JPH07157759A - Production of zinc sulfide fluorescent substance - Google Patents

Production of zinc sulfide fluorescent substance

Info

Publication number
JPH07157759A
JPH07157759A JP30495393A JP30495393A JPH07157759A JP H07157759 A JPH07157759 A JP H07157759A JP 30495393 A JP30495393 A JP 30495393A JP 30495393 A JP30495393 A JP 30495393A JP H07157759 A JPH07157759 A JP H07157759A
Authority
JP
Japan
Prior art keywords
zinc sulfide
hydrogen sulfide
firing
baking
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30495393A
Other languages
Japanese (ja)
Inventor
Masahiko Yoshino
正彦 吉野
Takashi Ichihara
高史 市原
Takashi Hase
堯 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP30495393A priority Critical patent/JPH07157759A/en
Publication of JPH07157759A publication Critical patent/JPH07157759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain the fluorescent substance, suitable for electroluminescence, having a high brightness and luminous efficiency and excellent in electric power saving properties by baking a raw material compound according to a specific method. CONSTITUTION:This method for producing a zinc sulfide fluorescent substance is to divide a baking step into the former and latter stages, reduce the gas flow rate of H2S in the latter stage from that in the former stage, preferably mix the zinc sulfide with 0.3-0.5mol% copper compound and 5-15mol% halogen compound or At compound, then bake the raw material mixture while passing H2S therethrough at 0.005-0.5mol/min gas flow rate based on 1mol zinc sulfide, subsequently carry out the baking while passing the H2S at a gas flow rate of (1/20) to (1/5) based on that in the former stage in baking the raw material mixture at 900-1200 deg.C while passing the H2S gas therethrough and producing the zinc sulfide fluorescent substance composed of a matrix of the zinc sulfide and copper which is an activator and a halogen or Al that is a coactivator. Furthermore, the baking time is preferably 2-4hr as a whole and the baking time in the former stage is preferably regulated to 7-20% based on the whole baking time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化亜鉛蛍光体、特に
エレクトロルミネッセンス(EL)用に適した硫化亜鉛
蛍光体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a zinc sulfide phosphor, particularly a zinc sulfide phosphor suitable for electroluminescence (EL).

【0002】[0002]

【従来の技術】従来より、EL用蛍光体としては硫化亜
鉛(ZnS)を母体とし、銅(Cu)を付活剤とし、ハ
ロゲン又はアルミニウム(Al)を共付活剤として含
む、ZnS:Cu,Br、ZnS:Cu,Cl、Zn
S:Cu,Al等の硫化亜鉛系蛍光体が実用的な蛍光体
として知られていた。
2. Description of the Related Art Conventionally, as a phosphor for EL, ZnS: Cu containing zinc sulfide (ZnS) as a base material, copper (Cu) as an activator, and halogen or aluminum (Al) as a co-activator. , Br, ZnS: Cu, Cl, Zn
A zinc sulfide-based phosphor such as S: Cu or Al has been known as a practical phosphor.

【0003】この種のEL用蛍光体は、硫化亜鉛生粉等
の硫化亜鉛母体原料に、Cuを含む付活剤原料と、B
r,Cl,Al等を含む共付活剤原料を混合し、これを
硫化水素雰囲気中で焼成することによって製造してき
た。そして、これらの蛍光体はシアノエチルセルロー
ス、シアノエチルサッカロース等の高誘電率のバインダ
ーに分散して発光層を形成し、その両側に電極を配置
し、その電極の少なくとも一方を透明電極で構成してE
Lパネルを作製する。このようなELパネルは、薄型で
フレキシブルな特性を生かして液晶ディスプレイのバッ
クライトなどに使用される。
This type of EL phosphor comprises a zinc sulfide matrix raw material such as zinc sulfide raw powder, an activator raw material containing Cu, and B
It has been manufactured by mixing co-activator raw materials containing r, Cl, Al, etc. and firing them in a hydrogen sulfide atmosphere. These phosphors are dispersed in a binder having a high dielectric constant such as cyanoethyl cellulose or cyanoethyl saccharose to form a light emitting layer, electrodes are arranged on both sides of the light emitting layer, and at least one of the electrodes is composed of a transparent electrode.
Make an L panel. Such an EL panel is used for a backlight of a liquid crystal display or the like by taking advantage of its thinness and flexibility.

