and establishes a connection using solder or external pressure.

超弾性材料としては、弾性歪みが0. 5%以上の金属
が望ましい。
As a superelastic material, the elastic strain is 0. A metal content of 5% or more is desirable.

この超弾性材料には、例えばTi −Ni, Fe−P
t,Pe  Pd+ Mn  Cu, In  Tj 
lNs  N+ Au  CdIAg−Cd, Au−
Cu−Zn+ Cu−Zn−1’J, Cu−Zn−S
n,Cu−A7−Ni, Cu−Snなどが用いられ、
これらの金属をめっきによるか或いはスバッタなどによ
りスルーホールを形成する。
This superelastic material includes, for example, Ti-Ni, Fe-P
t, Pe Pd+ Mn Cu, In Tj
lNs N+ Au CdIAg-Cd, Au-
Cu-Zn+ Cu-Zn-1'J, Cu-Zn-S
n, Cu-A7-Ni, Cu-Sn, etc. are used,
Through holes are formed using these metals by plating or sputtering.

このようにして形成した超弾性金属は、超弾性特性を向
上させるために、必要に応じて加熱冷却等の熱処理を施
してもよい。
The superelastic metal thus formed may be subjected to heat treatment such as heating and cooling, if necessary, in order to improve its superelastic properties.

本発明に使用できる超弾性合金の種類と組成を第1表に
例示した。
Table 1 shows examples of types and compositions of superelastic alloys that can be used in the present invention.

第  1  表 本発明では、超弾性材料で形成したスルーホール付絶縁
基板を接続媒体として使用することにより、高精度、低
価格でかつ高信鎖性の半導体素子接続を得ることができ
る。
Table 1 In the present invention, by using an insulating substrate with through holes made of a superelastic material as a connection medium, it is possible to obtain semiconductor element connections with high precision, low cost, and high reliability.

(実施例) 次に本発明を図面に示す実施例に基づいて説明する。(Example) Next, the present invention will be explained based on embodiments shown in the drawings.

第1図は本発明の接続部の断面構造を示すもので、6は
絶縁基板,例えばポリイミドフィルム,7は銅めっき層
,8は超弾性スルーホール.9ははんだを示している。
FIG. 1 shows the cross-sectional structure of the connection part of the present invention, in which 6 is an insulating substrate, such as a polyimide film, 7 is a copper plating layer, and 8 is a superelastic through hole. 9 indicates solder.

第1図において半導体素子1の電極4及び配線基板2の
電極4と同じ位置になるように絶縁基板6に穴あけ加工
し、超弾性金属8でスルーホール加工し、半導体素子1
と配線基板2との間にアライメントし両電極が電気的接
合が得られるようにはんだ付けしたものである。
In FIG. 1, holes are drilled in the insulating substrate 6 so as to be at the same positions as the electrodes 4 of the semiconductor element 1 and the electrodes 4 of the wiring board 2, and the through holes are processed with superelastic metal 8.
and the wiring board 2, and both electrodes are soldered to achieve electrical connection.

第2図(a)〜(e)を用いて超弾性スルーホール付絶
縁基板の作成手順を説明する。
The procedure for producing an insulating substrate with superelastic through holes will be explained using FIGS. 2(a) to 2(e).

まず、絶縁基板6に微少ドリル又はエッチングにより穴
あけを行う(第2図(a))。次に絶縁基仮6全面に無
電解銅めっき7を形成する(第2図ら))。
First, holes are made in the insulating substrate 6 by micro-drilling or etching (FIG. 2(a)). Next, electroless copper plating 7 is formed on the entire surface of the temporary insulating base 6 (FIG. 2 et al.).

次に導体以外の部分にめっきレジスト10をフォトリソ
で形成する(第2図(C))。無電解めっきが露出した
部分に超弾性合金8としてCu−34.7wtχZn−
3.OwtχSnを電気めっきにて形成する。次に接合
材料としてはんだ9を電気めっきする(第2図(d))
Next, a plating resist 10 is formed on the portion other than the conductor by photolithography (FIG. 2(C)). Cu-34.7wtχZn- was applied as superelastic alloy 8 to the exposed part of electroless plating.
3. OwtχSn is formed by electroplating. Next, electroplating solder 9 as a bonding material (Fig. 2(d))
.

次にめっきレジスト10を除去し、はんだ9をエッチン
グレジストした後、過硫酸アンモニウム溶液などで導体
部以外の無電解めっき銅7をエッチングする(第6図(
e))。
Next, after removing the plating resist 10 and applying an etching resist to the solder 9, the electroless plated copper 7 other than the conductor part is etched using an ammonium persulfate solution (see Fig. 6).
e)).

以上の工程で完成した超弾性スルーホール付絶縁基板を
半導体素子1と配線基板2との間で接続電極4とアライ
メントしリフロー炉で加熱することにより両電極をはん
だ接合する。
The insulating substrate with superelastic through holes completed in the above steps is aligned with the connecting electrode 4 between the semiconductor element 1 and the wiring board 2, and the two electrodes are soldered together by heating in a reflow oven.

このようにして得られた実装構造は温度変化による配線
基板一半導体素子の熱膨張の差による熱歪みに対しても
スルーホールを形成した超弾性金属が2%の弾性歪みを
有することにより十分追従するため極めて高い信顧性が
得られた。
The mounting structure obtained in this way can sufficiently cope with thermal distortion caused by the difference in thermal expansion between the wiring board and the semiconductor element due to temperature changes, since the superelastic metal in which the through holes are formed has an elastic distortion of 2%. As a result, we have achieved extremely high credibility.

(発明の効果) 本発明に従い、超弾性材料を半導体素子における熱歪み
を受ける部分に使用することにより、繰り返しの歪みに
対しても弾性範囲で変形を繰り返すことで、破断を防止
することを狙ったものであり、外部歪みに柔軟に追従す
るバンプ構造とすることができるので、信頬性の高い半
導体素子接続構造が得られる。
(Effects of the Invention) According to the present invention, by using a superelastic material in a part of a semiconductor element that is subject to thermal strain, it is possible to prevent breakage by repeatedly deforming within the elastic range even under repeated strain. Since it is possible to form a bump structure that flexibly follows external distortion, a highly reliable semiconductor element connection structure can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すもので、超弾性材料でス
ルーホールを形成した絶縁基板を接合媒体とした接続構
造を示している。 ..第2図は本発明の実施例においてスルーホールを形
成する工程を示したものである。 第3図〜第5図は従来のはんだバンプにより接続された
半導体素子と配線基板の断面図で、第4図は温度変化に
より配線基板が膨張しバンプに剪断歪みが導入された様
子を示し、第5図ははんだバンブを圧力で接触させて樹
脂で固定した場合の半導体素子接続構造を示す断面図で
ある。 1・・・半導体素子、2・・・配線基板、3・・・はん
だバンブ、4・・・金属電極、5・・・樹脂、6・・・
絶縁基板、7・・・無電解銅めっき層、8・・・超弾性
体材料によるスルーホール、9・・・はんだ、10・・
・めっきレジスト。 第2図 第3ml 第5図
FIG. 1 shows an embodiment of the present invention, and shows a connection structure using an insulating substrate with through holes formed with a superelastic material as a bonding medium. .. .. FIG. 2 shows the process of forming through holes in an embodiment of the present invention. Figures 3 to 5 are cross-sectional views of a semiconductor element and a wiring board connected by conventional solder bumps, and Figure 4 shows how the wiring board expands due to temperature changes and shear strain is introduced into the bumps. FIG. 5 is a sectional view showing a semiconductor element connection structure in which solder bumps are brought into contact with pressure and fixed with resin. DESCRIPTION OF SYMBOLS 1... Semiconductor element, 2... Wiring board, 3... Solder bump, 4... Metal electrode, 5... Resin, 6...
Insulating substrate, 7... Electroless copper plating layer, 8... Through hole made of superelastic material, 9... Solder, 10...
・Plating resist. Figure 2 3ml Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体素子と配線基板とを電気的に接続する方法であっ
て、前記半導体素子と配線基板との間に超弾性材料でス
ルーホールを形成した絶縁基板を介在させることを特徴
とする半導体素子接続方法。
A method for electrically connecting a semiconductor element and a wiring board, the method comprising interposing an insulating substrate in which through holes are formed with a superelastic material between the semiconductor element and the wiring board. .
JP1050651A 1989-03-02 1989-03-02 Semiconductor element connection method Expired - Fee Related JP2709501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1050651A JP2709501B2 (en) 1989-03-02 1989-03-02 Semiconductor element connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050651A JP2709501B2 (en) 1989-03-02 1989-03-02 Semiconductor element connection method

Publications (2)

Publication Number Publication Date
JPH02229443A true JPH02229443A (en) 1990-09-12
JP2709501B2 JP2709501B2 (en) 1998-02-04

Family

ID=12864844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050651A Expired - Fee Related JP2709501B2 (en) 1989-03-02 1989-03-02 Semiconductor element connection method

Country Status (1)

Country Link
JP (1) JP2709501B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683942A (en) * 1994-05-25 1997-11-04 Nec Corporation Method for manufacturing bump leaded film carrier type semiconductor device
US5952717A (en) * 1994-12-29 1999-09-14 Sony Corporation Semiconductor device and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683942A (en) * 1994-05-25 1997-11-04 Nec Corporation Method for manufacturing bump leaded film carrier type semiconductor device
US5905303A (en) * 1994-05-25 1999-05-18 Nec Corporation Method for manufacturing bump leaded film carrier type semiconductor device
US5952717A (en) * 1994-12-29 1999-09-14 Sony Corporation Semiconductor device and method for producing the same

Also Published As

Publication number Publication date
JP2709501B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR910002454B1 (en) Film carrier and bonding method using the film carrier
US6224392B1 (en) Compliant high-density land grid array (LGA) connector and method of manufacture
US4842662A (en) Process for bonding integrated circuit components
CA2115553C (en) Plated compliant lead
JP2500996B2 (en) How to make electronic interconnections
JP2892505B2 (en) Mounting electronic components on circuit boards
EP0473929B1 (en) Method of forming a thin film electronic device
KR100201036B1 (en) Bump, semiconductor chip and package having the bump, and mounting method and semiconductor apparatus
CN85108637A (en) Electronic circuit and manufacture method thereof
JPH02229443A (en) Semiconductor element connection
JP3349166B2 (en) Circuit board
JPS61196546A (en) Film carrier integrated circuit and manufacture thereof
JP3049948B2 (en) Package manufacturing method
JP2737545B2 (en) Film carrier tape for semiconductor device and method of manufacturing the same
JPH02237129A (en) Connection structure of semiconductor element
US6153518A (en) Method of making chip size package substrate
JP2570626B2 (en) Board connection structure and connection method
JPS6366958A (en) Lead frame for semiconductor and manufacture thereof
JPH0572751B2 (en)
JP2770040B2 (en) Bump forming method and semiconductor element connecting method
JPH0685153A (en) Surface mount type electronic component
JPH02137240A (en) Connection structure of semiconductor element
JP2819321B2 (en) Electronic component mounting substrate and method of manufacturing the electronic component mounting substrate
JPH088352A (en) Semiconductor device and manufacture of semiconductor mounting board
JPH02224256A (en) Semiconductor element connection structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees