JPH02228389A - Self-activating zinc oxide phosphor - Google Patents

Self-activating zinc oxide phosphor

Info

Publication number
JPH02228389A
JPH02228389A JP1050456A JP5045689A JPH02228389A JP H02228389 A JPH02228389 A JP H02228389A JP 1050456 A JP1050456 A JP 1050456A JP 5045689 A JP5045689 A JP 5045689A JP H02228389 A JPH02228389 A JP H02228389A
Authority
JP
Japan
Prior art keywords
phosphor
sulfur
self
zinc oxide
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1050456A
Other languages
Japanese (ja)
Other versions
JP2535218B2 (en
Inventor
Nobuaki Fujii
伸明 藤井
Mizuho Takeda
武田 水保
Takeshi Nakamura
武 中村
Katsunori Uchimura
内村 勝典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP1050456A priority Critical patent/JP2535218B2/en
Publication of JPH02228389A publication Critical patent/JPH02228389A/en
Priority to JP5160378A priority patent/JPH07116425B2/en
Application granted granted Critical
Publication of JP2535218B2 publication Critical patent/JP2535218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain the title phosphor which has excellent luminous efficiency and life and can be stably manufactured, by incorporating a specified amount of sulfur into a base phosphor. CONSTITUTION:For example, ZnCO3 and ZnS are mixed under prescribed conditions and baked so as to produce a base phosphor containing 1-100ppm sulfur.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、主として、蛍光表示管やフライングスボ・ソ
ト管に使用される自己付活酸化亜鉛蛍光体に関する。
The present invention relates primarily to a self-activating zinc oxide phosphor used in fluorescent display tubes and Flying Subo-Soto tubes.

【従来の技術】[Conventional technology]

自己付活酸化亜鉛蛍光体は、習慣的にZnO:Znと書
かれている。この蛍光体は、導電性があるために、蛍光
表示管用として重要である。低速電子線で刺激されて、
青緑色に発光し、優れた発光特性を有する。 ZnO: Zn蛍光体は、母体構成元素と同じ亜鉛を付
活剤とするため、付活剤のZnを特定することが困難で
ある。このことは本蛍光体の特性を改良することを著し
く難しくしている。 この蛍光体の製造においては、製造者が経験で、焼成雰
囲気を調整して付活剤となるZnfltを特定している
。すなわち、熟練者の感が、本蛍光体の性能を左右する
重要な要件となっている。従って、安定して優れた特性
のZnO:Zn蛍光体を製造することは、極めて困難を
伴っていた。 このため、発光効率が高く、しかも、寿命特性の優れた
自己付活酸化亜鉛蛍光体を安定に製造できる技術開発が
切望されていた。
Self-activated zinc oxide phosphors are customarily written as ZnO:Zn. This phosphor is important for use in fluorescent display tubes because of its electrical conductivity. Stimulated by a slow electron beam,
It emits blue-green light and has excellent luminescent properties. ZnO: Since Zn phosphor uses zinc, which is the same as the host constituent element, as an activator, it is difficult to specify Zn as the activator. This makes it extremely difficult to improve the properties of the present phosphor. In manufacturing this phosphor, the manufacturer uses experience to adjust the firing atmosphere and specify Znflt as the activator. In other words, the impression of a skilled person is an important factor that influences the performance of the present phosphor. Therefore, it has been extremely difficult to produce a ZnO:Zn phosphor with stable and excellent characteristics. Therefore, there has been a strong desire to develop a technology that can stably produce self-activated zinc oxide phosphors with high luminous efficiency and excellent lifetime characteristics.

【発明の目的】[Purpose of the invention]

本発明はこの要求に答えるために開発されたものである
。この発明の重要な目的は、発光効率、並びに寿命特性
ともに優れ、しかも安定に製造できるZnO:Zn蛍光
体を提供することにある。
The present invention was developed to meet this need. An important object of the present invention is to provide a ZnO:Zn phosphor that has excellent luminous efficiency and lifetime characteristics and can be stably manufactured.

【従来の課題を解決する為の手段】[Means to solve conventional problems]

本発明のZnO: Z0蛍光体は、共付活剤としてイオ
ウを導入している。一定量のイオウを導入することによ
り、付活量を特定して発光効率を制御している。 さらに、好ましくは、自己付活酸化亜鉛蛍光体を表面処
理物質で被覆している。表面処理物質には、アルミナ変
形型コロイダルシリカを使用している。表面処理物質の
付着量は、0.001〜0゜11徹%とじている。表面
処理物質は、自己付活酸化クト鉛蛍光体の寿命特性を大
幅に改良する。
The ZnO:Z0 phosphor of the present invention incorporates sulfur as a co-activator. By introducing a certain amount of sulfur, the amount of activation is specified and the luminous efficiency is controlled. Furthermore, preferably the self-activated zinc oxide phosphor is coated with a surface treatment material. Alumina deformed colloidal silica is used as the surface treatment material. The amount of surface treatment substance deposited is 0.001 to 0.11%. The surface treatment material significantly improves the lifetime characteristics of the self-activated ctlead oxide phosphor.

【作用】[Effect]

酸化亜鉛蛍光体の発光輝度を高めるために最も大きな要
因は、発光中心の濃度と、結晶内における発光中心の幾
何学的な配置である。発光中心は、多すぎても、少なす
ぎても発光輝度が低下する。 それは、発光中心が多すぎると濃度消光が起こり、反対
に少ないと発光効率が減少することが理由である。 また、発光中心の結晶内における幾何学的な配列が、理
想的な結晶の配列に比較して偏っていると、高い発光輝
度が得られないことも究明されている。 発光中心の幾何学的配列を制御できるなら、高い発光効
率を維持できる。 本発明者等は種々実験を繰り返した結果、ZnO:Zn
蛍光体の母体中に、イオウを適量導入させることにより
、発光効率、ひいては発光中心の量と、結晶内への配置
を制御できることを見いだした。 イオウ(S)は、付活剤となる亜鉛量と、付活剤の結晶
内への適正配置を助ける働きをし、しかも、一部はZn
O:Z、nの結晶構造に含有される。 イオウ(S)の含有量は、好ましくは、1100PP以
下に調整される。さらに好ましくは、イオウ(S)の含
有量を、5〜50ppmの範囲に調整すると、ZnO:
 Zn蛍光体は、最も発光効率が高くなる。 第1図に、イオウ(S)の含有量に対するZn0:Zn
蛍光体の相対発光輝度を示す。この図に示すように、イ
オウ(S)の含有量がloppm以下の範囲では、イオ
ウ(S)の含有量が多くなるほど、発光輝度が高くなる
。イオウ(S)の含有量が10pptn以上になると発
光輝度は次第に低下する。 ただし、第1図はイオウ(S)を含まないZnO:Zn
蛍光体の輝度を100%として、相対発光輝度を測定し
ている。 また、自己付活酸化亜鉛蛍光体であって、アルミナ変形
型コロイダルシリカ等の表面処理物質で被覆されたZn
O: Zn蛍光体は、蛍光表示管に使用して寿命特性を
著しく改善することもできる。 その理由は総て明かではないが、表面にある5102や
AQ203が、結晶表面のZnを、電子線の連続刺激に
よる温度上昇化、熱還元による結晶表面の化学変化を抑
制するからである。結晶表面にある付活剤Znが、Si
O2またはA (L 203によって、電子線の連続刺
激から防御することによると考えられる。 【好ましい実施例] 以下、実施例について説明するが、本発明は実施例に限
られるものではない。 [実施例1] 蛍光体原料として、 Z n C0a−1k g ZnS・・・・・・・・・・・・5g 混合する。 混合物を石英ルツボに充填し、ルツボを焼成炉に入れて
焼成する。 焼成工程においては、焼成炉内に、体積比で、98:2
の比率で、窒素ガスと水素ガスとが混合された気体を供
給し、この混合ガス雰囲気で、2時間還元焼成する。焼
成温度は、850’Cとした。 その後、焼成品をルツボから取り出してほぐし、水洗し
後、分離して乾燥する。 得られた自己付活酸化亜鉛蛍光体は、10ppmのイオ
ウ(S)を含有していた。また。この蛍光体は、ZnS
を添加しない以外、同様にして焼成した従来のZnO:
Zn蛍光体に比較して、相対発光輝度が約60%向上し
た。相対発光輝度は、低速電子線デイマンタプル装置に
て50V、1mAの条件にて輝度を測定した。 [実施例2〜8] Z n Sの添加量を調整する以外、実施例1と同様に
してZnO:Zn蛍光体を製造した。 ZnSの添加量は、Z n CO3を1kgに対して、
Ig、3g、10g、15g、17g、20g、25g
、30gとした。 得られたZnO:Zn蛍光体は、第1表に示すように、
順番にイオウ(S)の含有量が、1.  lppm、5
.2ppm、21 ppm、32ppm。 42ppm% 55 p p m、 75 p p m
、  931) pmとなり、相対発光輝度が順番に、
110%、155%、177%、180%、172%、
152%123%、105%となった。 [実施例10] 実施例1で得られた蛍光体に下記の処理を施して、バー
ニング特性を改善した。 ■ 水洗後、フルイにかけたZnO: Zn蛍光第1表 第2表 50VImAI20時間 体600gを、1. 5αの水に懸濁させる。 ■ アルミナ変成型コロイダルシリカ(商品名「ルドッ
クスAMJデュポン社製−濃度20重量%)1.3mj
lと、2%のZn5Oa溶液1.6mlとを、■の蛍光
体懸濁液に滴下し、アルミナ変成型コロイダルシリカを
蛍光体の表面に付着した。 分離乾燥した蛍光体を分析した結果、この蛍光体は、0
.039重量%のシリカ、0.001重量%のアルミナ
を含有し、両者で0.04重量%の付着量であった。 この蛍光体は、120時間のバーニング試験の後の発光
輝度が95%もあり、わずかに5%しか輝度が低下しな
かった。バーニング試験は、低速電子線デイマンタプル
装置にて50V−1mAの条件で電子線刺激した。 [実施例11〜15コ 蛍光体に対するアルミナ変成型コロイダルシリカの混合
量を調整する以外、実施例10と同様にして、蛍光体の
表面をコーティングした。 得られた蛍光体の、シリカとアルミナの総量を測定し、
また、バーニング後の発光輝度を測定した。測定結果を
第2表に示す。ただし、バーニング試験後の輝度は、バ
ーニング試験萌の輝度を基準にしている。 この表から明かなように、アルミナ変成型コロイダルシ
リカを使用して表面コーティングされたZnO:Zn蛍
光体は、優れたバーニング特性を示す。付着量が0.0
4重量%以下の範囲では、付着量が増加するとバーニン
グ特性も向上する。 0.04重量%以上になると、バーニング特性は次第に
低下する。 また、コロイダルシリカに加えアルミナゾルを混合し、
表面コーティングしても効果はある。
The most important factors for increasing the luminance of a zinc oxide phosphor are the concentration of luminescent centers and the geometrical arrangement of luminescent centers within the crystal. If there are too many or too few luminescent centers, the luminance will decrease. This is because if there are too many luminescent centers, concentration quenching will occur, whereas if there are too few luminescent centers, the luminous efficiency will decrease. It has also been found that high luminance cannot be obtained if the geometrical arrangement of the luminescent centers within the crystal is biased compared to the ideal crystal arrangement. If the geometrical arrangement of the luminescent centers can be controlled, high luminous efficiency can be maintained. As a result of repeated various experiments, the inventors found that ZnO:Zn
We have discovered that by introducing an appropriate amount of sulfur into the matrix of the phosphor, it is possible to control the luminous efficiency, as well as the amount of luminescent centers and their arrangement within the crystal. Sulfur (S) functions to help reduce the amount of zinc that acts as an activator and to properly arrange the activator within the crystal, and some of it also
O: Contained in the crystal structure of Z, n. The content of sulfur (S) is preferably adjusted to 1100 PP or less. More preferably, when the sulfur (S) content is adjusted to a range of 5 to 50 ppm, ZnO:
Zn phosphor has the highest luminous efficiency. Figure 1 shows the relationship between Zn0:Zn and the sulfur (S) content.
It shows the relative luminance of the phosphor. As shown in this figure, in a range where the sulfur (S) content is loppm or less, the luminance increases as the sulfur (S) content increases. When the sulfur (S) content becomes 10 pptn or more, the luminance gradually decreases. However, Figure 1 shows ZnO:Zn which does not contain sulfur (S).
Relative luminance is measured with the luminance of the phosphor as 100%. In addition, Zn is a self-activating zinc oxide phosphor and is coated with a surface treatment substance such as alumina-deformed colloidal silica.
O:Zn phosphors can also be used in fluorescent display tubes to significantly improve lifetime characteristics. The reason for this is not entirely clear, but it is because 5102 and AQ203 on the surface suppress the temperature rise of Zn on the crystal surface due to continuous stimulation with electron beams and chemical changes on the crystal surface due to thermal reduction. The activator Zn on the crystal surface is Si
This is thought to be due to protection from continuous stimulation of electron beams by O2 or A (L 203). [Preferred Examples] Examples will be described below, but the present invention is not limited to the Examples. [Implementation] Example 1] Mix 5 g of Z n C0a-1 kg ZnS as a phosphor raw material. The mixture is filled into a quartz crucible, and the crucible is placed in a firing furnace and fired. Firing In the process, a volume ratio of 98:2 is placed in the firing furnace.
A gas mixture of nitrogen gas and hydrogen gas is supplied at a ratio of 1, and reduction firing is performed for 2 hours in this mixed gas atmosphere. The firing temperature was 850'C. Thereafter, the fired product is removed from the crucible, loosened, washed with water, separated and dried. The resulting self-activated zinc oxide phosphor contained 10 ppm sulfur (S). Also. This phosphor is ZnS
Conventional ZnO fired in the same manner except without adding:
Relative luminance was improved by about 60% compared to Zn phosphor. The relative luminance was measured using a low-speed electron beam damantuple device under conditions of 50 V and 1 mA. [Examples 2 to 8] ZnO:Zn phosphors were manufactured in the same manner as in Example 1 except that the amount of ZnS added was adjusted. The amount of ZnS added per 1 kg of Z n CO3 is
Ig, 3g, 10g, 15g, 17g, 20g, 25g
, 30g. The obtained ZnO:Zn phosphor was as shown in Table 1.
In order, the sulfur (S) content is 1. lppm, 5
.. 2ppm, 21ppm, 32ppm. 42 ppm% 55 ppm, 75 ppm
, 931) pm, and the relative luminance becomes, in order,
110%, 155%, 177%, 180%, 172%,
The percentages were 152%, 123%, and 105%. [Example 10] The phosphor obtained in Example 1 was subjected to the following treatment to improve its burning characteristics. ■ After washing with water, ZnO was passed through a sieve: Zn fluorescence Table 1 Table 2 Suspend in 5α water. ■ Alumina modified colloidal silica (product name: Ludox AMJ, manufactured by DuPont - concentration 20% by weight) 1.3 mj
1 and 1.6 ml of 2% Zn5Oa solution were dropped onto the phosphor suspension (2) to adhere alumina-modified colloidal silica to the surface of the phosphor. As a result of analyzing the separated and dried phosphor, this phosphor was found to be 0.
.. It contained 0.039% by weight of silica and 0.001% by weight of alumina, and the adhesion amount of both was 0.04% by weight. This phosphor had a luminance of 95% after a 120-hour burning test, and the luminance decreased by only 5%. In the burning test, electron beam stimulation was performed under the conditions of 50 V and 1 mA using a low-speed electron beam damantuple device. [Examples 11 to 15] The surface of the phosphor was coated in the same manner as in Example 10, except that the amount of alumina-modified colloidal silica mixed with the phosphor was adjusted. Measure the total amount of silica and alumina in the obtained phosphor,
In addition, the luminance after burning was measured. The measurement results are shown in Table 2. However, the brightness after the burning test is based on the brightness of the burning test. As is clear from this table, the ZnO:Zn phosphor surface-coated using alumina-modified colloidal silica exhibits excellent burning properties. Adhesion amount is 0.0
In the range of 4% by weight or less, as the amount of adhesion increases, the burning characteristics also improve. When the amount exceeds 0.04% by weight, the burning properties gradually decrease. In addition, in addition to colloidal silica, alumina sol is mixed,
Surface coating is also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオウ含有量に対する輝度の変化を示すグラフ
である。
FIG. 1 is a graph showing changes in brightness with respect to sulfur content.

Claims (2)

【特許請求の範囲】[Claims] (1) 蛍光体母体中に、イオウを1〜100PPm含
有することを特長とする自己付活酸化亜鉛蛍光体。
(1) A self-activating zinc oxide phosphor characterized by containing 1 to 100 PPm of sulfur in the phosphor matrix.
(2) 表面処理物質で蛍光体表面が被覆されており、
表面処理物質にアルミナ変成型コロイダルシリカが使用
され、その付着量が0.001〜0.1重量%である請
求項1記載の自己付活酸化亜鉛蛍光体。
(2) The surface of the phosphor is coated with a surface treatment substance,
2. The self-activating zinc oxide phosphor according to claim 1, wherein alumina-modified colloidal silica is used as the surface treatment substance, and the amount of the attached amount is 0.001 to 0.1% by weight.
JP1050456A 1989-03-01 1989-03-01 Self-activated zinc oxide phosphor Expired - Lifetime JP2535218B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1050456A JP2535218B2 (en) 1989-03-01 1989-03-01 Self-activated zinc oxide phosphor
JP5160378A JPH07116425B2 (en) 1989-03-01 1993-06-03 Method for producing self-activated zinc oxide phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1050456A JP2535218B2 (en) 1989-03-01 1989-03-01 Self-activated zinc oxide phosphor
JP5160378A JPH07116425B2 (en) 1989-03-01 1993-06-03 Method for producing self-activated zinc oxide phosphor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5160378A Division JPH07116425B2 (en) 1989-03-01 1993-06-03 Method for producing self-activated zinc oxide phosphor

Publications (2)

Publication Number Publication Date
JPH02228389A true JPH02228389A (en) 1990-09-11
JP2535218B2 JP2535218B2 (en) 1996-09-18

Family

ID=26390926

Family Applications (2)

Application Number Title Priority Date Filing Date
JP1050456A Expired - Lifetime JP2535218B2 (en) 1989-03-01 1989-03-01 Self-activated zinc oxide phosphor
JP5160378A Expired - Lifetime JPH07116425B2 (en) 1989-03-01 1993-06-03 Method for producing self-activated zinc oxide phosphor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5160378A Expired - Lifetime JPH07116425B2 (en) 1989-03-01 1993-06-03 Method for producing self-activated zinc oxide phosphor

Country Status (1)

Country Link
JP (2) JP2535218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415627A (en) * 2016-06-30 2019-03-01 堺化学工业株式会社 Zinc oxide fluorophor and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626219A1 (en) * 1996-06-29 1998-01-02 Philips Patentverwaltung Phosphor preparation with SiO¶2¶ particle coating
US7535162B2 (en) 2003-04-30 2009-05-19 National Institute For Materials Science Zinc oxide phosphor, process for producing the same and light emitting device
CN101775278B (en) * 2010-01-28 2013-10-16 海洋王照明科技股份有限公司 Colloid-coating fluorescent powder and preparation method thereof
CN102234512B (en) * 2010-04-30 2014-03-12 海洋王照明科技股份有限公司 Preparation method of modified luminescent material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415627A (en) * 2016-06-30 2019-03-01 堺化学工业株式会社 Zinc oxide fluorophor and its manufacturing method
US11312902B2 (en) 2016-06-30 2022-04-26 Sakai Chemical Industry Co., Ltd. Zinc oxide phosphor and method for producing same

Also Published As

Publication number Publication date
JPH07116425B2 (en) 1995-12-13
JPH0693259A (en) 1994-04-05
JP2535218B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JP3001630B2 (en) Phosphor with enhanced lumen output and lamp made therefrom
US4925703A (en) Firing and milling method for producing a manganese activated zinc silicate phosphor
US4956202A (en) Firing and milling method for producing a manganese activated zinc silicate phosphor
JPH02228389A (en) Self-activating zinc oxide phosphor
JPH08120262A (en) Mixed green-light-emitting phosphor and cathode ray tube that is coated on its inner surface therewith
JPH04270780A (en) Electroluminescent fluorescent material
JP2843648B2 (en) Blue light emitting phosphor
JPH11349937A (en) Blue-emitting phosphor
JP2765641B2 (en) Phosphor composition and low-pressure mercury lamp
US2859367A (en) Electroluminescent devices and materials and methods of preparation thereof
JPH07166161A (en) Zinc sulfide fluorescent substance for el
JPS59105075A (en) Fluophor which emit orange to yellow light
JPH07157759A (en) Production of zinc sulfide fluorescent substance
JPH01182390A (en) Zinc oxide fluorescent material for slow electron ray
JPH0420587A (en) Fluophor and el element
KR940007648B1 (en) Fluorescent lamp
JP2703312B2 (en) Phosphors and fluorescent lamps
JPS64999B2 (en)
JPS62283544A (en) Fluorescent lamp
JPS6144116B2 (en)
JPS60147490A (en) Fluorescent substance of sulfide
KR850000900B1 (en) Cathode ray tube
JPH0459888A (en) Red-light emitting fluorescent material and fluorescent lamp using the same
RU2315798C1 (en) Charge for production of single-component electric luminophor of varying luminescent color on base of zinc sulfide
JPH0430431B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13