【0004】[0004]

【発明が解決しようとする課題】しかし、液晶は光の透
過率が低いので、液晶ディスプレイのバックライトとし
ては第1に高輝度であることが要求され、また、OA機
器の電池駆動化にともなって省電力性が要求されている
が、従来のEL用蛍光体はこれらの条件を満足させるも
のではなかった。そこで、本発明は、上記の問題点を解
消し、高輝度、高効率で省電力性の優れ、ELパネルに
適した蛍光体を提供しようとするものである。
However, since the liquid crystal has a low light transmittance, the backlight of the liquid crystal display is required to have the first high brightness, and the OA equipment is driven by the battery. However, conventional EL phosphors have not satisfied these conditions. Therefore, the present invention aims to solve the above problems and provide a phosphor having high brightness, high efficiency, excellent power saving, and suitable for an EL panel.

【0005】[0005]

【課題を解決するための手段】本発明は、原料混合物に
硫化水素を通気しながら、900〜1200℃で焼成す
る、硫化亜鉛の母体に付活剤である銅と、共付活剤であ
るハロゲン又はアルミニウムとを含むEL用硫化亜鉛蛍
光体の製造方法において、上記焼成工程の後段における
硫化水素の通気量を、前段における硫化水素の通気量よ
りも低減して焼成することを特徴とするEL用硫化亜鉛
蛍光体の製造方法である。なお、上記焼成工程の後段に
おける硫化水素の通気量は、硫化水素と不活性ガスとの
混合ガスを通気したり、上記硫化水素の通気を停止する
ことにより調整することができる。
The present invention is a co-activator, and copper, which is an activator for a matrix of zinc sulfide, which is calcined at 900 to 1200 ° C. while aerating hydrogen sulfide into the raw material mixture. In the method for producing a zinc sulfide phosphor for EL containing halogen or aluminum, the amount of aeration of hydrogen sulfide in the latter stage of the firing step is lower than the amount of aeration of hydrogen sulfide in the former stage, and the EL is fired. It is a manufacturing method of a zinc sulfide phosphor for use. The amount of hydrogen sulfide aerated in the latter stage of the firing step can be adjusted by aeration of a mixed gas of hydrogen sulfide and an inert gas or by stopping the aeration of hydrogen sulfide.

【0006】[0006]

【作用】本発明者は、EL用蛍光体として実用化されて
いる硫化亜鉛系蛍光体の製造条件について鋭意研究する
中で、焼成工程の後段における硫化水素の通気量を、前
段における硫化水素の通気量よりも低減して焼成するこ
とにより、高輝度で高効率のZnS蛍光体が得られるこ
とを見出した。
The present inventor has made earnest studies on the production conditions of the zinc sulfide-based phosphor that has been put into practical use as an EL phosphor, and the hydrogen sulfide aeration amount in the latter stage of the firing step was changed to that of hydrogen sulfide in the former stage. It was found that a ZnS phosphor with high brightness and high efficiency can be obtained by firing with a reduced air flow rate.

【0007】即ち、本発明のEL用蛍光体は、硫化亜鉛
の母体に付活剤の銅及び共付活剤のハロゲン又はアルミ
ニウムを混合して蛍光体原料を調整した後、硫化水素を
通気しながら900〜1200℃で焼成する際に、焼成
工程の後段における硫化水素の通気量を、前段における
硫化水素の通気量よりも低減して焼成するか、後段にお
ける硫化水素の通気を停止して焼成することにより、焼
成工程の前段においては比較的高い濃度の硫化水素の存
在で硫黄欠陥の発生を抑え、後段においては硫化水素濃
度を低く抑えることにより、母体中に付活剤や共付活剤
を有効に導入することができ、高輝度、高効率でかつ省
電力性の優れた硫化亜鉛蛍光体が製造されたものと思わ
れる。
That is, the phosphor for EL of the present invention is prepared by mixing a matrix of zinc sulfide with copper as an activator and halogen or aluminum as a co-activator to prepare a phosphor raw material and then aerating hydrogen sulfide. While firing at 900 to 1200 ° C., the amount of hydrogen sulfide aerated in the latter stage of the firing step should be lower than the amount of hydrogen sulfide aerated in the former stage or the firing should be stopped in the latter stage. By suppressing the generation of sulfur defects in the presence of a relatively high concentration of hydrogen sulfide in the first stage of the firing step, and by suppressing the hydrogen sulfide concentration in the second stage to be low, the activator or co-activator in the matrix It is considered that a zinc sulfide phosphor having high luminance, high efficiency, and excellent power saving was manufactured by effectively introducing the above.

【0008】本発明のEL用硫化亜鉛蛍光体を具体的に
製造するには、蛍光体母体原料である硫化亜鉛に付活剤
原料である0.1〜1.0mol%、好ましくは、0.
3〜0.5mol%の範囲の銅化合物と、共付活剤原料
である1〜20mol%、好ましくは5〜15mol%
の範囲のハロゲン又はアルミニウム化合物を加えて十分
に混合する。次いで、この混合物を充填した耐熱性容器
内に予め硫化水素を通気することにより、容器内の空気
を硫化水素に置換した後所定の温度に保持された炉に投
入し、一定流量の硫化水素ガスを通気しながら900〜
1200℃、好ましくは950〜1100℃の範囲で1
〜5時間、好ましくは2〜4時間の範囲で焼成する。
In order to specifically manufacture the zinc sulfide phosphor for EL of the present invention, 0.1 to 1.0 mol% of an activator raw material is added to zinc sulfide which is a phosphor base raw material, preferably 0.1%.
Copper compound in the range of 3 to 0.5 mol% and 1 to 20 mol%, preferably 5 to 15 mol% of the co-activator raw material.
Add a halogen or aluminum compound within the range and mix thoroughly. Then, by preliminarily ventilating hydrogen sulfide into a heat-resistant container filled with this mixture, the air in the container is replaced with hydrogen sulfide and then charged into a furnace maintained at a predetermined temperature, and a constant flow rate of hydrogen sulfide gas is supplied. While ventilating
1200 ° C, preferably 1 in the range of 950 to 1100 ° C
Firing is performed for about 5 hours, preferably for 2 to 4 hours.

【0009】本発明では、焼成工程を前段と後段に分離
し、前段において、硫化亜鉛原料1molに対して硫化
水素ガスの通気量を毎分0.001〜1mol、好まし
くは0.005〜0.5mol%の範囲に調整する。ま
た、前段の焼成時間は、硫化水素ガスの流量によって多
少異なるが、全焼成時間のおよそ5〜50%、特に7〜
20%の範囲に調整することが、蛍光体の発光輝度及び
発光効率の点から好ましい。
In the present invention, the calcination step is divided into a front stage and a rear stage, and in the front stage, the amount of hydrogen sulfide gas aerated is 0.001 to 1 mol / min, preferably 0.005 to 0. Adjust to a range of 5 mol%. Further, the firing time in the first stage is somewhat different depending on the flow rate of hydrogen sulfide gas, but is about 5 to 50% of the total firing time, especially 7 to
It is preferable to adjust it within the range of 20% from the viewpoint of the emission brightness and emission efficiency of the phosphor.

【0010】後段の焼成は、硫化水素の流量を減らす
か、通気するガスの全量は一定に保ちながら、硫化水
素の一部を窒素、アルゴン等の不活性ガスに置換した混
合ガスを通気するか、硫化水素の通気を停止するか、
硫化水素の代わりにアルゴン等の不活性ガスを通気し
ながら焼成することができる。後段における硫化水素の
通気量は、前段の1/50〜1/2、好ましくは1/2
0〜1/5の範囲が良い。
In the latter-stage calcination, is it necessary to reduce the flow rate of hydrogen sulfide or to ventilate a mixed gas in which a part of hydrogen sulfide is replaced with an inert gas such as nitrogen or argon while keeping the total amount of gas to be ventilated constant? , Stop ventilation of hydrogen sulfide,
Firing can be performed while passing an inert gas such as argon instead of hydrogen sulfide. Aeration amount of hydrogen sulfide in the latter stage is 1/50 to 1/2 of that in the former stage, preferably 1/2
The range of 0 to 1/5 is preferable.

【0011】[0011]

【実施例】【Example】

(実施例1)硫化亜鉛に、付活剤原料として酢酸銅
〔(CH3 COO)2 Cu・2H 2O〕を0.5mol
%、共付活剤原料として臭化アンモニウムを10.0m
ol%を加え、脱イオン水でスラリー状にして混合し、
120℃で16時間乾燥した。次いで、この混合物1k
gを石英製タンマン炉に入れて濃度100%の硫化水素
を2リットル/分の流量で通気して炉内の空気を置換し
た後、硫化水素の通気条件を保持した状態で1000℃
に昇温して焼成を開始した。焼成開始後10分経過した
時点で、硫化水素の通気を停止し、濃度100%の窒素
を0.1リットル/分の流量で導入して次第に硫化水素
を窒素で置換しながら、1000℃で焼成を続け、焼成
開始後2時間経過した時点で焼成を終了した。その後、
焼成物を炉外に取り出し、10wt%のシアン化カリウ
ム水溶液で硫化亜鉛に固溶しなかった銅をエッチングで
分離し、水洗、乾燥後、篩にかけて平均粒径25.6μ
mのZnS:Cu,Br蛍光体を得た。
(Example 1) 0.5 mol of copper acetate [(CH 3 COO) 2 Cu · 2H 2 O] as a raw material for activator was added to zinc sulfide.
%, Ammonium bromide 10.0m as a raw material for co-activator
ol%, slurried with deionized water and mixed,
It was dried at 120 ° C. for 16 hours. Then this mixture 1k
100 g of hydrogen sulfide was placed in a quartz Tamman furnace to aerate the atmosphere in the furnace at a flow rate of 2 liters / minute to replace the air in the furnace, and then 1000 ° C with the hydrogen sulfide aeration conditions maintained.
The temperature was raised to and firing was started. At 10 minutes after the start of the calcination, the aeration of hydrogen sulfide was stopped, nitrogen with a concentration of 100% was introduced at a flow rate of 0.1 liter / min, and the sulfide was gradually replaced with nitrogen, and calcination was performed at 1000 ° C. The firing was terminated when 2 hours passed after the start of the firing. afterwards,
The fired product was taken out of the furnace, copper that did not form a solid solution in zinc sulfide was separated by etching with a 10 wt% potassium cyanide aqueous solution, washed with water, dried, and sieved to obtain an average particle size of 25.6 μm.
A ZnS: Cu, Br phosphor of m was obtained.

【0012】上記の蛍光体をシアノエチルセロルースに
分散してアルミニウム電極上に発光層として厚膜印刷
し、その上に透明電極を形成して分散型EL素子を作製
した。この素子に交流1kHzで8.0mW/cm2
電力を投入し、発光輝度を輝度計で測定し発光効率を求
めた。
The above phosphor was dispersed in cyanoethyl cellulose, and a thick film was printed on an aluminum electrode as a light emitting layer, and a transparent electrode was formed thereon to fabricate a dispersion type EL device. Electric power of 8.0 mW / cm 2 was applied to this device at an alternating current of 1 kHz, and the emission luminance was measured by a luminance meter to obtain the emission efficiency.

【0013】(実施例2)実施例1と同様の割合で調合
した硫化亜鉛、酢酸銅及び臭化アンモニウムの混合物1
kgを石英製タンマン炉に入れて濃度100%の硫化水
素を1リットル/分の流量で通気して炉内の空気を置換
した後、硫化水素の通気条件を保持した状態で1000
℃に昇温して焼成を開始した。焼成開始後10分経過し
た時点で、硫化水素の通気を停止し、その後、何も通気
せずに焼成を続け、焼成開始後2時間経過した時点で焼
成を終了した。焼成後、0.1リットル/分の流量でア
ルゴンガスを通気しながら焼成物を炉外に取り出し、実
施例1と同様の方法で処理して平均粒径24.2μmの
ZnS:Cu,Br蛍光体を得て、実施例1と同様にし
て分散型EL素子を作製し、その発光輝度と発光効率を
求めた。
Example 2 A mixture 1 of zinc sulfide, copper acetate and ammonium bromide prepared in the same proportions as in Example 1.
100 kg of hydrogen sulfide was introduced into a quartz tanman furnace at a flow rate of 1 liter / min to replace the air in the furnace, and then 1000 with the hydrogen sulfide aeration conditions maintained.
The temperature was raised to ℃ and the firing was started. Aeration of hydrogen sulfide was stopped 10 minutes after the start of firing, and then the firing was continued without venting anything, and the firing was completed 2 hours after the start of the firing. After firing, the fired product was taken out of the furnace while bubbling argon gas at a flow rate of 0.1 liter / min, and treated in the same manner as in Example 1 to obtain ZnS: Cu, Br fluorescence having an average particle size of 24.2 μm. After obtaining the body, a dispersion type EL device was produced in the same manner as in Example 1, and the emission luminance and the emission efficiency thereof were determined.

【0014】(実施例3)実施例1と同様の割合で調合
した硫化亜鉛、酢酸銅及び臭化アンモニウムの混合物1
kgを石英製タンマン炉に入れて濃度100%の硫化水
素を0.2リットル/分の流量で通気して炉内の空気を
置換した後、硫化水素の通気条件を保持した状態で10
00℃に昇温して焼成を開始した。焼成開始後10分経
過した時点で、硫化水素の流量を焼成開始時の20%に
下げて焼成を続け、焼成開始後2時間経過した時点で焼
成を終了した。焼成後、実施例1と同様の方法で処理し
て平均粒径23.9μmのZnS:Cu,Br蛍光体を
得て、実施例1と同様にして分散型EL素子を作製し、
その発光輝度と発光効率を求めた。
Example 3 Mixture 1 of zinc sulfide, copper acetate and ammonium bromide prepared in the same proportions as in Example 1.
100 kg of hydrogen sulfide was put into a quartz tanman furnace and aerated with hydrogen sulfide at a flow rate of 0.2 liter / min to replace the air inside the furnace.
The temperature was raised to 00 ° C to start firing. After 10 minutes from the start of firing, the flow rate of hydrogen sulfide was reduced to 20% of that at the start of firing and the firing was continued, and the firing was finished at 2 hours after the start of firing. After firing, the same treatment as in Example 1 was performed to obtain a ZnS: Cu, Br phosphor having an average particle size of 23.9 μm, and a dispersion type EL device was prepared in the same manner as in Example 1.
The luminous brightness and luminous efficiency were determined.

【0015】(比較例1)実施例1と同様の割合で調合
した硫化亜鉛、酢酸銅及び臭化アンモニウムの混合物1
kgを石英製タンマン炉に入れて濃度100%の硫化水
素を1リットル/分の流量で通気して炉内の空気を置換
した後、硫化水素の前記通気条件を一定に保持した状態
で1000℃に昇温して2時間焼成した。焼成後、実施
例1と同様の方法で処理して平均粒径21.0μmのZ
nS:Cu,Br蛍光体を得て、実施例1と同様にして
分散型EL素子を作製し、その発光輝度と発光効率を求
めた。
Comparative Example 1 A mixture 1 of zinc sulfide, copper acetate and ammonium bromide prepared in the same proportions as in Example 1.
100 kg of hydrogen sulphide was put into a quartz tanman furnace made of quartz at a flow rate of 1 liter / min to replace the air in the furnace, and then 1000 ° C with the aeration conditions of hydrogen sulphide being kept constant. The temperature was raised to 2 ° C. and baked for 2 hours. After firing, the same treatment as in Example 1 was performed to obtain Z having an average particle size of 21.0 μm.
The nS: Cu, Br phosphor was obtained, a dispersion type EL device was produced in the same manner as in Example 1, and the emission luminance and emission efficiency thereof were determined.

【0016】(比較例2)比較例1において、硫化水素
の代わりに濃度100%の窒素を供給し、その他の条件
は比較例1と同様にして平均粒径23.2μmのZn
S:Cu,Br蛍光体を得て、実施例1と同様にして分
散型EL素子を作製し、その発光輝度と発光効率を求め
た。
(Comparative Example 2) In Comparative Example 1, nitrogen having a concentration of 100% was supplied instead of hydrogen sulfide, and other conditions were the same as in Comparative Example 1, and Zn having an average particle size of 23.2 μm was used.
After obtaining the S: Cu, Br phosphor, a dispersion-type EL device was prepared in the same manner as in Example 1, and the emission luminance and emission efficiency thereof were determined.

【0017】[0017]

【表1】 [Table 1]

【0018】〔評価〕実施例及び比較例の結果をまとめ
た表1より明らかなように、窒素雰囲気で焼成した比較
例2の蛍光体はほとんどEL発光をせず、発光輝度及び
発光効率ともに極めて低い値を示した。また、実施例1
〜3の蛍光体は、比較例1と比べて発光輝度及び発光効
率が10〜20%優れていることが分かる。このよう
に、焼成の途中から硫化水素に窒素、アルゴン等の不活
性ガスを徐々に導入したり、硫化水素の通気を完全に停
止したり、硫化水素の通気量を低減することにより、従
来の一定の硫化水素濃度の下での焼成に比べて、発光輝
度及び発光効率の優れた蛍光体の製造が可能になった。
[Evaluation] As is clear from Table 1 which summarizes the results of Examples and Comparative Examples, the phosphor of Comparative Example 2 fired in a nitrogen atmosphere hardly emits EL light and has extremely high emission brightness and emission efficiency. It showed a low value. In addition, Example 1
It can be seen that the phosphors of Nos. 3 to 3 are superior in emission brightness and luminous efficiency by 10 to 20% as compared with Comparative Example 1. Thus, by gradually introducing an inert gas such as nitrogen or argon into hydrogen sulfide from the middle of firing, completely stopping the aeration of hydrogen sulfide, or reducing the aeration amount of hydrogen sulfide, As compared with firing under a constant hydrogen sulfide concentration, it is possible to manufacture a phosphor having excellent emission brightness and emission efficiency.

【0019】また、ZnS:Cu,Br蛍光体におい
て、共付活剤Brの代わりにCl,I,Alを用いてE
L用Cu付活ZnS蛍光体を製造したところ、ZnS:
Cu,Br蛍光体と同様に高輝度、高発光効率を示し
た。
Further, in the ZnS: Cu, Br phosphor, Cl, I, Al was used instead of the coactivator Br to obtain E.
When a Cu-activated ZnS phosphor for L was manufactured, ZnS:
Similar to the Cu and Br phosphors, they showed high brightness and high luminous efficiency.

【0020】[0020]

【発明の効果】本発明は、上記の構成を採用することに
より、高輝度かつ高発光効率を有するEL用蛍光体を提
供できるようになり、省電力性に優れたEL素子の実現
を可能にした。
EFFECTS OF THE INVENTION The present invention can provide an EL phosphor having high brightness and high luminous efficiency by adopting the above-mentioned constitution, and can realize an EL element excellent in power saving. did.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料混合物に硫化水素を通気しながら、
900〜1200℃で焼成する、硫化亜鉛の母体に付活
剤である銅と、共付活剤であるハロゲン又はアルミニウ
ムとを含む硫化亜鉛蛍光体の製造方法において、上記焼
成工程の後段における硫化水素の通気量を、前段におけ
る硫化水素の通気量よりも低減して焼成することを特徴
とする硫化亜鉛蛍光体の製造方法。
1. Aeration of hydrogen sulfide into the raw material mixture,
In the method for producing a zinc sulfide phosphor containing copper, which is an activator, in a matrix of zinc sulfide, which is fired at 900 to 1200 ° C., and halogen or aluminum, which is a co-activator, hydrogen sulfide in the latter stage of the firing step. The method for producing a zinc sulfide phosphor, wherein the firing rate is lower than that of hydrogen sulfide in the preceding stage.
【請求項2】 上記焼成工程の後段において、硫化水素
と不活性ガスとの混合ガスを通気することを特徴とする
請求項1記載の硫化亜鉛蛍光体の製造方法。
2. The method for producing a zinc sulfide phosphor according to claim 1, wherein a mixed gas of hydrogen sulfide and an inert gas is passed in the latter stage of the firing step.
【請求項3】 上記焼成工程の後段において、上記硫化
水素の通気を停止して焼成することを特徴とする請求項
1記載の硫化亜鉛蛍光体の製造方法。
3. The method for producing a zinc sulfide phosphor according to claim 1, wherein, in the latter stage of the firing step, the hydrogen sulfide aeration is stopped and the firing is performed.
JP30495393A 1993-12-06 1993-12-06 Production of zinc sulfide fluorescent substance Pending JPH07157759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30495393A JPH07157759A (en) 1993-12-06 1993-12-06 Production of zinc sulfide fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30495393A JPH07157759A (en) 1993-12-06 1993-12-06 Production of zinc sulfide fluorescent substance

Publications (1)

Publication Number Publication Date
JPH07157759A true JPH07157759A (en) 1995-06-20

Family

ID=17939307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30495393A Pending JPH07157759A (en) 1993-12-06 1993-12-06 Production of zinc sulfide fluorescent substance

Country Status (1)

Country Link
JP (1) JPH07157759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056274A1 (en) * 1999-03-23 2000-09-28 Pyramid Productions, Inc. Body coating composition
JP2012237744A (en) * 2011-04-14 2012-12-06 Rohm & Haas Co Improved-quality multi-spectral zinc sulfide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056274A1 (en) * 1999-03-23 2000-09-28 Pyramid Productions, Inc. Body coating composition
JP2012237744A (en) * 2011-04-14 2012-12-06 Rohm & Haas Co Improved-quality multi-spectral zinc sulfide

Similar Documents

Publication Publication Date Title
KR20010101453A (en) Zinc sulphide electroluminophores and method for production thereof
JP2012520818A (en) Alumina, illuminant, mixed compound thereof, and production method thereof
WO2011033830A1 (en) Phosphor
JPH0241389A (en) Luminescent composition
JPH08183954A (en) El fluorescent material powder
JPH04270780A (en) Electroluminescent fluorescent material
JPH07157759A (en) Production of zinc sulfide fluorescent substance
JPH07166161A (en) Zinc sulfide fluorescent substance for el
CN106854466B (en) Red fluorescent powder excited by electron beam and preparation method thereof
JP2535218B2 (en) Self-activated zinc oxide phosphor
JP4303989B2 (en) Fluorescent substance and fluorescent lamp
JP2006307083A (en) Blue-exciting yellow phosphor and white light-emitting element
JPS6248716B2 (en)
JPH07310074A (en) Red luminous composition
JP3068693B2 (en) Method for producing zinc sulfide phosphor
JPH0633052A (en) Three-band fluorescent material and fluorescent lamp produced by using the material
JPS62201990A (en) Sulfide phosphor
JPS6295378A (en) Fluorescent substance
JP2003238952A (en) Method for producing phosphor
JPS606783A (en) Phosphate phosphor and its preparation
JP3783543B2 (en) Fluorescent display tube
JP2726521B2 (en) Phosphor and fluorescent lamp
JP3556325B2 (en) Phosphors for electron tubes and electroluminescent phosphors
JP2586147B2 (en) Method for producing ZnS: Cu-based phosphor
RU2315798C1 (en) Charge for production of single-component electric luminophor of varying luminescent color on base of zinc sulfide