JP2765641B2 - Phosphor composition and low-pressure mercury lamp - Google Patents

Phosphor composition and low-pressure mercury lamp

Info

Publication number
JP2765641B2
JP2765641B2 JP3280770A JP28077091A JP2765641B2 JP 2765641 B2 JP2765641 B2 JP 2765641B2 JP 3280770 A JP3280770 A JP 3280770A JP 28077091 A JP28077091 A JP 28077091A JP 2765641 B2 JP2765641 B2 JP 2765641B2
Authority
JP
Japan
Prior art keywords
phosphor
alumina
luminous flux
fluorescent lamp
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3280770A
Other languages
Japanese (ja)
Other versions
JPH0593187A (en
Inventor
俊明 立岩
哲也 貞本
卓哉 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP3280770A priority Critical patent/JP2765641B2/en
Publication of JPH0593187A publication Critical patent/JPH0593187A/en
Application granted granted Critical
Publication of JP2765641B2 publication Critical patent/JP2765641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は253.7nmの紫外線
で励起され、740nm付近の近赤外線を発する赤外発
光蛍光体と非発光物質とを混合した蛍光体組成物、およ
びそれを蛍光膜として有する低圧水銀ランプ(以下蛍光
ランプという。)にかかり、特に、その蛍光体および蛍
光ランプの劣化、並びに光束の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor composition comprising a mixture of an infrared-emitting phosphor which emits near-infrared light near 740 nm excited by ultraviolet rays of 253.7 nm and a non-luminescent substance, and a phosphor composition comprising the same. The present invention relates to a low-pressure mercury lamp (hereinafter, referred to as a fluorescent lamp), and particularly relates to deterioration of the fluorescent material and the fluorescent lamp and improvement of a light flux.

【0002】[0002]

【従来の技術】一般に、植物育成用の光源用蛍光ランプ
として可視光を発する通常の蛍光ランプの他に、近赤外
線を発する赤外線蛍光ランプが使用されている。その赤
外線蛍光ランプに使用される蛍光体には、一般式、RX
2:Fea(但し、RはLi、Na、KおよびRbより
なる群の少なくとも一種、XはAl、Gaの内の少なく
とも一種、aは0.001〜0.1グラム原子の3価の
Feイオン)で表される蛍光体(以下、赤外発光蛍光体
という。)が知られている。例えば、LiAlO2:F
eで知られている鉄付活アルミン酸リチウム蛍光体はそ
の中でも最も多用されている蛍光体である。
2. Description of the Related Art In general, infrared fluorescent lamps emitting near infrared rays have been used as fluorescent lamps for light sources for growing plants, in addition to ordinary fluorescent lamps emitting visible light. The phosphor used in the infrared fluorescent lamp has a general formula: RX
O 2 : Fea (where R is at least one member of the group consisting of Li, Na, K and Rb, X is at least one member of Al and Ga, a is 0.001 to 0.1 gram atom trivalent Fe) Phosphors represented by ions (hereinafter, referred to as infrared light-emitting phosphors) are known. For example, LiAlO 2 : F
The iron-activated lithium aluminate phosphor known as e is the most frequently used phosphor among them.

【0003】赤外発光蛍光体は253.7nmの紫外線
で励起され、740nm付近に発光ピークを持つ近赤外
線発光蛍光体である。この蛍光体はその一般式を見ても
分かるようにLi、Na等のアルカリ金属を含有するた
め、これを用いた蛍光ランプはガラスバルブ中でアルカ
リ金属とHgとが化合しアマルガムを作りやすく、また
付活剤であるFeも蛍光体中において不安定であるた
め、蛍光ランプの光束劣化が非常に激しいという欠点が
ある。さらにアルカリ金属がガラスバルブと反応しやす
いため、ガラスが脆くなって破損しやすいという欠点も
ある。
[0003] An infrared-emitting phosphor is a near-infrared-emitting phosphor which is excited by ultraviolet rays of 253.7 nm and has an emission peak near 740 nm. Since this phosphor contains an alkali metal such as Li or Na as can be seen from its general formula, a fluorescent lamp using the same is easy to form an amalgam by combining an alkali metal and Hg in a glass bulb, In addition, since the activator Fe is also unstable in the phosphor, there is a disadvantage that the luminous flux of the fluorescent lamp is extremely deteriorated. Further, since alkali metals easily react with the glass bulb, there is a disadvantage that the glass becomes brittle and easily broken.

【0004】[0004]

【発明が解決しようとする課題】これらの問題を解決す
るため、従来数々の方法が提案されている。例えば、蛍
光体を酸洗浄することにより過剰のアルカリ金属を除く
方法がある。また、鉄付活アルミン酸リチウム蛍光体の
場合、特公昭51−42436号公報においては、融剤
として用いたLiの過剰を除去するため、蛍光体を2回
焼成し、その2回目の焼成において酸化アルミニウム
(以下、アルミナという。)を添加し、残存する過剰の
Liをリチウムアルミネートとして転化する方法が開示
されている。さらに特開平1−215885号公報にお
いては、同じく2回目の焼成において鉄付活アルミン酸
リチウム蛍光体にアルミナを0.5〜10重量%の範囲
で添加し、高温で焼成する方法が開示されている。
In order to solve these problems, various methods have been proposed. For example, there is a method of removing excess alkali metal by washing the phosphor with acid. In the case of an iron-activated lithium aluminate phosphor, Japanese Patent Publication No. 51-42436 discloses that the phosphor is fired twice in order to remove an excess amount of Li used as a flux, and in the second firing, A method is disclosed in which aluminum oxide (hereinafter, referred to as alumina) is added to convert the remaining excess Li as lithium aluminate. Further, Japanese Patent Application Laid-Open No. 1-215885 discloses a method in which alumina is added to the iron-activated lithium aluminate phosphor in a range of 0.5 to 10% by weight in the second firing and firing is performed at a high temperature. I have.

【0005】しかしながら、いずれの方法においても赤
外発光蛍光体の抱える諸問題を解決するには未だ不十分
であり、さらなる蛍光体の改良が強く望まれている。
[0005] However, none of these methods is still sufficient to solve various problems of the infrared-emitting phosphor, and further improvement of the phosphor is strongly desired.

【0006】本発明はこのような事情を鑑み、赤外発光
蛍光体に含有されるアルカリ金属に対するHgの吸着を
少なくしてアマルガムの生成を抑制し、さらにアルカリ
金属とガラスバルブとの反応を防止することにより、蛍
光体およびその蛍光体を用いた蛍光ランプの劣化、並び
に光束を向上しようとするものである。
In view of such circumstances, the present invention reduces the adsorption of Hg to the alkali metal contained in the infrared-emitting phosphor to suppress the formation of amalgam and further prevents the reaction between the alkali metal and the glass bulb. By doing so, the phosphor and the fluorescent lamp using the phosphor are deteriorated and the luminous flux is improved.

【0007】[0007]

【課題を解決するための手段】本発明者らは、赤外発光
蛍光体の劣化を改善するべく、数々の実験を行った結
果、小粒径のアルミナ、しかもβアルミナもしくはγア
ルミナを赤外発光蛍光体に混合、または付着することに
より、それらの問題が解決できることを新たに見いだし
本発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted a number of experiments to improve the deterioration of infrared-emitting phosphors. It has been found that these problems can be solved by mixing or adhering to the light emitting phosphor, and the present invention has been accomplished.

【0008】本発明の蛍光体組成物は、一般式が、RX
2:Fea(但し、RはLi、Na、KおよびRbより
なる群の少なくとも一種、XはAl、Gaの内の少なく
とも一種、aは0.001〜0.1グラム原子の3価の
Feイオン)で表される赤外発光蛍光体に、平均粒径1
μm以下の、β型、もしくはγ型の酸化アルミニウム
を、0.5重量%以上、200重量%以下の割合で混
合、または付着してなることを特徴とするものである。
The phosphor composition of the present invention has the following general formula: RX
O 2 : Fea (where R is at least one member of the group consisting of Li, Na, K and Rb, X is at least one member of Al and Ga, a is 0.001 to 0.1 gram atom trivalent Fe) Ion), an average particle size of 1
It is characterized in that β-type or γ-type aluminum oxide of μm or less is mixed or adhered at a ratio of 0.5% by weight or more and 200% by weight or less.

【0009】一般に、赤外発光蛍光体は次のようにして
得られる。まず、水酸化ナトリウム、炭酸ナトリウム、
酸化リチウム、炭酸リチウム、水酸化リチウム等のアル
カリ金属化合物と、アルミナ、硝酸アルミニウム、水酸
化アルミニウム、酸化ガリウム等のAl化合物、もしく
はGa化合物とを、アルカリ金属とAl、もしくはGa
とがほぼ当量になるように乾式、あるいは湿式で混合
し、さらに硫酸第二鉄アンモニウム等、三価の鉄塩をF
eがおよそ0.001〜0.1グラム原子となるように
混合する。次にその混合物をアルミナ坩堝等に入れ、空
気雰囲気中、1000℃以上の温度で2〜4時間焼成す
ることによって得られる。
Generally, an infrared-emitting phosphor is obtained as follows. First, sodium hydroxide, sodium carbonate,
An alkali metal compound such as lithium oxide, lithium carbonate, lithium hydroxide, and an Al compound or a Ga compound such as alumina, aluminum nitrate, aluminum hydroxide, and gallium oxide are mixed with an alkali metal and Al or Ga.
Are mixed in a dry or wet manner so that the amounts thereof are substantially equivalent to each other, and a trivalent iron salt such as ammonium ferric sulfate is added to F.
Mix so that e is approximately 0.001-0.1 gram atoms. Next, the mixture is placed in an alumina crucible or the like and fired in an air atmosphere at a temperature of 1000 ° C. or higher for 2 to 4 hours to obtain a mixture.

【0010】本発明の蛍光体組成物において、混合また
は付着するアルミナの粒径は必ず1μm以下に調整する
必要がある。その粒径が1μmよりも大きいと蛍光体の
劣化が激しく、蛍光ランプの寿命が短くなる。粒径は小
さければ小さいほど好ましく劣化が改善され、またガラ
スバルブ塗布時に蛍光体の塗布ムラも少なくなる。
In the phosphor composition of the present invention, the particle size of the alumina to be mixed or adhered must be adjusted to 1 μm or less. If the particle size is larger than 1 μm, the phosphor is greatly deteriorated, and the life of the fluorescent lamp is shortened. The smaller the particle size, the better the deterioration is improved, and the less uneven the coating of the phosphor at the time of coating the glass bulb.

【0011】アルミナは、ただ乾式混合するだけでもよ
いが、アルミニウムアルコラート等の有機アルミニウム
化合物を用い、これを定法に従い平均粒径が1μm以下
の微粒子の酸化アルミニウムを蛍光体に膜状に付着させ
ても良い。すなわち、有機アルミニウム化合物を加水分
解して得る微粒子の水酸化アルミニウムを、蛍光体表面
に付着する方法である。この水酸化アルミニウムは、蛍
光ランプの製造工程中の短時間のベーキングにより容易
に脱水して微粒子の酸化アルミニウムとなる。
Alumina may be merely dry-mixed, but an organic aluminum compound such as aluminum alcoholate is used, and the average particle size is 1 μm or less according to a standard method.
The fine particles of aluminum oxide may be attached to the phosphor in a film form. That is, the organic aluminum compound is hydrolyzed.
The fine aluminum hydroxide obtained by dissolving
It is a method of attaching to. This aluminum hydroxide is
Easy due to short baking during light lamp manufacturing process
To aluminum oxide as fine particles.

【0012】アルミナの種類は必ずβ型、もしくはγ型
である必要がある。α型であると劣化に対して好ましい
結果が得られない傾向がある。反応性が高いγアルミナ
を使用することはさらに好ましい。
The type of alumina must be β-type or γ-type. If it is an α-type, there is a tendency that favorable results cannot be obtained with respect to deterioration. It is more preferable to use gamma alumina having high reactivity.

【0013】混合、または付着する量は、蛍光体に対し
0.5重量%以上、200重量%以下の範囲、好ましく
は5重量%以上150重量%以下に調整する。その量が
0.5重量%より少ないと同じくアルミナの効果が得ら
れず蛍光体が早く劣化してしまい、200重量%より多
いと、初光束の低下により、実用的なランプ光束が得ら
れない。
The mixing or adhering amount is adjusted to a range of 0.5% by weight or more and 200% by weight or less, preferably 5% by weight or more and 150% by weight or less based on the phosphor. If the amount is less than 0.5% by weight, the effect of alumina cannot be obtained, and the phosphor deteriorates quickly. If the amount is more than 200% by weight, a practical lamp light beam cannot be obtained due to a decrease in initial light beam. .

【0014】[0014]

【作用】図1に、鉄付活アルミン酸リチウム蛍光体に、
平均粒径0.1μmのα、β、およびγアルミナ微粉末
を30重量%の割合で混合した蛍光体組成物をFL40
SS蛍光ランプに実装し点灯させた場合、ランプ点灯時
間とランプの相対光束との関係を表す図を示す。なお点
灯時30分後のランプ光束(初光束)を100%とす
る。
FIG. 1 shows that an iron-activated lithium aluminate phosphor is
A phosphor composition obtained by mixing α, β, and γ alumina fine powders having an average particle size of 0.1 μm at a ratio of 30% by weight was prepared as FL40.
FIG. 3 is a diagram illustrating a relationship between a lamp lighting time and a relative luminous flux of a lamp when the lamp is mounted on an SS fluorescent lamp and turned on. Note that the lamp light flux (initial light flux) 30 minutes after lighting is 100%.

【0015】蛍光ランプは時間が経過するに従い、次第
に光束が低下して行くが、βアルミナ、またはγアルミ
ナを混合した本発明の蛍光体組成物を有する蛍光ランプ
はその低下の割合が少ない。
Although the luminous flux of a fluorescent lamp gradually decreases as time passes, the fluorescent lamp having the phosphor composition of the present invention mixed with β-alumina or γ-alumina has a small reduction rate.

【0016】図2に、同じく鉄付活アルミン酸リチウム
蛍光体、平均粒径0.1μmのα、β、γアルミナを数
々の割合で混合した蛍光体組成物をFL40SS蛍光ラ
ンプとした場合、その混合量と光束維持率の関係を表す
図を示す。光束維持率は、100時間経過後ランプ光束
/0時間ランプ光束の相対値をもって表す。
FIG. 2 shows that when a phosphor composition in which iron-activated lithium aluminate phosphor and α, β, and γ alumina having an average particle diameter of 0.1 μm are mixed in various ratios is used as a FL40SS fluorescent lamp, The figure showing the relationship between the mixing amount and the luminous flux maintenance ratio is shown. The luminous flux maintenance ratio is represented by a relative value of lamp luminous flux after 100 hours has elapsed / 0-hour lamp luminous flux.

【0017】この図に示すように、アルミナ微粉末の混
合量が、0.5重量%より少ないとと、ランプ光束は初
光束に比して約40%以上低下するのに対し、5重量%
〜150重量%の範囲では、その低下率は約20%以内
である。しかもγアルミナ、およびβアルミナの方が明
らかに優れている。
As shown in this figure, when the mixing amount of the alumina fine powder is less than 0.5% by weight, the lamp luminous flux is reduced by about 40% or more compared to the initial luminous flux, while 5% by weight.
In the range of 150150% by weight, the reduction is within about 20%. Moreover, γ-alumina and β-alumina are clearly superior.

【0018】図3に、同じく鉄付活アルミン酸リチウム
蛍光体に、粒径の異なるγアルミナを20重量%混合し
た蛍光体組成物をFL40SS蛍光ランプとした場合、
そのアルミナの粒径と光束維持率の関係を表す図を示
す。光束維持率は同じく100時間経過後の光束との相
対値を持って表す。
FIG. 3 shows a case where a phosphor composition in which 20% by weight of γ-alumina having different particle sizes are mixed with an iron-activated lithium aluminate phosphor is used as a FL40SS fluorescent lamp.
The figure showing the relationship between the particle size of alumina and a luminous flux maintenance factor is shown. The luminous flux maintenance ratio is also expressed with a relative value with respect to the luminous flux after 100 hours.

【0019】アルミナの平均粒径は1μm以下、好まし
くは0.5μm以下であるとランプの光束維持率はほと
んど変化がないが、粒径が大きくなるにつれて光束維持
率が低下する傾向にあり、しかも1μmより大きいとア
ルミナの効果が得られない。
If the average particle size of alumina is 1 μm or less, preferably 0.5 μm or less, the luminous flux maintenance factor of the lamp hardly changes, but the luminous flux maintenance factor tends to decrease as the particle size increases. If it is larger than 1 μm, the effect of alumina cannot be obtained.

【0020】図4は、鉄付活アルミン酸リチウム蛍光体
に平均粒径0.1μmのγアルミナを混合していった場
合、その混合量とFL40SS蛍光ランプ初光束との関
係を表す図である。なお、混合量0の時の初光束値を1
00%とする。
FIG. 4 is a graph showing the relationship between the mixing amount and the initial luminous flux of the FL40SS fluorescent lamp when γ-alumina having an average particle size of 0.1 μm is mixed with the iron-activated lithium aluminate phosphor. . The initial luminous flux value when the mixing amount is 0 is 1
00%.

【0021】この図で示すように、γアルミナを混合し
た場合、非発光物質であるγアルミナの混合量が増加す
るに従い、ランプ光束は低下するが、その混合量が蛍光
体に対し、およそ20重量%までであれば、逆に初光束
は向上する。
As shown in this figure, when γ-alumina is mixed, the lamp luminous flux decreases as the mixing amount of γ-alumina, which is a non-luminous substance, increases, but the mixing amount is about 20 On the contrary, up to the weight%, the initial luminous flux is improved.

【0022】なお、図2に示すように、アルミナの混合
量は200重量%以上でも、光束維持率は低下しない
が、図4で示すように、初光束が低下し実用的ではない
ため、本発明の数値限定とした。
As shown in FIG. 2, even when the mixing amount of alumina is 200% by weight or more, the luminous flux maintenance ratio does not decrease. However, as shown in FIG. 4, the initial luminous flux decreases and is not practical. The invention was limited to numerical values.

【0023】さらに、図5に、図4と同じく鉄付活アル
ミン酸リチウム蛍光体に平均粒径0.1μmのγアルミ
ナを混合した蛍光体組成物を、コンパクト灯蛍光ランプ
とした場合、その混合量とコンパクト灯蛍光ランプの初
光束の関係を表す図を示す。一般にコンパクト灯蛍光ラ
ンプは、FL40SS蛍光ランプに比べて、高負荷で放
電されるため、光束はFL40SS蛍光ランプよりも高
いが、蛍光体の劣化が激しいのが通常である。
Further, FIG. 5 shows that the phosphor composition obtained by mixing gamma alumina having an average particle diameter of 0.1 μm with the iron-activated lithium aluminate phosphor as in FIG. FIG. 3 shows a diagram representing the relationship between the amount and the initial luminous flux of a compact fluorescent lamp. Generally, the compact lamp fluorescent lamp is discharged under a higher load than the FL40SS fluorescent lamp, so that the luminous flux is higher than that of the FL40SS fluorescent lamp, but the phosphor is usually greatly deteriorated.

【0024】この図に示すようにγアルミナを混合し、
コンパクト灯蛍光ランプとした場合、ランプ初光束測定
前に起きる初期劣化(点灯後約15分後のランプ光束の
劣化)がアルミナを混合することにより、改善され、劣
化の割合が極端に少なくなるため実用的な初光束はほと
んど低下しない。高負荷型のコンパクト蛍光ランプの場
合にはその初光束の劣化が非常に少ないため、図4に示
すFL40SS蛍光ランプに比べて大幅な初光束の改善
がみられる。
As shown in this figure, gamma alumina was mixed,
When a compact fluorescent lamp is used, the initial deterioration (deterioration of the lamp luminous flux about 15 minutes after lighting) that occurs before the measurement of the initial luminous flux of the lamp is improved by mixing alumina, and the rate of deterioration is extremely reduced. The practical first luminous flux hardly drops. In the case of a high-load compact fluorescent lamp, the initial luminous flux is very little deteriorated, so that the initial luminous flux is greatly improved as compared with the FL40SS fluorescent lamp shown in FIG.

【0025】これらの図に示すように本発明の蛍光体組
成物は、赤外発光蛍光体に、平均粒径1μm以下の、γ
アルミナもしくはβアルミナを混合することにより、水
銀が蛍光体中のアルカリ金属とアマルガムを作ることを
防止でき、蛍光体の劣化、およびランプ光束の低減を抑
制することができる。
As shown in these figures, the phosphor composition of the present invention provides an infrared-emitting phosphor with a γ having an average particle size of 1 μm or less.
By mixing alumina or β-alumina, it is possible to prevent mercury from forming amalgam with the alkali metal in the phosphor, and it is possible to suppress deterioration of the phosphor and reduction in lamp luminous flux.

【0026】[0026]

【実施例】以下、実施例で本発明を詳説する。The present invention will be described below in detail with reference to examples.

【0027】[実施例1]蛍光体原料として、炭酸リチ
ウム(Li2CO3)121.9g、アルミナ(Al
23)169g、硝酸第二鉄9水和物{Fe(NO33
・9H2O}8.1gを秤量し、これらをアルミナボール
を入れた300mlの磁性ポット中で、メタノール約5
0mlと共に、5時間ローリングして粉砕混合した。乾
燥後、この粉砕混合物をアルミナ坩堝に充填し蓋をした
後、空気雰囲気中、1200℃で3時間焼成した。焼成
終了後、得られた蛍光体を粉砕し、300メッシュの篩
を通すことにより、平均粒径5μmのLiAlO2:F
e蛍光体を得た。
Example 1 121.9 g of lithium carbonate (Li 2 CO 3 ) and alumina (Al
2 O 3 ) 169 g, ferric nitrate nonahydrate {Fe (NO 3 ) 3
• Weigh out 8.1 g of 9H 2 O and weigh them in a 300 ml magnetic pot containing alumina balls.
Rolled together with 0 ml for 5 hours and crushed and mixed. After drying, the pulverized mixture was filled in an alumina crucible, covered, and calcined in an air atmosphere at 1200 ° C. for 3 hours. After the firing, the obtained phosphor is pulverized and passed through a 300-mesh sieve to obtain LiAlO 2 : F having an average particle size of 5 μm.
e phosphor was obtained.

【0028】この蛍光体8gに平均粒径0.05μmの
γアルミナ微粉末1.6g(蛍光体に対し20重量%)
を乾式で十分混合することにより蛍光体組成物を得た。
1.6 g of γ-alumina fine powder having an average particle size of 0.05 μm (20% by weight based on the phosphor) was added to 8 g of the phosphor.
Was thoroughly mixed in a dry system to obtain a phosphor composition.

【0029】さらにこの蛍光体組成物に酢酸ブチル15
gを添加し、磁性ポット中で十分混合しスラリー状にし
たものを、ガラス管に流し込み、蛍光体組成物を内面に
塗布、乾燥後、450℃で15分間ガラス管をベーキン
グし本発明の蛍光体組成物による蛍光膜を形成した。後
は、常法に従ってガス封入、電極付け等を行いFL40
SSの蛍光ランプとした。
Further, butyl acetate 15 was added to the phosphor composition.
g, mixed well in a magnetic pot and slurried, poured into a glass tube, coated with a phosphor composition on the inner surface, dried, and baked at 450 ° C. for 15 minutes to obtain a fluorescent material of the present invention. A phosphor film of the body composition was formed. After that, gas filling, electrode attachment, etc. are performed according to a conventional method, and FL40
An SS fluorescent lamp was used.

【0030】この蛍光ランプを点灯し、100時間経過
後の光束維持率を測定したところ、従来のアルミナを混
合しない蛍光ランプに比べて40%以上の向上がみられ
た。
When this fluorescent lamp was turned on and the luminous flux maintenance factor was measured after 100 hours, an improvement of 40% or more was observed as compared with the conventional fluorescent lamp which did not mix alumina.

【0031】また、ガラス管破壊試験を行い、蛍光ラン
プのガラス強度を測定した。ガラス強度は100時間点
灯後の蛍光ランプを机上に固定し、その中心部に100
gの鉄球を落下させ、ガラス管が破壊したときの鉄球の
高さでガラス管強度を簡易的に測定したところ、γアル
ミナを混合していない従来の蛍光ランプは管壁から約1
2cmの高さで破壊したのに対し、本発明の蛍光体組成物
を有する蛍光ランプは約42cmで破壊した。
Further, a glass tube destruction test was performed to measure the glass strength of the fluorescent lamp. The glass intensity was fixed on a desk after lighting for 100 hours, and 100%
g of iron ball was dropped, and the strength of the glass tube was simply measured at the height of the iron ball when the glass tube was broken.
The fluorescent lamp with the phosphor composition of the present invention broke at about 42 cm, whereas it broke at a height of 2 cm.

【0032】[実施例2]蛍光体原料として、炭酸ナト
リウム(Na2CO3)121.9g、アルミナ153
g、硝酸第二鉄9水和物7.3gを秤量し、これらをア
ルミナボールを入れた300mlの磁性ポット中で、メ
タノール約50mlと共に、5時間ローリングして粉砕
混合した。乾燥後、この粉砕混合物をアルミナ坩堝に充
填し蓋をした後、空気雰囲気中、1300℃で2時間焼
成した。焼成終了後、得られた蛍光体を粉砕し、300
メッシュの篩を通すことにより、平均粒径5.5μmの
NaAlO2:Fe蛍光体を得た。
Example 2 As a phosphor material, 121.9 g of sodium carbonate (Na 2 CO 3 ) and alumina 153 were used.
g, 7.3 g of ferric nitrate nonahydrate were weighed, and these were crushed and mixed with about 50 ml of methanol for 5 hours in a 300 ml magnetic pot containing alumina balls. After drying, the pulverized mixture was filled in an alumina crucible, covered, and fired in an air atmosphere at 1300 ° C. for 2 hours. After the firing, the obtained phosphor is pulverized and
By passing through a mesh sieve, a NaAlO 2 : Fe phosphor having an average particle size of 5.5 μm was obtained.

【0033】この蛍光体8gに平均粒径.5μmのγ
アルミナ微粉末1.6gを乾式で混合することにより本
発明の蛍光体組成物を得た。
An average particle size of 0 . 5 μm γ
The phosphor composition of the present invention was obtained by mixing 1.6 g of alumina fine powder in a dry manner.

【0034】さらにこの発光組成物を使用し、実施例1
と同様にして蛍光ランプを作成し、その100時間経過
後の光束維持率を測定したところ、γアルミナを混合し
ていない蛍光ランプに比べ40%以上の向上がみられ
た。
Further, using this luminescent composition, Example 1
A fluorescent lamp was prepared in the same manner as described above, and the luminous flux maintenance factor after the elapse of 100 hours was measured. As a result, an improvement of 40% or more was observed as compared with the fluorescent lamp in which γ-alumina was not mixed.

【0035】また破壊試験に対しても、γアルミナを混
合していない蛍光ランプは14cmで破壊したのに対し、
本発明のそれは40cmの高さで破壊した。
In the destruction test, the fluorescent lamp not mixed with γ-alumina was broken at 14 cm.
It of the invention broke at a height of 40 cm.

【0036】[実施例3]蛍光体原料として、炭酸リチ
ウム(Li2CO3)81.9g、酸化ガリウム206
g、硝酸第二鉄9水和物5.3gを秤量し、これらをア
ルミナボールを入れた300mlの磁性ポット中で、メ
タノール約50mlと共に、5時間ローリングして粉砕
混合した。乾燥後、この粉砕混合物をアルミナ坩堝に充
填し蓋をした後、空気雰囲気中、1300℃で2時間焼
成した。焼成終了後、得られた蛍光体を粉砕し、300
メッシュの篩を通すことにより、平均粒径4.2μmの
LiGaO2:Fe蛍光体を得た。
Example 3 As a phosphor material, 81.9 g of lithium carbonate (Li 2 CO 3 ) and 206 gallium oxide were used.
g of ferric nitrate nonahydrate was weighed and crushed and mixed with about 50 ml of methanol for 5 hours in a 300 ml magnetic pot containing alumina balls. After drying, the pulverized mixture was filled in an alumina crucible, covered, and fired in an air atmosphere at 1300 ° C. for 2 hours. After the firing, the obtained phosphor is pulverized and
By passing through a mesh sieve, a LiGaO 2 : Fe phosphor having an average particle size of 4.2 μm was obtained.

【0037】この蛍光体8gに実施例1と同様にしてア
ルミナ微粉末を混合し、本発明の蛍光体組成物を得た
後、同様に蛍光ランプを作成し、同じく100時間経過
後の光束維持率を測定したところ、γアルミナを混合し
ていないものに比べて同じく40%以上の向上がみられ
た。
Alumina fine powder was mixed with 8 g of this phosphor in the same manner as in Example 1 to obtain a phosphor composition of the present invention, and then a fluorescent lamp was produced in the same manner. When the percentage was measured, an improvement of 40% or more was also observed as compared with the case where γ-alumina was not mixed.

【0038】同じく、破壊試験についても、γアルミナ
を混合していない蛍光ランプは18cmで破壊したのに対
し、本発明のそれは42cmの高さで破壊した。
Similarly, in the destruction test, the fluorescent lamp not mixed with γ-alumina was broken at 18 cm, while that of the present invention was broken at a height of 42 cm.

【0039】[0039]

【発明の効果】以上述べたように、本発明は赤外発光蛍
光体に小粒径のγもしくはβアルミナを混合することに
より、蛍光ランプの光束、劣化を著しく改善することが
できる。特に、コンパクト灯蛍光ランプにおいては、一
般の蛍光ランプよりも厳しい条件で蛍光体が励起される
にも関わらず、劣化を改善することができる。また、本
発明の発光組成物において混合あるいは付着するアルミ
ナは、従来のように鉄付活アルミン酸リチウムだけでな
く、他の鉄で付活されたアルカリ金属を含有する赤外発
光蛍光体に対しても効果がある。さらに、アルミナを限
定したことにより、従来の赤外発光蛍光体にアルミナを
混合して焼成する技術に比して、多量のアルミナを蛍光
体に使用することができるため、経済的にも非常に有利
である。
As described above, according to the present invention, the luminous flux and deterioration of the fluorescent lamp can be remarkably improved by mixing a small particle diameter γ or β alumina with the infrared light emitting phosphor. In particular, in a compact fluorescent lamp, the deterioration can be improved even though the phosphor is excited under more severe conditions than a general fluorescent lamp. Alumina mixed or adhered in the light emitting composition of the present invention is not only iron-activated lithium aluminate as in the prior art, but also other infrared-emitting phosphors containing an alkali metal activated by iron. Is also effective. Furthermore, by limiting the amount of alumina, a large amount of alumina can be used for the phosphor as compared with the conventional technique of mixing alumina with the infrared-emitting phosphor and firing the same, which is very economical. It is advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 異なるアルミナが混合された蛍光体組成物を
実装した蛍光ランプの点灯時間と、その光束との関係を
比較して示す図。
FIG. 1 is a diagram showing a comparison between a lighting time of a fluorescent lamp mounting a phosphor composition in which different aluminas are mixed and a luminous flux thereof.

【図2】 異なるアルミナが混合された蛍光体組成物の
アルミナ混合量と、その蛍光ランプの光束維持率との関
係を比較して示す図。
FIG. 2 is a diagram showing a comparison between the alumina mixing amount of a phosphor composition in which different aluminas are mixed and the luminous flux maintenance factor of the fluorescent lamp.

【図3】 本発明に係る蛍光体組成物のアルミナ粒径
と、その蛍光ランプの光束維持率との関係を示す図。
FIG. 3 is a graph showing the relationship between the alumina particle size of the phosphor composition according to the present invention and the luminous flux maintenance factor of the fluorescent lamp.

【図4】 本発明に係る蛍光体組成物のアルミナ混合量
と、その蛍光ランプの初光束との関係を示す図。
FIG. 4 is a diagram showing the relationship between the amount of alumina mixed in the phosphor composition according to the present invention and the initial luminous flux of the fluorescent lamp.

【図5】 本発明に係る蛍光体組成物のアルミナ混合量
と、そのコンパクト灯蛍光ランプの初光束との関係を示
す図。
FIG. 5 is a diagram showing the relationship between the amount of alumina mixed in the phosphor composition according to the present invention and the initial luminous flux of the compact fluorescent lamp.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−215885(JP,A) 特開 昭50−92876(JP,A) 特開 昭51−120986(JP,A) 特開 昭51−120987(JP,A) (58)調査した分野(Int.Cl.6,DB名) C09K 11/00 - 11/89 H01J 61/44──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-215885 (JP, A) JP-A-50-92876 (JP, A) JP-A-51-120986 (JP, A) JP-A-51-1982 120987 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C09K 11/00-11/89 H01J 61/44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式が、RXO2:Fea(但し、R
はLi、Na、KおよびRbよりなる群の少なくとも一
種、XはAl、Gaの内の少なくとも一種、aは0.0
01〜0.1グラム原子の3価のFeイオン)で表され
る赤外発光蛍光体に、平均粒径1μm以下の、β型、も
しくはγ型の酸化アルミニウムを、蛍光体に対し0.5
重量%以上、200重量%以下の割合で混合、または付
着し、その後500℃以上の加熱を行わずに得られた
とを特徴とする蛍光体組成物。
(1) The general formula is RXO2: Fea (where R
Is at least one of the group consisting of Li, Na, K and Rb, X is at least one of Al and Ga, and a is 0.0
Β-type or γ-type aluminum oxide having an average particle size of 1 μm or less is added to the infrared-emitting phosphor represented by formula (01-0.1 gram atom of trivalent Fe ion).
A phosphor composition obtained by mixing or adhering at a ratio of not less than 200% by weight and not more than 200% by weight , and thereafter being obtained without heating at 500 ° C or more .
【請求項2】 請求項1に記載の蛍光体組成物を蛍光膜
として有することを特徴とする低圧水銀ランプ。
2. A low-pressure mercury lamp comprising the phosphor composition according to claim 1 as a phosphor film.
JP3280770A 1991-09-30 1991-09-30 Phosphor composition and low-pressure mercury lamp Expired - Fee Related JP2765641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280770A JP2765641B2 (en) 1991-09-30 1991-09-30 Phosphor composition and low-pressure mercury lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280770A JP2765641B2 (en) 1991-09-30 1991-09-30 Phosphor composition and low-pressure mercury lamp

Publications (2)

Publication Number Publication Date
JPH0593187A JPH0593187A (en) 1993-04-16
JP2765641B2 true JP2765641B2 (en) 1998-06-18

Family

ID=17629722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280770A Expired - Fee Related JP2765641B2 (en) 1991-09-30 1991-09-30 Phosphor composition and low-pressure mercury lamp

Country Status (1)

Country Link
JP (1) JP2765641B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2185957A1 (en) * 1995-10-11 1997-04-12 Jon Bennett Jansma Fluorescent lamp having phosphor layer with additive
JP3755285B2 (en) * 1998-03-19 2006-03-15 日亜化学工業株式会社 Iron-activated lithium aluminate phosphor and its fluorescent lamp
DE10307281A1 (en) * 2003-02-20 2004-09-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Coated phosphor, light-emitting device with such phosphor and method for its production
JP2019196441A (en) * 2018-05-09 2019-11-14 株式会社日立ハイテクノロジーズ Fluophor, light source and biochemical analyzer
JP7102321B2 (en) * 2018-11-15 2022-07-19 株式会社日立ハイテク Broadband light source device and biochemical analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708169B2 (en) * 1988-02-23 1998-02-04 株式会社東芝 Method for producing iron-activated lithium aluminate phosphor and fluorescent lamp

Also Published As

Publication number Publication date
JPH0593187A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
EP0488330B1 (en) Fluorescent lamp
JPH0774333B2 (en) Luminescent composition
KR100287976B1 (en) Fluorescent lamp
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
JP2765641B2 (en) Phosphor composition and low-pressure mercury lamp
JPH0126038Y2 (en)
JP2653576B2 (en) Low pressure mercury vapor discharge lamp
WO1994019422A1 (en) Phospor and fluorescent lamp made by using the same
JP3832024B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
KR960000475B1 (en) Fluorescent material and method for preparing therof
JP3187952B2 (en) Three-wavelength phosphor and fluorescent lamp using the same
JP2003226872A (en) Fluorescent substance and fluorescent lamp
JP3783329B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
JPH11172244A (en) Phosphor, manufacture thereof and fluorescent lamp
JP2637145B2 (en) Phosphors and fluorescent lamps
JP4303989B2 (en) Fluorescent substance and fluorescent lamp
JP3755285B2 (en) Iron-activated lithium aluminate phosphor and its fluorescent lamp
JPH06103915A (en) Color cathode-ray tube
JP2773475B2 (en) Phosphor for fluorescent lamp
JPH0673375A (en) Phosphor and fluorescent lamp
JP3915508B2 (en) Compact fluorescent lamp
JPH09217059A (en) Blue color generating fluorescent material, production of the same and fluorescent lamp
JPH0953069A (en) Red emitting phosphor and fluorescent lamp made by using it
JP2909017B2 (en) Low pressure mercury vapor discharge lamp and method of manufacturing the same
JPH09217060A (en) Red color generating fluorescent material and fluorescent lamp

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080403

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees