JPH02228082A - Manufacture of thermoelectric generating element - Google Patents

Manufacture of thermoelectric generating element

Info

Publication number
JPH02228082A
JPH02228082A JP1048952A JP4895289A JPH02228082A JP H02228082 A JPH02228082 A JP H02228082A JP 1048952 A JP1048952 A JP 1048952A JP 4895289 A JP4895289 A JP 4895289A JP H02228082 A JPH02228082 A JP H02228082A
Authority
JP
Japan
Prior art keywords
type
welded
metal
heat treatment
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1048952A
Other languages
Japanese (ja)
Inventor
Kazunari Iori
伊折 和成
Sonoko Nonomura
野々村 園子
Yoshiyuki Taniguchi
谷口 芳幸
Takao Kurata
倉田 多嘉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP1048952A priority Critical patent/JPH02228082A/en
Publication of JPH02228082A publication Critical patent/JPH02228082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To contrive the simplification of manufacture processes and the reduction of costs by welding metallic terminals to the both ends of a member for p-type and a member for n-type which have the metal properties remaining after sintering by resistance welding, after which the heat treatment for turning said p-type and n-type members into semiconductors and dissolving the stress distortion of the welded part is carried out. CONSTITUTION:The p-n junction of a member for p-type 1 and a member for n-type 2 which have the metal properties remaining after sintering is resistance-welded indirectly through a metal plate 4 (a), or directly without interposing the metal plate 4 (b), whereas a metallic terminals 3 is welded to the both sides of the above members by resistance welding. Next, the heat treatment is carried out under such conditions that said p-type an n-type members 1 and 2 are turned into semiconductors and the stress distortion of the p-n junction W1 and metal terminal welded parts W1 and W2 is dissolved. Accordingly, a complex brazing process and a special brazing material become unnecessary and also the stress distortion of the welded part can be removed under the heat treatment conditions for turn into semiconductors. As a result, thermoelectric generating elements which have excellent strength of terminal junction can be manufactured easily and the reduction of costs becomes possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄珪化物半導体からなる熱発電素子の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a thermoelectric power generation element made of an iron silicide semiconductor.

(従来の技術とその問題点) 熱発電素子として種々の硅化物半導体素子が提案されて
いるが、鉄珪化物素子は適性不純物を添加することによ
りp型にもn型にもすることができ、また原料鉄とシリ
コンが資源的にも豊富で安価なため、経済的な熱発電素
子が得られる特長を有し、近年注目されている。
(Prior art and its problems) Various silicide semiconductor devices have been proposed as thermoelectric power generation devices, but iron silicide devices can be made into p-type or n-type by adding appropriate impurities. In addition, since the raw materials iron and silicon are abundant and inexpensive, they have the advantage of being able to produce economical thermoelectric power generation elements, and have attracted attention in recent years.

しかしながら、かかる熱発電素子を実用化するためには
、該素子の端部に通電のための電極端子を取り付ける必
要があるが、半導体部への電極端子の抵抗溶接は実際上
接触抵抗(半導体側の比抵抗10−3Ωcm程度)が大
きすぎて困難である。そのため、現状では銀ペースト法
、ろう付は法、超音波はんだ法等を利用して接合してい
る(例えば特開昭57−95684号参照)。
However, in order to put such a thermoelectric element into practical use, it is necessary to attach an electrode terminal for conducting electricity to the end of the element, but resistance welding of the electrode terminal to the semiconductor part actually requires contact resistance (semiconductor side The specific resistance (about 10 −3 Ωcm) is too large, making it difficult. Therefore, at present, bonding is performed using a silver paste method, a brazing method, an ultrasonic soldering method, etc. (see, for example, Japanese Patent Laid-Open No. 57-95684).

(発明が解決しようとする課題) しかしながら、ろう接の場合、接合後、ろう材が熱発電
素子内に拡散していき、これによりクランクが生ずるこ
とがあり、接続部の信輔性に欠ける問題点がある。また
、ろう接は工業的(量産)に利用する場合、ろう材を予
め熱発電素子の接続部とリード端子に塗布しておく工程
、熱発電素子とリード端子を重ね合わせる工程、そして
所定の温度に設定した加熱炉に通すことによりろう材を
溶融させる工程等が必要になり、工数が増加し、又特殊
なろう材を用いなければならず、その結果コスト高につ
ながる問題点がある。さらに、銀ペースト法、超音波は
んだ法は接合部の耐熱性に欠けるという問題点がある。
(Problem to be Solved by the Invention) However, in the case of brazing, the brazing material may diffuse into the thermoelectric element after joining, which may cause cranking, resulting in a lack of reliability in the connection. There is. In addition, when brazing is used for industrial purposes (mass production), it involves a process in which brazing material is applied to the connection parts and lead terminals of the thermoelectric generator in advance, a process in which the thermoelectric generator and the lead terminals are overlapped, and a process is performed at a predetermined temperature. A process of melting the brazing filler metal by passing it through a heating furnace set to 100 mL is required, which increases the number of man-hours and requires the use of a special brazing filler metal, resulting in problems that lead to higher costs. Furthermore, the silver paste method and the ultrasonic soldering method have a problem in that the bonded portion lacks heat resistance.

また、p型およびn型素子とを別々に製造すると、画素
子を抵抗溶接により接合できない現状では金属板を用い
てp−n接合する必要があるが、高温用の熱発電素子で
はp−n接合部が1150Kにもなるため、p−n接合
用金属板やろう付は材料の耐熱、耐酸化性に左右され、
Fe5izの特徴を発揮することができない。したがっ
て、一体的に製造する必要があるが、製造工程上形状が
制限されるだけでなく、量産性に欠けるという問題点が
ある。
In addition, if p-type and n-type elements are manufactured separately, the pixel elements cannot be joined by resistance welding, which currently requires p-n junctions using metal plates, but in high-temperature thermoelectric power generation elements, p-n Since the temperature at the joint is as high as 1150K, metal plates for p-n junctions and brazing depend on the heat resistance and oxidation resistance of the material.
The characteristics of Fe5iz cannot be exhibited. Therefore, although it is necessary to manufacture it integrally, there are problems in that not only the shape is limited due to the manufacturing process, but also mass productivity is lacking.

そこで本発明は、従来のろう付は等に代え、接合部の高
信顧性を得るとともに、製造工程の簡略化を図り、ひい
ては低コストの熱発電素子を製造することができる方法
を提供することを課題とする。
Therefore, the present invention provides a method that can replace conventional brazing, etc., achieve high reliability of joints, simplify the manufacturing process, and manufacture low-cost thermoelectric power generation elements. That is the issue.

(課題解決のための手段) 本発明は、銖硅化物材は1259に以上では金属相とな
る半導体−金属遷移を有しており、通常原料粉末をプレ
ス後、上記遷移温度以上で焼結し、次いで上記遷移温度
以下での熱処理により半導体化しているため、上記焼結
したままの素子材料は金属性質を有し、抵抗溶接が可能
である一方、上記半導体化の熱処理は溶接部の応力を解
消するのに適切であることに着目してなされたもので、
焼結したままのp型用部材および/またはn型用部材の
端部に金gI4端子および/またはp−n接合部材をそ
の金属性質を利用して抵抗溶接し、次いで上記P型用部
材とn型用部材の半導体化のための熱処理を利用して電
着された金属端子および画素子の接合部の応力歪みを解
消するようにすることを特徴とし、 第1番目の発明はp型鉄硅化物材とn型鉄硅化物材とを
p−n接合して熱発電素子を製造するにあたり、焼結し
たままの金属性質を有する上記p型用部材とn型用部材
の両端部に抵抗溶接により金属端子を溶着し、 次いで上記p型用およびn型用部材を半導体化するとと
もに上記金属端子溶着部の応力歪みを解消する条件下に
熱処理を行うことを要旨とする熱発電素子の製造法にあ
る。
(Means for Solving the Problems) The present invention provides that the orthosilicate material has a semiconductor-metal transition that becomes a metallic phase at 1259 or above, and that it is usually sintered at a temperature above the above transition temperature after pressing the raw material powder. Then, since it is made into a semiconductor by heat treatment below the transition temperature, the as-sintered element material has metallic properties and can be resistance welded. This was done with a focus on being appropriate for resolving the issue.
Resistance welding a gold gI4 terminal and/or a p-n bonding member to the ends of the as-sintered p-type member and/or n-type member using its metallic properties, and then welding the above-mentioned p-type member and The first invention is characterized in that the stress strain at the joint between the electrodeposited metal terminal and the pixel element is eliminated by using heat treatment for converting the n-type member into a semiconductor. When manufacturing a thermoelectric power generation element by p-n bonding a silicide material and an n-type iron silicide material, a resistor is added to both ends of the above-mentioned p-type member and n-type member, which have metallic properties as they are sintered. Manufacturing a thermoelectric power generation element, the gist of which is to weld metal terminals by welding, then convert the p-type and n-type members into semiconductors, and perform heat treatment under conditions to eliminate stress and strain at the welded metal terminals. It's in the law.

上記方法はp−n接合された画素子を一体的に製造する
場合に適するものであるが、p型素子とn型素子を別体
として製造する場合はp−n接合部も同様に抵抗溶接に
より接合する必要がある。
The above method is suitable for integrally manufacturing p-n junction pixel elements, but when manufacturing p-type elements and n-type elements separately, resistance welding is used for the p-n junction as well. It is necessary to join by

そこで、第2番目の発明は、p型鉄硅化物材とn型鉄硅
化物材とをp−n接合して熱発電素子を製造するにあた
り、 焼結したままの金属性質を有する上記P型用部材とn型
用部材のp−n接合部を金属板を介して間接的に、また
は金属板を介さず直接的に抵抗溶接する一方、上記部材
の両端部に抵抗溶接により金属端子を溶着し、 次いで上記p型用およびn型用部材を半導体化するとと
もに上記p−n接合部および金属端子溶着部の応力歪み
を解消する条件下に熱処理を行うことを要旨とする熱発
電素子の製造法にある。
Therefore, the second invention is to manufacture a thermoelectric power generation element by p-n bonding a p-type iron silicide material and an n-type iron silicide material, and to produce the above-mentioned P-type material having metallic properties as sintered. The p-n junction of the N-type member and the N-type member is resistance welded indirectly through a metal plate or directly without a metal plate, and metal terminals are welded to both ends of the above member by resistance welding. and then converting the p-type and n-type members into semiconductors and performing heat treatment under conditions that eliminate stress strain at the p-n junction and the metal terminal weld. It's in the law.

また、本発明方法は第3図に示すように、p型またはn
型半導体素子1.2に金属素子5を抵抗溶接して熱発電
素子を製造する場合にも適用できる。上記抵抗溶接にお
いては第4図に示すように、金属端子3および金属板4
ならびに金属素子5の半導体素子との接合部に1または
2以上の突起6を形成しておくと、抵抗溶接時に電流が
集中し、溶着接合が容易となるので好ましい。
Furthermore, as shown in FIG. 3, the method of the present invention can be used to
It can also be applied to the case where a thermoelectric power generating element is manufactured by resistance welding the metal element 5 to the type semiconductor element 1.2. In the above resistance welding, as shown in FIG.
It is also preferable to form one or more protrusions 6 at the joint portion of the metal element 5 with the semiconductor element, since current will be concentrated during resistance welding and welding and joining will be facilitated.

本発明においては、p型およびn型素子の双方とも素子
の半導体−金属遷移現象を利用して抵抗溶接を行って製
造するため、半導体−金属遷移現象を伴う鉄珪化物にA
IまたはMnを添加して粉末冶金法にてP型素子を製造
するのが好ましく、通常Pe5izにMnを所定量添加
したPei−xMnxsix (0<x<0.1)の組
成が使用される。
In the present invention, since both p-type and n-type devices are manufactured by resistance welding using the semiconductor-metal transition phenomenon of the device, A
It is preferable to manufacture a P-type element by a powder metallurgy method by adding I or Mn, and usually a composition of Pei-xMnxsix (0<x<0.1) in which a predetermined amount of Mn is added to Pe5iz is used.

他方、n型素子は上記鉄珪化物にCOを添加して粉末冶
金法にてFe1−ycoysil (0<、 <0.1
)の組成に調製するのが好ましい。
On the other hand, the n-type element is made by adding CO to the above iron silicide and using a powder metallurgy method to form Fe1-ycoysil (0<, <0.1
) is preferably prepared.

上記原料粉末は冷間プレスにて成形した後、焼結される
。熱発電素子の形態としては第2図(a)に示すように
、棒状p型半導体素子lとn型半導体素子2とを一旦製
造後、金属板4を介して抵抗溶接にてπ字に接合すると
ともに、金属端子3を抵抗溶接にて接合するか、または
第2図伽)に示すように、U字形状にp型半導体素子l
とn型半導体素子2とをp−n接合するように一体成形
す゛るとともに、金属端子3を抵抗溶接にて接合する。
The raw material powder is cold pressed and then sintered. As shown in FIG. 2(a), the thermoelectric generating element is formed by once manufacturing a rod-shaped p-type semiconductor element l and an n-type semiconductor element 2, and then joining them in a π-shape by resistance welding via a metal plate 4. At the same time, the metal terminals 3 are joined by resistance welding, or the p-type semiconductor element l is connected in a U-shape as shown in FIG.
and n-type semiconductor element 2 are integrally molded so as to form a p-n junction, and metal terminals 3 are joined by resistance welding.

なお、溶接部は−1または計で示されている。Note that welded parts are indicated by -1 or total.

上記抵抗溶接としては、通常の電気抵抗溶接法を採用し
でよい。
As the above-mentioned resistance welding, a normal electric resistance welding method may be employed.

(作用効果) 本発明によれば、熱発電素子の製造過程における素子用
材が金属状態にある時点を捉えて、その金属性質を利用
して溶接するので、従来困難とされていた金属端子の抵
抗溶接が可能となり、複雑なろう接工程及び特殊なろう
材が不要となり、低コスト化が可能となる。しかも、か
かる溶着部は素子用材の半導体化のための熱処理条件下
に応力歪みが同時に除去できるので、特別の工程を付加
することなく、端子接合強度に優れる熱発電素子を簡単
に製造することができる。また、同時に、p−n接合部
も抵抗溶接が可能であるから、別体としてp型およびn
型素子を製造しても熱発電素・子として使用することが
できる。
(Function and Effect) According to the present invention, the point in time when the element material is in a metallic state during the manufacturing process of a thermoelectric generating element is captured, and welding is performed by utilizing the metallic properties of the element material. Welding becomes possible, and complicated brazing processes and special brazing metals are not required, making it possible to reduce costs. Furthermore, stress and strain can be simultaneously removed from such welded parts under heat treatment conditions for converting element materials into semiconductors, making it possible to easily manufacture thermoelectric generators with excellent terminal bonding strength without adding special processes. can. At the same time, resistance welding is also possible for p-n junctions, so p-type and n-type joints can be welded separately.
Even if a type element is manufactured, it can be used as a thermoelectric power generation element/device.

以下、本発明を実施例に基づき、詳細に説明することに
する。
Hereinafter, the present invention will be explained in detail based on examples.

(実施例) 第1図に示す工程により熱発電素子を製造する。(Example) A thermoelectric power generation element is manufactured by the steps shown in FIG.

Pe5iHに所定量のMnを添加して半導体−金属遷移
変態を有するFe1−Jn、Six (O<+ <0.
1)!Jl成となるように、原料Fe、 Si、 Mn
を混合溶解し、スタンプミルにて32メツシユまで粉砕
し、次に鉄製ボールミルにて粒径1〜31m1の範囲ま
で粉砕してp型素子用粉末として使用する。他方、pe
slgに所定量のCoを添加して半導体−金属遷移変態
を有するPe+−yCo、5ix(0<、 <0.1)
組成となるように原料Fe、 Si、 Coを混合溶解
し、スタンプミルにて32メソシユまで粉砕し、次いで
鉄製ボールミルにて粒径1〜3III11の範囲まで粉
砕してn型素子用粉末として使用する。
A predetermined amount of Mn is added to Pe5iH to produce Fe1-Jn, Six (O<+ <0.
1)! The raw materials Fe, Si, Mn are
The mixture is mixed and dissolved, pulverized to 32 meshes in a stamp mill, and then pulverized in an iron ball mill to a particle size in the range of 1 to 31 ml to be used as a powder for p-type elements. On the other hand, pe
Pe+-yCo, which has a semiconductor-metal transition transformation by adding a predetermined amount of Co to slg, 5ix (0<, <0.1)
Raw materials Fe, Si, and Co are mixed and dissolved so as to have the following composition, ground to 32 mesh particles using a stamp mill, and then ground to a particle size range of 1 to 3III11 using an iron ball mill to be used as a powder for n-type devices. .

上記冷間プレスを行う前に、粉末に結合剤および滑剤と
して例えば、ポリビニルアルコールおよびコロイド状パ
ラフィンを加えて団粒に造粒し、油圧プレスを用いて充
填率60’−’65%の圧粉体とし、これを空気中にお
いて600〜800にで予備加熱して焼結前に上記結合
剤および滑剤を完全に除去する。焼結は1428°C前
後において真空(1,33X10Pa)にて行う。
Before performing the above cold pressing, the powder is granulated into aggregates by adding binders and lubricants such as polyvinyl alcohol and colloidal paraffin, and is pressed into powder with a filling rate of 60'-'65% using a hydraulic press. The binder and lubricant are completely removed before sintering by preheating in air at 600 to 800 °C. Sintering is performed in vacuum (1.33×10 Pa) at around 1428°C.

焼結したままの上記素子は比抵抗10−’Ωc+s程度
で、熱処理後の比抵抗に比べて極めて小さいので、通常
の抵抗溶接により、例えばステンレス等の金属端子を溶
着した。その後、大気中または窒素ガス等の不活性ガス
中1050に前後で熱処理を施し、熱発電素子を製造し
た。この熱処理により抵抗溶接後の応力歪を除去するこ
とが可能となリ、接合部の信転性が向上する。なお、上
記抵抗溶接時には熱衝撃を緩和するためにある程度の加
熱を行うなどの工夫を施すとよい。
The as-sintered element had a specific resistance of about 10-'Ωc+s, which was extremely small compared to the specific resistance after heat treatment, so a metal terminal, such as stainless steel, was welded by ordinary resistance welding. Thereafter, heat treatment was performed before and after 1050 mL in air or an inert gas such as nitrogen gas to produce a thermoelectric power generation element. This heat treatment makes it possible to remove stress strain after resistance welding, and improves the reliability of the joint. Note that during the resistance welding, it is advisable to take measures such as heating to a certain extent in order to alleviate thermal shock.

その性能および端子接合部の強度を従来のろう付は法に
て製造した熱発電素子と比較すると、接合部の信鎖性お
よび耐熱性が向上していることが確認された。
When the performance and strength of the terminal joints were compared with those of thermoelectric generators manufactured by conventional brazing methods, it was confirmed that the reliability and heat resistance of the joints were improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱発電素子の製造工程を示す工程
図、第2図(a)および(b)は本発明方法で製造され
た熱発電素子の形態を示す正面図、第3図はp型または
n型素子に金属素子を接合した熱発電素子形態を示す概
略側面図、第4図は熱発電素子に接合される金属端子の
接合部形状を示す拡大図である。 1−−−・p型素子、 2−・−n型素子、3−・−・
・−・金属端子、  4−−−−一金属板、5−・・−
・・−金属素子、 −1及び−2−・−溶接部。 特許出願人 株式会社大和真空工業所
FIG. 1 is a process diagram showing the manufacturing process of the thermoelectric power generation element according to the present invention, FIGS. 2(a) and (b) are front views showing the form of the thermoelectric power generation element manufactured by the method of the present invention, and FIG. 4 is a schematic side view showing the form of a thermoelectric power generating element in which a metal element is bonded to a p-type or n-type element, and FIG. 4 is an enlarged view showing the shape of a joint portion of a metal terminal bonded to the thermoelectric generating element. 1----・p-type element, 2-・-n-type element, 3-・-・
・−・Metal terminal, 4−−−−1 metal plate, 5−・・−
...-Metal element, -1 and -2--Welded part. Patent applicant: Yamato Vacuum Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)p型鉄硅化物材とn型鉄硅化物材とをp−n接合
して熱発電素子を製造するにあたり、 焼結したままの金属性質を有する上記p型用部材とn型
用部材の両端部に抵抗溶接により金属端子を溶着し、 次いで上記p型用およびn型用部材を半導体化するとと
もに上記金属端子溶着部の応力歪みを解消する条件下に
熱処理を行うことを特徴とする熱発電素子の製造法。
(1) When manufacturing a thermoelectric power generation element by p-n bonding a p-type iron silicide material and an n-type iron silicide material, the above-mentioned p-type member and n-type member having metallic properties as sintered are used. Metal terminals are welded to both ends of the member by resistance welding, and then heat treatment is performed under conditions to convert the p-type and n-type members into semiconductors and to eliminate stress distortion in the welded parts of the metal terminals. A method for manufacturing thermoelectric power generation elements.
(2)p型鉄硅化物材とn型鉄硅化物材とをp−n接合
して熱発電素子を製造するにあたり、 焼結したままの金属性質を有する上記p型用部材とn型
用部材のp−n接合部を金属板を介して間接的に、また
は金属板を介さず直接的に抵抗溶接する一方、上記p型
用部材とn型用部材の両端部に抵抗溶接により金属端子
を溶着し、 次いで上記p型用およびn型用部材を半導体化するとと
もに上記p−n接合部および金属端子溶着部の応力歪み
を解消する条件下に熱処理を行うことを特徴とする熱発
電素子の製造法。
(2) When manufacturing a thermoelectric power generation element by p-n bonding p-type iron silicide material and n-type iron silicide material, the above-mentioned p-type member and n-type member having metallic properties as sintered are used. While the p-n junction of the members is resistance welded indirectly through a metal plate or directly without a metal plate, metal terminals are connected to both ends of the above-mentioned p-type member and n-type member by resistance welding. A thermoelectric power generating element characterized in that the p-type and n-type members are welded, and then heat treatment is performed under conditions that convert the p-type and n-type members into semiconductors and eliminate stress strain in the p-n junction and the metal terminal welded portion. manufacturing method.
(3)p型鉄硅化物材またはn型鉄硅化物材に金属端子
を接合して熱発電素子を製造するにあたり、焼結したま
まの金属性質を有する上記p型用部材またはn型用部材
の端部に抵抗溶接により金属端子を溶着し、 次いで上記p型用部材またはn型用部材を半導体化する
とともに上記金属端子溶着部の応力歪みを解消する条件
下に熱処理を行うことを特徴とする熱発電素子の製造法
(3) When manufacturing a thermoelectric power generation element by joining a metal terminal to a p-type iron silicide material or an n-type iron silicide material, the above-mentioned p-type member or n-type member has metallic properties as sintered. A metal terminal is welded to the end of the metal terminal by resistance welding, and then heat treatment is performed under conditions that convert the p-type member or n-type member into a semiconductor and eliminate stress strain at the welded part of the metal terminal. A method for manufacturing thermoelectric power generation elements.
(4)上記金属端子の溶着部に1または2以上の突起を
設ける請求項(1)ないし(4)のいずれか1つに記載
の熱発電素子の製造方法。
(4) The method for manufacturing a thermoelectric generating element according to any one of claims (1) to (4), wherein one or more protrusions are provided on the welded portion of the metal terminal.
JP1048952A 1989-02-28 1989-02-28 Manufacture of thermoelectric generating element Pending JPH02228082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048952A JPH02228082A (en) 1989-02-28 1989-02-28 Manufacture of thermoelectric generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1048952A JPH02228082A (en) 1989-02-28 1989-02-28 Manufacture of thermoelectric generating element

Publications (1)

Publication Number Publication Date
JPH02228082A true JPH02228082A (en) 1990-09-11

Family

ID=12817611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048952A Pending JPH02228082A (en) 1989-02-28 1989-02-28 Manufacture of thermoelectric generating element

Country Status (1)

Country Link
JP (1) JPH02228082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510500A (en) * 2008-01-23 2011-03-31 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン Method for producing thermoelectric components and thermoelectric components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510500A (en) * 2008-01-23 2011-03-31 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン Method for producing thermoelectric components and thermoelectric components

Similar Documents

Publication Publication Date Title
JP6094136B2 (en) Thermoelectric conversion element assembly, thermoelectric conversion module and manufacturing method thereof
WO2002023643A1 (en) Thermoelectric conversion element
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JPH0697512A (en) Thermoelectric conversion element
CN110783445B (en) Soldering lug for connecting segmented thermoelectric device and preparation method thereof
CN109065697B (en) Annular thermoelectric power generation device
CN109065700B (en) Preparation method of annular thermoelectric power generation device
JP2011249442A (en) Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP2001217469A (en) Thermoelectric conversion element and its manufacturing method
CN103187519A (en) Thermoelectricity module and manufacturing method thereof
JPH02228082A (en) Manufacture of thermoelectric generating element
CN105610035A (en) Manufacturing method for copper-aluminum terminal
CN110098312A (en) A kind of connection method being segmented thermoelectric material
CN106098649A (en) High-power surface mount elements and processing tool, manufacture method
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JP2004186566A (en) Assembling method of thermoelectric conversion module
JP2001189497A (en) Thermoelectric conversion element and manufacturing method therefor
CN113016082A (en) Tin-based thermoelectric conversion element and tin-based thermoelectric conversion module
JPH11177156A (en) Machining method for thermoelectric conversion material and production of thermoelectric conversion element
JPH07142768A (en) Thermoelectric conversion element
JP2009038323A (en) Manufacturing method of thermoelectric conversion element
JPH1022530A (en) Thermoplastic conversion element
CN109192672A (en) A kind of sintering method of silicon chip
CN100370635C (en) Compression joint method for thermoelement and electrode
JP2000286466A (en) Si-ge semiconductor device and manufacture of the same, and thermoelectric conversion module