JPH02228542A - Automatic magnetic particle inspection device - Google Patents

Automatic magnetic particle inspection device

Info

Publication number
JPH02228542A
JPH02228542A JP4904489A JP4904489A JPH02228542A JP H02228542 A JPH02228542 A JP H02228542A JP 4904489 A JP4904489 A JP 4904489A JP 4904489 A JP4904489 A JP 4904489A JP H02228542 A JPH02228542 A JP H02228542A
Authority
JP
Japan
Prior art keywords
brightness
image data
distribution
inspected
differentiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4904489A
Other languages
Japanese (ja)
Other versions
JP2682112B2 (en
Inventor
Takahiro Fukui
福井 貴弘
Kazuo Fujimori
藤森 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1049044A priority Critical patent/JP2682112B2/en
Publication of JPH02228542A publication Critical patent/JPH02228542A/en
Application granted granted Critical
Publication of JP2682112B2 publication Critical patent/JP2682112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To always enable automatic judgment of an object to be inspected accurately by arranging a brightness distribution generating means, a differentiation means and a binarizing means. CONSTITUTION:An object W to be inspected having a magnetic powder liquid adhering thereto is taken with a TV camera C and after digitized to a brightness data per pixel, it undergoes a contour accentuation processing by a contour accentuating means BD. Then, an image data thus processed is sent to a brightness distribution generating means M1 and a brightness signal per pixel is rearranged by a brightness to generate a frequency per brightness. Then, in a differentiation means M2, a data of distribution of number of pixels per brightness undergoes a differential computation by brightness to determine a differentiation brightness distribution. Then, a binarizing means M3 determines a threshold according to a rule predetermined from this differentiation brightness distribution to binarize the image data from the means BD by the threshold thus obtained. This enables the obtaining of a binary image of a defect alone extracted thereby achieving automatic judgment of the object W to be inspected accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動磁粉探傷装置、特i:、検査対象物の画像
データを2値化することにより種々の画像解析を行い、
検査対象物の欠陥を判定する装置に間するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is an automatic magnetic particle flaw detection device, and particularly: performs various image analyzes by binarizing image data of an object to be inspected;
It is used in a device that determines defects in an object to be inspected.

[従来の技術] 従来 金属加工物の儂械加工時に生じる割れ及び傷等の
欠陥の検査法 磁粉探傷装置で行われていた しかし、
その欠陥の判定は人の目に依存していたため、欠陥の見
落としや評価の客観性の欠如等の問題があっL そこで、このような問題を解決するため1:、紫外線ラ
ンプ照明の下に現れる、検査対象物の表面に付着した磁
粉の蛍光模様を工業用テレビカメラを用いて撮影し、そ
の画像データを基に様々な解析を行う自動磁粉探傷装置
が種々考案されている。
[Prior art] Conventionally, a method for inspecting defects such as cracks and scratches that occur during machining of metal workpieces was performed using a magnetic particle inspection device.
Since the determination of defects relied on the human eye, there were problems such as oversight of defects and lack of objectivity in evaluation.Therefore, in order to solve such problems, 1. Various automatic magnetic particle flaw detection devices have been devised that use an industrial television camera to photograph the fluorescent pattern of magnetic particles attached to the surface of an object to be inspected, and perform various analyzes based on the image data.

そのような自動磁粉探傷装置では多くの場合、得られた
画像データを2値化して、割礼 傷等を抽出し、良否判
定を行う。詳しく説明すると、例え(戴 ■テレビカメラから出力されるアナログ信号より、画面
を微小領域に分割した画素毎の輝度を求め(デジタル化
)、各画素の輝度が所定の値(閾値)よりも高いか低い
か(明るいか暗いか)により、画素を2種に分ける(2
値化) ■2値化された画像のうち、欠陥に対応する部分を認識
し、その特徴を抽出する(例え(′1 面積を測定する
、最長径を測定する、長短径比をとる等)■抽出された
特徴から、検査対象物の良否を判定する 等の段階を踏んで行われる。
In many cases, such automatic magnetic particle flaw detection equipment binarizes the obtained image data, extracts circumcision scars, etc., and makes a pass/fail judgment. To explain in detail, for example (Dai ■), the screen is divided into minute areas, the brightness of each pixel is determined from the analog signal output from a television camera (digitization), and the brightness of each pixel is higher than a predetermined value (threshold). Pixels are divided into two types depending on whether they are bright or low (bright or dark).
(value) ■Recognize the part corresponding to the defect in the binarized image and extract its features (e.g. ('1 Measuring the area, measuring the longest axis, taking the ratio of major axis to minor axis, etc.) ■The process is carried out in several steps, such as determining the quality of the object to be inspected based on the extracted features.

[発明が解決しようとする課題] 自動磁粉探傷装置において、判定の基礎となる2値化画
像陳 検査対象物に照射する紫外線ランプの光量や検査
対象物に付着した磁粉液の量及び濃度により大きく影響
される。すなわち、閾値を一定としておくと、同一検査
対象物であっても、それらの条件が変動すると、2値化
画イ象において欠陥に相当する部分の形状や面積が変化
し、検査毎に異なった判定結果が生じるという問題があ
る。
[Problem to be solved by the invention] Binary image display, which is the basis for judgment in automatic magnetic particle flaw detection equipment. affected. In other words, if the threshold value is kept constant, even if the same inspection target is used, if these conditions change, the shape and area of the part corresponding to the defect in the binarized image will change, and it will be different for each inspection. There is a problem in that a judgment result occurs.

このうち、紫外線ランプの光量については、その照射量
を一定にするという考案がなされている(実願昭63−
39342号)が、磁粉液濃度・量の変動による影響に
ついては避は難く、画像処理の段階における対処が望ま
れていた 自動磁粉探傷装置で行われる2値化に関しては既に各種
方法が提案されていたが、それら従来の方法には各々問
題があつ旭 そこで、本願発明者は、先に、このような
課題を解決するために、輝度分布におけるピーク輝度を
基に閾値を定め、2値化を行う装置を発明した(特願昭
63−207728号)。
Among these, a method has been devised to keep the amount of light from an ultraviolet lamp constant.
39342), it is difficult to avoid the influence of fluctuations in the concentration and amount of magnetic particle liquid, and various methods have already been proposed for binarization performed in automatic magnetic particle flaw detection equipment, which had been desired to be addressed at the image processing stage. However, each of these conventional methods has its own problems. Therefore, in order to solve these problems, the inventor of the present invention first determined a threshold value based on the peak brightness in the brightness distribution and performed binarization. He invented a device to do this (Japanese Patent Application No. 207728/1983).

この発明はテレビカメラから得られた画像をそのまま2
値化する場合には有効であるが、次のような場合には別
の2値化方法が考慮されなければならない。すなわち、
検出したい欠陥をはっきりと現わすために、テレビカメ
ラから得られた画像を輪郭強調処理する場合である。こ
の処理により、画面中の明るさの異なる部分の境界のみ
が抽出された画像が得ら札 この画像データの輝度分布
層そのような輪郭強調処理を行わない場合と異なり、多
くのピークが現れたものとなったり、輝度ゼロの点で最
大ピークが現れる場合があり得る。このような場合に(
表 前記発明とは別の閾値決定方法が必要となることか
ら、・本発明が成されたものである。
This invention allows images obtained from a television camera to be used as is.
Although it is effective when converting into a value, another binarization method must be considered in the following cases. That is,
This is a case where an image obtained from a television camera is subjected to contour enhancement processing in order to clearly show the defect to be detected. Through this processing, an image is obtained in which only the boundaries of parts of the screen with different brightness are extracted.The brightness distribution layer of this image data.Unlike when such edge enhancement processing is not performed, many peaks appear. The maximum peak may appear at a point where the brightness is zero. In such a case (
Table: The present invention has been made because a threshold value determination method different from the above invention is required.

[課題を解決するための手段] 上記課題を解決するために成された本発明匝第1図にそ
の概念的構成を示すように、磁化させた検査対象物Wの
表面に磁粉液を付着させ、テレビカメラCにより得られ
るその検査対象物表面の画像データを、輪郭強調処理し
た後、2値化して解析することにより検査対象物Wの探
傷を行う自動磁粉探傷装置において、次のような各手段
を備えることを特徴とするものである。
[Means for Solving the Problems] The present invention was developed to solve the above problems.As shown in FIG. 1, the conceptual structure of which is shown in FIG. In an automatic magnetic particle flaw detection device that performs flaw detection on the inspection object W by performing contour enhancement processing on the image data of the surface of the inspection object obtained by a television camera C, and then binarizing and analyzing the image data, the following methods are used. It is characterized by comprising means.

(Ml)輪郭強調処理された画像データより、輝度毎の
画素数の分布曲線を求める輝度分布作成手段(M2)輝
度毎の画素数の分布曲線を微分する微分手比 (M3)微分された分布曲線から定められる閾値により
、上記輪郭強調処理された画イ象データを2値化する2
値化手既 [作用] 磁粉液の付着した検査対象物WはテレビカメラCにより
撮影さ札 画素毎の輝度データにデジタル化された後、
輪郭強調手段BOにより輪郭強調処理が行われる。輪郭
強調処理と(友 画像データに特別な演算を施すことに
より、画面中の背景、検査対象物W、欠陥等の明るさの
異なる部分の間の境界を明確にする処理である。輪郭強
調処理された画像データは輝度分布作成手段Mlに送ら
札 画素毎の輝度信号が輝度により整理されて輝度毎の
頻度(画素数)分布が作成される。微分手段M2で1友
 輝度毎の画素数の分布のデータを輝度により微分(又
はデジタル信号では隣接頻度データの差分)演算を行い
、微分輝度分布を求める。2値化手段M3で1飄 この
微分輝度分布から、予め定められた規則に従って閾値(
輝度)を定め、その閾値により輪郭強調手段80からの
画像データを2値化する。ここで規則と1表 背景、検
査対象物W、対象物W上の欠陥等の各々による輝度分布
を分別するものとして予め定められるものであり、例え
ば、後述する理由によれば、輝度の低い方から2番目の
極小点に当たる輝度の値を閾値とするというようなもの
である。
(Ml) Luminance distribution creation means for calculating the distribution curve of the number of pixels for each luminance from the image data subjected to edge enhancement processing (M2) Differentiator ratio for differentiating the distribution curve of the number of pixels for each luminance (M3) Differentiated distribution 2. Binarize the image data subjected to the contour enhancement process using a threshold value determined from the curve.
Value conversion process [Operation] The inspection object W to which the magnetic powder liquid has adhered is photographed by a television camera C. After being digitized into luminance data for each pixel,
Outline enhancement processing is performed by the edge enhancement means BO. Contour Enhancement Processing (Tomo) This is a process that clarifies the boundaries between parts of the screen with different brightness, such as the background, the object to be inspected, defects, etc. by performing special calculations on image data.Contour Enhancement Processing The resulting image data is sent to the brightness distribution creation means Ml.The brightness signals for each pixel are organized by brightness to create a frequency (number of pixels) distribution for each brightness.The differentiator M2 calculates the number of pixels for each brightness. The distribution data is differentiated by the brightness (or in the case of digital signals, the difference between adjacent frequency data) is calculated to obtain the differential brightness distribution.
The image data from the contour emphasizing means 80 is binarized using the threshold value. Here, rules and table 1 are predetermined to separate the brightness distribution due to the background, the inspection object W, defects on the object W, etc. For example, for the reason described later, the one with lower brightness The luminance value corresponding to the second minimum point is set as a threshold value.

なお、以上の各手段は直接接続されてもよいし、適宜各
手段・装置の間に、中間データを一時的に記憶する手段
を入れてもよい。例えf?  輪郭強調された画像デー
タは直接輝度分布作成手段Mlに送られてもよいが、撮
影さ札 輪郭強調処理された画像データを一旦磁気テー
プ等に記録しておいて、別の機会に輝度分布作成手段M
lへ取り込んでもよい。
Note that each of the above means may be directly connected, or a means for temporarily storing intermediate data may be inserted between each means/device as appropriate. For example, f? The edge-enhanced image data may be directly sent to the brightness distribution creation means Ml, but the edge-enhanced image data may be temporarily recorded on a magnetic tape or the like and the brightness distribution created at another time. Means M
It may be imported into l.

[実施例] 本発明の実施例を第2図〜第6図により説明する。本実
施例の自動磁粉探傷装置は、第2図に示す通り、磁粉液
の付着した検査対象物2を照射する紫外線ランプ4、検
査対象物2を撮影するテレビカメラ6、テレビカメラ6
からの画像信号を入力して、後述の各種データ処理を行
う画像処理装置(IPU)10及びIPUIOから出力
されるデータ処理前後の画像を映し出すビデオモニタ2
0とから成る。
[Example] An example of the present invention will be described with reference to FIGS. 2 to 6. As shown in FIG. 2, the automatic magnetic particle flaw detection apparatus of this embodiment includes an ultraviolet lamp 4 that irradiates the inspection object 2 to which magnetic particle liquid has adhered, a television camera 6 that photographs the inspection object 2, and a television camera 6 that photographs the inspection object 2.
An image processing unit (IPU) 10 that inputs image signals from and performs various data processing described below, and a video monitor 2 that displays images before and after data processing output from the IPUIO.
Consists of 0.

P U 10はコンピュータであり、CPUII、RO
M 12、RA M 13、ビデオRA M +4、A
/D変換器15及び外部入出力回路16を備える。RO
M12は以下に説明するような処理のプログラムや所定
の定数等を予め記憶しており、 RAM13は以下の処
理における演算途中のデータを一時的に°記憶する。
P U 10 is a computer, CPU II, RO
M 12, RAM 13, Video RAM +4, A
/D converter 15 and external input/output circuit 16. R.O.
The M12 stores in advance processing programs and predetermined constants as will be explained below, and the RAM 13 temporarily stores data during calculations in the following processing.

ビデオRAM14はデジタル化された画像データを格納
しておくものである。なお、 IPUIOはこの他に、
画像データ等を記録するための外部記憶装置を備えてい
てもよい。
The video RAM 14 stores digitized image data. In addition to this, IPUIO also has
It may also include an external storage device for recording image data and the like.

(1割れ等の欠陥1がある思われると検査対象物2は磁
化さ札 磁粉を含む蛍光液中に浸漬されてから引き上げ
られる。表面あるいは表面近傍に欠陥1がある場合には
、そこから磁束が漏れるため、磁粉液が他の部分よりも
多量に付着する。このような部分は、紫外線ランプ4の
照射により、他の部分よりも明るく現れる。
(If a defect 1 such as a crack is found, the object 2 to be inspected is magnetized. It is immersed in a fluorescent liquid containing magnetic particles and then pulled up. If there is a defect 1 on the surface or near the surface, the magnetic flux flows from there. As a result, a larger amount of magnetic powder liquid adheres to the magnetic powder than other parts.Such parts appear brighter than other parts when irradiated with the ultraviolet lamp 4.

テレビカメラ6はそのような映像を撮影し、画像信号を
IPUIOに送る。 IPUIOで(戴 二の信号に対
して所定のデータ処理を行い、検査対象物2の欠陥の有
無及び度合を判定する。以下、 IPUIOにおいて行
われる処理を第3図のフローチャートに従って説明する
The television camera 6 captures such an image and sends an image signal to the IPUIO. The IPUIO performs predetermined data processing on the second signal to determine the presence or absence and degree of defects in the inspection object 2. The processing performed in the IPUIO will be described below with reference to the flowchart in FIG.

本ルーチンが開始すると、先ずステップ100で、テレ
ビカメラ6からの画像信号を入力する。テレビカメラ6
から出力される画像信号はアナログ信号であるため、A
/D変換器15により所定の周期で量子化さ札 所定数
の画素に分割される。これにより、各画素のデジタル化
された輝度が得られる。この各画素の輝度データは一旦
ビデオRAM14に記憶される。
When this routine starts, first, in step 100, an image signal from the television camera 6 is input. TV camera 6
Since the image signal output from A is an analog signal,
The /D converter 15 divides the quantized tag into a predetermined number of pixels at a predetermined period. This provides the digitized brightness of each pixel. This luminance data of each pixel is temporarily stored in the video RAM 14.

このようにして得られたデジタル画像信号に対して、ス
テップ110では、ノイズ(信号ノイズ)除去のため、
平滑化処理を行う。これ(瓢 例えば、ある画素の輝度
の値に、上下左右斜めの周囲にある8画素の輝度の値を
加え、それを9で除してその画素の値とする、というデ
ータ処理により行える。これにより、 1画素単位で散
発的に現れる信号ノイズは、はぼ除去される。
With respect to the digital image signal obtained in this way, in step 110, in order to remove noise (signal noise),
Perform smoothing processing. For example, this can be done by data processing that adds the brightness values of eight surrounding pixels vertically, horizontally, and diagonally to the brightness value of a certain pixel, and divides it by 9 to obtain the value of that pixel. As a result, signal noise that appears sporadically on a pixel basis is removed.

次にステップ120で、欠陥部分を強調するため、輪郭
強調処理を行う。これは、例えば、次のような方法で行
うことができる。ある画素の上記周囲8画素のうち、左
側1列の3画素の値には−1(あるいは−1,−2,−
1等でもよい)、右側1列の3画素の値には+1(ある
いは+1.’+2.+1等)の重みをつけて加える。同
様に上側1列の3画素にマイナス、下側1列の3画素に
プラスの重みをつけて加える。
Next, in step 120, contour enhancement processing is performed to emphasize the defective portion. This can be done, for example, in the following way. Among the 8 pixels surrounding a certain pixel, the values of 3 pixels in the first row on the left are -1 (or -1, -2, -
1), and the values of the three pixels in the first row on the right are weighted with +1 (or +1.'+2.+1, etc.). Similarly, the three pixels in the upper row are given negative weights, and the three pixels in the lower row are given positive weights.

これらの値の和をその画素の値とするのである。The sum of these values is taken as the value of that pixel.

この演算を行う画素がほとんど輝度変化の無い領域の中
にある場合にはこの値はゼロとなるが、その画素が境界
部分にあるときに(上 正又は負の値として現れる。
If the pixel on which this calculation is performed is in an area where there is almost no change in brightness, this value will be zero, but if the pixel is in a boundary area, it will appear as a positive or negative value.

このようにして輪郭強調された画像データに対して、ス
テップ130で、輝度毎に画素数をカウントし、輝度分
布を得る。この輝度分布の例を第4図(A)、(B)、
(C)に示す。・第4図(A)は欠陥の無い検査対象物
2の画像の輝度分布カーブ、(B)および(C)は欠陥
のある検査対象物2のカーブの例であるが、(8)の方
は磁粉液の濃度が高い場合、(C)の方は磁粉液の濃度
が低い場合のカーブを示す。これら輪郭強調処理された
後のカーブで(よ いずれの場合でも、いくつかのピー
クと谷が現れることが特徴的である。
In step 130, the number of pixels of the image data whose contours have been enhanced in this way is counted for each luminance to obtain a luminance distribution. Examples of this brightness distribution are shown in Figure 4 (A), (B),
Shown in (C).・Figure 4 (A) is an example of the brightness distribution curve of the image of the inspection object 2 without defects, (B) and (C) are examples of the curves of the inspection object 2 with defects, but the one in (8) is (C) shows the curve when the concentration of the magnetic powder liquid is high, and (C) shows the curve when the concentration of the magnetic powder liquid is low. The curves after contour enhancement are characterized by the appearance of several peaks and valleys in each case.

これらの輝度分布カーブは第5図のように分解すること
ができる。すなわち、全体の輝度分布は、I)検査対象
物2でない、バックグラウンドによるカーブ50.11
)検査対象物2全体によるカーブ52、それに、目1)
検査対象物2上の欠陥1、あるいは欠陥ではないが磁粉
液が部分的に付着すること(磁粉付着ノイズ)によるカ
ーブ54、の3つのカーブの重ね合わせとなる。従って
、この画像データを2値化する場合に(飄 第2と第3
のカーブ52.54の境界(谷間)56を閾値とするこ
とが妥当である。なお、テレビカメラ6の視野の中でバ
ックグラウンドの占める部分が多い場合に(友 第5図
に示すよう1:、最も輝度の低い分布50のピークが最
大ピークとなる。従って、最大ピークの輝度値を基に閾
値を決定することは、今の場合には、妥当ではない。
These brightness distribution curves can be decomposed as shown in FIG. That is, the entire brightness distribution is I) a curve 50.11 due to the background, which is not the object to be inspected 2.
) Curve 52 due to the entire inspection object 2, and eye 1)
This is a superposition of three curves: the defect 1 on the inspection object 2, or the curve 54 due to partial adhesion of magnetic powder liquid (magnetic particle adhesion noise) although it is not a defect. Therefore, when binarizing this image data (2nd and 3rd
It is appropriate to use the boundary (valley) 56 of the curves 52 and 54 as the threshold. Note that when the background occupies a large portion of the field of view of the television camera 6 (as shown in Figure 5), the peak of the distribution 50 with the lowest luminance becomes the maximum peak. Therefore, the luminance of the maximum peak Determining the threshold based on the value is not appropriate in the present case.

しかし、この谷間56を検出すること(飄 実際上難し
い。例えば、第3のカーブ54は欠陥1の有無あるいは
磁粉液の濃度により54a(欠陥有り・磁粉液濃度低)
、54b(欠陥有り・磁粉液濃度低) 、54c(欠陥
無し)のように変化する。また、第2のカーブ52も磁
粉液濃度の大小により、左右にシフトする。一方、第1
のカーブ50はそれらの条件により変動しない。従って
、それらのカーブ50.52.54の間の谷間56.5
8も、条件によって、明確に現れる場合もあり、現れな
い場合も有り得る。第4図(^)、(C)では第1の谷
間60.62が現れていない。従って、輪郭強調画像か
ら得られた輝度分布カーブからそのまま第2の谷間65
,66.67のみを検出することは難しい。
However, it is difficult to detect this valley 56 in practice.For example, the third curve 54 is determined by the presence or absence of defect 1 or the concentration of magnetic powder liquid 54a (defect present/low concentration of magnetic powder liquid).
, 54b (with defects/low concentration of magnetic powder liquid), and 54c (with no defects). Further, the second curve 52 also shifts left and right depending on the magnitude of the magnetic powder liquid concentration. On the other hand, the first
The curve 50 does not vary depending on these conditions. Therefore, the valley 56.5 between those curves 50.52.54
8 may or may not appear clearly depending on the conditions. In FIGS. 4(^) and (C), the first valley 60.62 does not appear. Therefore, the second valley 65 can be determined directly from the brightness distribution curve obtained from the contour-enhanced image.
, 66.67 is difficult to detect.

そこで、欠陥]のみを正確に識別するために、本発明で
は以下の処理により閾値を定める。まず、ステップ14
0で、輝度分布カーブ(第4図(A)、 CB)、(C
))を次の式によって、微分・平滑化する。
Therefore, in order to accurately identify only defects, in the present invention, a threshold value is determined by the following process. First, step 14
0, the brightness distribution curves (Fig. 4 (A), CB), (C
)) is differentiated and smoothed using the following formula.

y(i)=x(i)−x(i+I) z(i)= (y(i−1)+y(i)+y(i+1)
)/3ただし、x(i)は元の輝度分布カーブの各点の
(tiLz(i)は微分・平滑化処理されたカーブの各
点の値である。第4図(A)、(B)、(C)の各カー
ブに対してこの演算を行った結果を第6図(A)、(B
)、(C)に示す。
y(i)=x(i)-x(i+I) z(i)=(y(i-1)+y(i)+y(i+1)
)/3 However, x(i) is the value of each point of the original brightness distribution curve (tiLz(i) is the value of each point of the differentiated and smoothed curve. ) and (C), the results of this calculation are shown in Figure 6 (A) and (B).
) and (C).

この微分・平滑化処理を行うことにより、元の輝度分布
カーブで第1あるいは第2の谷間60.61.62.6
5.66J67が現れない場合でも、それらの位置に相
当する輝度値を検出することができ、欠陥1のみを正確
に現す2値化を行うことができるようになる。その理由
は、次の通りである。前記のような独立に滑らかな分布
を有するカーブが2つ重ね合わされるとき、たとえそれ
らの間に谷間が現れなくても、その代わりに変曲点が両
カーブの間に現れる。この変曲点(飄 元のカーブを微
分したカーブの極大又は極小点として現れることから、
微分カーブで極大又は極小点をとれ(戯 元のカーブの
変曲点を知ることできる。従って、第4図(^)、(B
)、(C)の分布カーブの第2の谷間65.66.67
に相当する輝度を求めようとすれ(fS  第6図(A
)、(B)、(C)の微分カーブの輝度の低い方から2
番目の極小点75.76.77をとればよいことになる
。ステップ150ではこの2番目の極小点乃、76.7
7の輝度を検出し、それを2値化の閾値Thとする。
By performing this differentiation/smoothing process, the first or second valley 60.61.62.6 in the original brightness distribution curve
Even if 5.66J67 does not appear, the luminance values corresponding to those positions can be detected, and binarization that accurately represents only defect 1 can be performed. The reason is as follows. When two curves having independently smooth distributions as described above are superimposed, even if no valley appears between them, an inflection point will instead appear between both curves. Since this inflection point appears as the maximum or minimum point of the curve that differentiates the original curve,
Find the maximum or minimum point on the differential curve (you can know the inflection point of the original curve. Therefore, Figure 4 (^), (B
), the second valley of the distribution curve of (C) 65.66.67
Let's try to find the luminance corresponding to (fS Figure 6 (A
), (B), and (C) from the lowest brightness of the differential curve.
It is sufficient to take the lowest point 75.76.77. In step 150, this second minimum point, 76.7
The brightness of 7 is detected and set as the binarization threshold Th.

次のステップ160では、ステップ100でビデオRA
M14に記憶された各画素の輝度データを閾値Thと比
較することにより、 2値化する。例えば、ある画素の
輝度Bが、B<Thであればその画素には値Oが与えら
iB≧Thであればその画素には値1が与えられる。こ
のようにして2値化された画像データもビデオRA M
 14の別の領域に記憶される。
In the next step 160, in step 100 the video RA
The luminance data of each pixel stored in M14 is compared with a threshold Th to binarize it. For example, if the brightness B of a certain pixel is B<Th, the pixel is given the value O, and if iB≧Th, the pixel is given the value 1. The image data binarized in this way is also stored in the video RAM.
It is stored in 14 separate areas.

ステップ170で(友 2値化された検査対象物2の画
像から、特徴抽出を行う。特徴抽出1表 検査の目的に
応じて最適な方法が選ばれる。
At step 170, features are extracted from the binarized image of the inspection object 2. An optimal method is selected depending on the purpose of the inspection.

例えば、輪郭強調画像の2値化データから、各欠陥1に
対応する島に番号付けを行う(ラベリング)。そして、
ラベリングされた各島の面積を求める。これは、画素数
によって求められる。これらの中の最大面積を特徴とし
て抽出するのである。
For example, numbers are assigned to islands corresponding to each defect 1 from the binarized data of the contour-enhanced image (labeling). and,
Find the area of each labeled island. This is determined by the number of pixels. The maximum area among these is extracted as a feature.

ここで、面積以外に、最大長さや長短比等を特徴として
もよい。
Here, in addition to the area, the maximum length, length ratio, etc. may be used as a feature.

ステップ180で1上 そのように抽出された画像の特
徴に応じて、検査対象物2の良否を判定する。
In step 180, the quality of the inspection object 2 is determined according to the features of the image thus extracted.

例え(戯 最大面積が所定値以上の検査対象物2を不良
とする等である。以上で本ルーチンを終了する。なお、
ビデオRA M 14に記憶された原画像データや2値
化された画像データは、適宜ビデオモニタ20に映し出
される。
For example, an inspection object 2 whose maximum area is greater than or equal to a predetermined value is determined to be defective. This completes this routine.
The original image data and the binarized image data stored in the video RAM 14 are displayed on the video monitor 20 as appropriate.

以上説明した通り、本実施例では、取り込んだ画像デー
タの2値化に際して、その閾値Thを、その輝度分布の
微分カーブの2番目の極小点の輝度値に基づいて決定す
る。この点は第5図のカーブ52と54との境界点56
に相当し、それよりも輝度の高い画素のみを取り出すこ
とにより、欠陥]のみを正確に抽出した2値化が行える
。従って、例えば検査対象物2に付着する磁粉液の量や
濃度が増加して全体の明るさが増加しても、それに応じ
て閾値も増加するため、2値化画像の欠陥に相当する部
分の形状や面積はほとんど変化せず、検査結果(判定)
にはほとんど影響を及ぼさない。
As described above, in this embodiment, when the captured image data is binarized, the threshold Th is determined based on the luminance value of the second minimum point of the differential curve of the luminance distribution. This point is the boundary point 56 between curves 52 and 54 in FIG.
By extracting only the pixels that correspond to and have higher luminance than that, it is possible to perform binarization that accurately extracts only the defect. Therefore, for example, even if the overall brightness increases due to an increase in the amount or concentration of magnetic powder liquid adhering to the inspection object 2, the threshold value will also increase accordingly, so that the portion corresponding to the defect in the binarized image will increase. There is almost no change in shape or area, and the inspection results (judgment)
has almost no effect.

[発明の効果] 本発明では、輪郭強調された画像データの輝度分布カー
ブに対して微分処理を行い、その微分カーブに基づいて
2値化のための閾値を定める。従って、輪郭強調された
輝度分布カーブでは判別し難い欠陥と検査対象物表面と
の境界の輝度閾値も明確に判定できるようになり、欠陥
のみを抽出した正確な2値化画像を得ることができる。
[Effects of the Invention] In the present invention, a differential process is performed on a brightness distribution curve of image data whose contours have been enhanced, and a threshold value for binarization is determined based on the differential curve. Therefore, it is now possible to clearly determine the brightness threshold at the boundary between a defect and the surface of the object to be inspected, which is difficult to distinguish using a contour-enhanced brightness distribution curve, and it is possible to obtain an accurate binarized image in which only the defect is extracted. .

このため、磁粉液の濃度や光源からの光量の大小等に左
右されず、しかも、欠陥の輪郭が明確に現れた画像を得
ることができ、検査対象物の自動判定が常二正確に行え
るようになる。
Therefore, it is possible to obtain an image in which the outline of the defect is clearly shown, regardless of the concentration of the magnetic powder liquid or the amount of light from the light source, so that automatic judgment of the inspection object can always be performed accurately. become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための概念的構成医第2図は
本発明の実施例である自動磁粉探傷装置の構成を示すブ
ロック医 第3図はその探傷装置で行われる処理のフロ
ーチャート、第4図(A)、(B)、(C)は輪郭強調
画像の輝度分布を示すグラフ、第5図は輝度分布カーブ
を分解した説明医 第6図(A)、 (B)、 (C)
は各々第4図(A)、(B)、(C)のカーブを微分・
平滑処理したカーブを示すグラフである。 第1図 1・・・欠肱        2・・・検査対象気4・
・・光;凰        6・・・テレビカメラ、l
O・・・画像処理装置
FIG. 1 is a conceptual diagram for explaining the present invention. FIG. 2 is a block diagram showing the configuration of an automatic magnetic particle flaw detection device that is an embodiment of the present invention. FIG. 3 is a flowchart of the processing performed by the flaw detection device. Figures 4 (A), (B), and (C) are graphs showing the brightness distribution of contour-enhanced images, and Figure 5 is an explanatory diagram that decomposes the brightness distribution curve. )
are the differentiators of the curves in Figure 4 (A), (B), and (C), respectively.
It is a graph showing a smoothed curve. Figure 1 1... Missing elbow 2... Test target Qi 4.
...light; 凰 6...TV camera, l
O...Image processing device

Claims (1)

【特許請求の範囲】 磁化させた検査対象物の表面に磁粉液を付着させ、テレ
ビカメラにより得られるその検査対象物表面の画像デー
タを、輪郭強調処理した後、2値化して解析することに
より、検査対象物の探傷を行う自動磁粉探傷装置におい
て、 輪郭強調処理された画像データより、輝度毎の画素数の
分布曲線を求める輝度分布作成手段と、輝度毎の画素数
の分布曲線を微分する微分手段と、 微分された分布曲線から定められる閾値により、上記輪
郭強調処理された画像データを2値化する2値化手段と を備えることを特徴とする自動磁粉探傷装置。
[Claims] By attaching a magnetic powder liquid to the surface of a magnetized object to be inspected, and performing contour enhancement processing on the image data of the surface of the object to be inspected obtained by a television camera, the image data is binarized and analyzed. , in an automatic magnetic particle flaw detection device that detects flaws on an inspection object, a brightness distribution creation means that calculates a distribution curve of the number of pixels for each brightness from image data that has been subjected to contour enhancement processing, and differentiates the distribution curve of the number of pixels for each brightness. An automatic magnetic particle flaw detection apparatus comprising: a differentiator; and a binarizer that binarizes the image data subjected to the contour enhancement process using a threshold determined from the differentiated distribution curve.
JP1049044A 1989-03-01 1989-03-01 Automatic magnetic particle flaw detector Expired - Lifetime JP2682112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049044A JP2682112B2 (en) 1989-03-01 1989-03-01 Automatic magnetic particle flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049044A JP2682112B2 (en) 1989-03-01 1989-03-01 Automatic magnetic particle flaw detector

Publications (2)

Publication Number Publication Date
JPH02228542A true JPH02228542A (en) 1990-09-11
JP2682112B2 JP2682112B2 (en) 1997-11-26

Family

ID=12820086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049044A Expired - Lifetime JP2682112B2 (en) 1989-03-01 1989-03-01 Automatic magnetic particle flaw detector

Country Status (1)

Country Link
JP (1) JP2682112B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050231A (en) * 2001-08-06 2003-02-21 Showa Corp Pipe magnetic powder flaw detector
JP2006138708A (en) * 2004-11-11 2006-06-01 Tokyo Seimitsu Co Ltd Image flaw inspection method, image flaw inspecting device and visual inspection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189406A (en) * 1985-02-19 1986-08-23 Hitachi Ltd Pattern binarization method and its device
JPS6382358A (en) * 1986-09-26 1988-04-13 Sumitomo Metal Ind Ltd Magnetic powder-based flaw detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189406A (en) * 1985-02-19 1986-08-23 Hitachi Ltd Pattern binarization method and its device
JPS6382358A (en) * 1986-09-26 1988-04-13 Sumitomo Metal Ind Ltd Magnetic powder-based flaw detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050231A (en) * 2001-08-06 2003-02-21 Showa Corp Pipe magnetic powder flaw detector
JP2006138708A (en) * 2004-11-11 2006-06-01 Tokyo Seimitsu Co Ltd Image flaw inspection method, image flaw inspecting device and visual inspection device

Also Published As

Publication number Publication date
JP2682112B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
Li et al. Improving automatic detection of defects in castings by applying wavelet technique
JP2742240B2 (en) Defect detection method in inspection of structure surface
JPH0467275A (en) Recognizing method and recognizing device
JP2001184510A (en) Defect detecting method
Ma et al. A machine vision assisted system for fluorescent magnetic particle inspection of railway wheelsets
KR100754969B1 (en) Image inspecting apparatus, image inspecting method, and computer-readable storage medium
JP3034975B2 (en) Pattern feature extraction method
JPH02228542A (en) Automatic magnetic particle inspection device
JPH06207909A (en) Inspection apparatus for surface defect
JPH0337564A (en) Automatic magnetic-particle examination apparatus
JP3635762B2 (en) Inspection method of semiconductor substrate surface defects
JPS5975140A (en) Device and method for inspecting defect
JP2001028059A (en) Method and device for color unevenness inspection
JPH07333197A (en) Automatic surface flaw detector
JPH08145907A (en) Inspection equipment of defect
JP2711649B2 (en) Surface scratch detection method for inspection object
US5146311A (en) Method of indentifying and quantifying oxides on rolled metal strip
JP2564737B2 (en) Automatic magnetic particle flaw detector
JPH07119713B2 (en) Automatic extraction processing method of welding defect image in radiation test
Rajab et al. Application of frequency domain processing to X-ray radiographic images of welding defects
JPH10232206A (en) Method and device for detecting metal surface discontinuity
JPH0255948A (en) Automatic magnetic powder flaw-detector
JPS6385432A (en) Inspecting method for linear defect
JPH0735699A (en) Method and apparatus for detecting surface defect
JPH0682390A (en) Method and apparatus for inspecting surface defect