JPH07142768A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element

Info

Publication number
JPH07142768A
JPH07142768A JP5311220A JP31122093A JPH07142768A JP H07142768 A JPH07142768 A JP H07142768A JP 5311220 A JP5311220 A JP 5311220A JP 31122093 A JP31122093 A JP 31122093A JP H07142768 A JPH07142768 A JP H07142768A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
type semiconductor
heat
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5311220A
Other languages
Japanese (ja)
Other versions
JP3450397B2 (en
Inventor
Yasuyuki Nakamura
恭之 中村
Chuichi Takahashi
忠一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP31122093A priority Critical patent/JP3450397B2/en
Publication of JPH07142768A publication Critical patent/JPH07142768A/en
Application granted granted Critical
Publication of JP3450397B2 publication Critical patent/JP3450397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the power generating capability by providing a thermal conduction metal plate consisting of titanium or titanium alloy between a pair of semiconductors and brazing these elements with a copper system brazing material to form the PN junction. CONSTITUTION:A thermal conduction metal plate 13 is provided between a P-type semiconductor 11 and an N-type semiconductor 12 and these semiconductors 11, 12 and thermal conduction metal plate 13 are brazed into an integrated element by a copper system brazing material 14. Meanwhile, a copper plate 15 which works as an electrode plate and a heat sink is brazed in the side of open ends of the semiconductors 11, 12 with a brazing material to form an integrated element. Therefore, since only the PN junction is heated, a temperature difference can also be obtained even at the area near the cold contact point, internal resistance becomes small and a stabilized power can be extracted from the open ends side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄硅化物(FeSi
2)を主体とするP型半導体とN型半導体とをPN接合
した構成からなる熱電変換素子の改良に係り、PN接合
部をチタン(Ti)又はチタン(Ti)合金からなる熱
伝導用金属板を介在させ銅(Cu)系ろう材にてろう付
け形成し、発電能力(変換効率)を向上させるとともに
製造を容易にした熱電変換素子に関する。
BACKGROUND OF THE INVENTION This invention relates to iron sulfide (FeSi
(2 ) A thermoelectric conversion element comprising a P-type semiconductor and an N-type semiconductor mainly composed of 2 ) and having a PN junction structure. The PN junction part is made of titanium (Ti) or a titanium (Ti) alloy. The present invention relates to a thermoelectric conversion element which is brazed with a copper (Cu) -based brazing material with the interposition of, to improve the power generation capacity (conversion efficiency) and facilitate manufacturing.

【0002】[0002]

【従来の技術】熱電変換素子は、最近の産業界において
要求の高い、熱エネルギーの有効活用の観点から実用化
が期待されているデバイスであり、例えば、排熱を利用
し電気エネルギーに変換するシステムや、屋外で簡単に
電気を得るための小型携帯用発電装置、ガス機器の炎セ
ンサー等、非常に広範囲の用途が検討されている。しか
し、いままでに知られている熱電変換素子は、一般に熱
電変換素子を構成する半導体の価格が高く、そのわりに
使用温度範囲が狭く、また、変換効率が低いことや製造
方法が煩雑である等の理由から汎用されるに至っていな
い。
2. Description of the Related Art A thermoelectric conversion element is a device which is highly demanded in recent industry and is expected to be put into practical use from the viewpoint of effective utilization of thermal energy. For example, exhaust heat is used to convert it into electric energy. A very wide range of applications are being investigated, such as systems, small portable power generators for easily obtaining electricity outdoors, and flame sensors for gas appliances. However, thermoelectric conversion elements that have been known so far are generally high in price of semiconductors that constitute the thermoelectric conversion element, and instead have a narrow operating temperature range, low conversion efficiency, and a complicated manufacturing method. For this reason, it has not been widely used.

【0003】これらの問題点を解決する熱電変換素子と
して、鉄硅化物(FeSi2)を主体とするP型半導体
とN型半導体とをPN接合した構成からなる熱電変換素
子が提案されており、半導体が比較的安価な材料からな
ることや、使用温度範囲が広く、耐熱性も〜900℃程
度と高い等のことから注目されている。
As a thermoelectric conversion element for solving these problems, there has been proposed a thermoelectric conversion element having a structure in which a P-type semiconductor mainly composed of iron silicide (FeSi 2 ) and an N-type semiconductor are PN-junctioned, Attention is paid to the fact that the semiconductor is made of a relatively inexpensive material, has a wide operating temperature range, and has high heat resistance of about 900 ° C.

【0004】この熱電変換素子は、通常、図10に示す
如く、鉄硅化物(FeSi2)にマンガン(Mn)また
はコバルト(Co)等の適性不純物を添加したP型半導
体2とN型半導体3とを一端側でPN接合して形成した
U字型の形状からなる。このような構成からなる熱電変
換素子1において、前記PN接合部4を加熱すると、該
PN接合部4に熱エネルギーが供給されゼーベック効果
によって各々の半導体2,3の解放端側(低温端側)に
プラス(+)及びマイナス(−)の電圧が発生し、該解
放端から電力が取り出せるのである。
In this thermoelectric conversion element, as shown in FIG. 10, usually, a P-type semiconductor 2 and an N-type semiconductor 3 in which an appropriate impurity such as manganese (Mn) or cobalt (Co) is added to iron silicide (FeSi 2 ). And a U-shape formed by PN-joining at one end side. In the thermoelectric conversion element 1 having such a configuration, when the PN junction 4 is heated, thermal energy is supplied to the PN junction 4 and the Seebeck effect causes the open ends (low temperature ends) of the respective semiconductors 2 and 3. Positive (+) and negative (-) voltages are generated in the electric field, and electric power can be taken out from the open end.

【0005】また、このU字型の形状からなる熱電変換
素子1は、以下に説明する如き工程によって製造される
ことが知られている。すなわち、 1)Fe1-XMnXSi2及びFe1-YCoYSi2の所定組
成を有するP型半導体用合金及びN型半導体用合金を溶
解鋳造にて得る。 2)上記各々半導体用合金をスタンプミル、ボールミル
等の粉砕機によって所定の粒径(1.5μm程度)に粉
砕する。 3)所定量のバインダー(PVA)を混錬して造粒す
る。 4)上記各々の半導体用合金粉末を、U字型の貫通孔を
有するダイス内に充填する。ただし、合金粉末を充填す
る際には、予めダイス内に下パンチを配置するととも
に、PN接合部となる箇所に仕切り板を配置しておき、
各々の半導体用合金粉末を所定量充填した後に、該仕切
り板を取り除き、互いの半導体用合金粉末同志がPN接
合部にて接触するようにする。 5)上記ダイス内に配置される上パンチと下パンチとで
加圧圧縮成形しU字型の形状からなる成形体を得る。 6)上記成形体に大気中にて脱バインダー処理を施した
後、真空中で所定温度にて焼結する(例えば、1150
℃×3時間)。 7)上記焼結体に大気中で所定温度にて半導体化熱処理
を施す(例えば、750℃×50〜200時間)。
Further, it is known that the thermoelectric conversion element 1 having this U-shaped shape is manufactured by the steps described below. That is, 1) An alloy for P-type semiconductor and an alloy for N-type semiconductor having a predetermined composition of Fe 1-X Mn X Si 2 and Fe 1-Y Co Y Si 2 are obtained by melt casting. 2) Each of the above semiconductor alloys is crushed to a predetermined particle size (about 1.5 μm) by a crusher such as a stamp mill or a ball mill. 3) A predetermined amount of binder (PVA) is kneaded and granulated. 4) Each of the above semiconductor alloy powders is filled in a die having a U-shaped through hole. However, when the alloy powder is filled, the lower punch is arranged in advance in the die, and the partition plate is arranged at the position to be the PN junction.
After filling a predetermined amount of each alloy powder for semiconductors, the partition plate is removed so that the alloy powders for semiconductors contact each other at the PN junction. 5) Pressure compression molding is performed with the upper punch and the lower punch arranged in the die to obtain a molded body having a U-shape. 6) The molded body is debindered in the atmosphere and then sintered at a predetermined temperature in vacuum (for example, 1150).
C x 3 hours). 7) The sintered body is subjected to semiconductor heat treatment at a predetermined temperature in the atmosphere (for example, 750 ° C. × 50 to 200 hours).

【0006】[0006]

【発明が解決しようとする課題】先に説明した製造方法
によって得られる鉄硅化物(FeSi2)を主体とする
P型半導体2とN型半導体3とをPN接合を形成して接
合したU字型熱電変換素子1は、従来から知られる他の
熱電変換素子に比べて、価格、耐熱性等の点において優
れているが、その反面、PN接合構成、製造方法等に起
因して以下の問題点を有している。図10に示す構成に
おいて、PN接合部4を加熱すると、該PN接合部4に
熱エネルギーが供給され電流の発生源となる電子正孔対
が発生するが、同時にこの電子正孔対発生時には、熱エ
ネルギーを奪う所謂ペルチェ効果のためPN接合部4の
温度が低下し、その結果、電子正孔対の発生頻度が減少
し、各々の半導体2,3の解放端側(低温端側)から取
り出せる電力が減少することとなり、要求される発電能
力(変換効率)を実現するに至っていない。
A U-shape in which a P-type semiconductor 2 and an N-type semiconductor 3 mainly composed of iron silicate (FeSi 2 ) obtained by the above-described manufacturing method are joined to form a PN junction. The type thermoelectric conversion element 1 is superior to other conventionally known thermoelectric conversion elements in terms of price, heat resistance, etc. However, on the other hand, the following problems are caused by the PN junction configuration, the manufacturing method, and the like. Have a point. In the structure shown in FIG. 10, when the PN junction 4 is heated, an electron-hole pair that is a source of a current is generated by supplying thermal energy to the PN junction 4. At the same time, when the electron-hole pair is generated, Due to the so-called Peltier effect that robs thermal energy, the temperature of the PN junction 4 is lowered, and as a result, the frequency of generation of electron-hole pairs is reduced, and the semiconductors 2 and 3 can be taken out from the open end side (low temperature end side). Electric power is reduced, and the required power generation capacity (conversion efficiency) has not been realized.

【0007】また、先に説明した製造方法において、U
字型熱電変換素子の成形体を得るためには、1つのダイ
ス内にP型半導体用合金粉末とN型半導体用合金粉末か
らなる2種類の粉末を混合することなく同時に充填する
必要があることから、その充填作業は非常に煩雑なもの
となる。さらに、このような2種類の粉末を加圧圧縮成
形、焼結によって一体化する構成であることから、成形
体の形状も必然的に限定され、この熱電変換素子の用途
拡大を妨げる要因にもなっている。
In the manufacturing method described above, U
In order to obtain a shaped body of the V-shaped thermoelectric conversion element, it is necessary to simultaneously fill two dies, which are an alloy powder for P-type semiconductor and an alloy powder for N-type semiconductor, in one die without mixing them. Therefore, the filling work becomes very complicated. Further, since the two types of powders are integrated by pressure compression molding and sintering, the shape of the molded body is necessarily limited, and it may be a factor that hinders the expansion of applications of this thermoelectric conversion element. Has become.

【0008】さらにまた、上記の充填作業時に細心の注
意を払ったとしても、互いの半導体用合金粉末の接合部
において、粉末の混合を完全に防ぐことは困難であり、
その接合状態に応じて良好なPN接合が得られず、電気
的な特性劣化やバラツキを招く要因となっている。
Furthermore, even if great care is taken during the above-mentioned filling work, it is difficult to completely prevent the mixing of the powders at the joint portions of the alloy powders for semiconductors,
A good PN junction cannot be obtained depending on the junction state, which is a factor causing electrical characteristic deterioration and variation.

【0009】この発明は、上記の問題点を解決し、鉄硅
化物(FeSi2)を主体とするP型半導体とN型半導
体とをPN接合した構成からなる熱電変換素子におい
て、その発電能力(変換効率)の向上を可能とするとと
もに製造方法が容易な構成を提供し、該熱電変換素子の
用途範囲を大幅に拡大することを目的とするものであ
る。
The present invention solves the above problems and provides a thermoelectric conversion element having a structure in which a P-type semiconductor mainly composed of iron silicide (FeSi 2 ) and an N-type semiconductor are PN-junctioned. The purpose of the present invention is to provide a structure capable of improving the conversion efficiency) and an easy manufacturing method, and to greatly expand the application range of the thermoelectric conversion element.

【0010】[0010]

【課題を解決するための手段】この発明は、上記の目的
を達成するために種々の検討を繰り返した結果、予め鉄
硅化物(FeSi2)を主体とするP型半導体とN型半
導体とを別個に作成したのち、これらの各々半導体を銅
(Cu)系ろう材にてチタン(Ti)又はチタン(T
i)合金等の熱伝導用金属板にろう付け一体化すること
によって目的が達成できることを知見し、提案するもの
である。
According to the present invention, as a result of repeating various investigations in order to achieve the above-mentioned object, a P-type semiconductor and an N-type semiconductor mainly containing iron silicide (FeSi 2 ) are prepared in advance. After being prepared separately, each of these semiconductors is made of titanium (Ti) or titanium (T) with a copper (Cu) -based brazing material.
i) It is known and proposed that the object can be achieved by brazing and integrating with a metal plate for heat conduction such as an alloy.

【0011】すなわち、本願発明者は製造を容易にする
とともに、PN接合部における各々半導体用合金粉末の
混合を完全に防ぎ、さらに各々半導体の形状を任意に選
定可能とするためには、P型半導体とN型半導体とを別
個に作成することが不可欠であると判断した。また、本
願発明者は、ペルチェ効果による電子正孔対の発生の減
少を防止するためにPN接合部に熱エネルギーを効率良
く供給するには、PN接合部を直接加熱する従来の構成
ではPN接合部の形状等の点から限界があり、熱源から
の熱エネルギーをPN接合部に効率良く伝導することが
可能な熱伝導用金属板を各々半導体の接合部に配置する
ことが有効であり、特に、熱伝導用金属板として、高温
加熱による酸化を防止するために、耐酸化性に優れたチ
タン(Ti)又はチタン(Ti)合金が有効であること
を確認した。
That is, in order to facilitate manufacture, the present inventor can completely prevent the alloy powder for semiconductors from being mixed in the PN junction portion, and can arbitrarily select the shape of each semiconductor, the P type It was determined that it was essential to create the semiconductor and the N-type semiconductor separately. In order to efficiently supply the thermal energy to the PN junction in order to prevent the reduction of the generation of electron-hole pairs due to the Peltier effect, the inventor of the present application uses the PN junction in the conventional configuration in which the PN junction is directly heated. There is a limit in terms of the shape of the parts, etc., and it is effective to dispose a heat conducting metal plate capable of efficiently conducting the heat energy from the heat source to the PN junction at each of the semiconductor junctions. It was confirmed that titanium (Ti) or titanium (Ti) alloy, which has excellent oxidation resistance, is effective as a metal plate for heat conduction in order to prevent oxidation due to high temperature heating.

【0012】さらに、これらの別個に作成された半導体
と熱伝導用金属板を接合一体化する手段を種々検討した
ところ、従来から知られる半田では、接合一体化は可能
であっても融点が低いことから高温度での使用が困難で
あり、低温度で使用した場合は鉄硅化物(FeSi2
を主体とする半導体が本来有する特徴を十分発現するこ
とができず、目的とする出力電力を得ることができなか
った。
Further, various studies have been made on means for joining and integrating these separately prepared semiconductor and metal plate for heat conduction. In the conventionally known solder, the melting point is low even though the joining and integration are possible. Therefore, it is difficult to use at high temperature, and iron sulfide (FeSi 2 ) when used at low temperature
The characteristics originally possessed by the semiconductor mainly composed of were not fully expressed, and the target output power could not be obtained.

【0013】従来からろう材として多用されている銀
(Ag)ろうでは、各々半導体の表面に形成されている
酸化膜(SiO2)との馴染みが悪いことから接合強度
が低く、特に高温雰囲気での使用に耐えるような接合強
度が得られなく、さらに酸化膜(SiO2)を除去した
後、銀(Ag)ろうにてろう付けをすると、各々半導体
の内部に銀(Ag)が拡散し、半導体の電気的特性を低
下させることのみならず機械的特性をも低下させてしま
う(脆くなる)ことが確認された。
Since the silver (Ag) brazing material which has been widely used as a brazing material has a poor bonding strength with the oxide film (SiO 2 ) formed on the surface of each semiconductor, the bonding strength is low, especially in a high temperature atmosphere. If a brazing strength that does not withstand the use of the above is not obtained, and after brazing with silver (Ag) brazing after removing the oxide film (SiO 2 ), silver (Ag) diffuses inside each semiconductor, It was confirmed that not only the electrical characteristics of the semiconductor are deteriorated, but also the mechanical characteristics are deteriorated (becomes brittle).

【0014】そこで、前記各々の半導体とチタン(T
i)又はチタン(Ti)合金とのろう付け一体化を種々
検討した結果、銅(Cu)を主成分(Cuの含有量が5
0at%以上)とする銅(Cu)系ろう材を用いて接合
一体化したところ、半導体表面の酸化膜(SiO2)を
除去することなく極めて良好な接合を得ることができ
た。
Therefore, each of the above semiconductors and titanium (T
As a result of various studies on the brazing integration with i) or titanium (Ti) alloy, copper (Cu) is the main component (the content of Cu is 5
When the copper (Cu) -based brazing filler metal (0 at% or more) was used for the joining and integration, an extremely good joining could be obtained without removing the oxide film (SiO 2 ) on the semiconductor surface.

【0015】以上に説明するような種々の知見に基づき
完成されたこの発明は、要するに、鉄硅化物(FeSi
2)を主体とするP型半導体とN型半導体とをPN接合
した構成からなる熱電変換素子において、前記一対の半
導体間にチタン(Ti)又はチタン(Ti)合金からな
る熱伝導用金属板を介在させ銅(Cu)系ろう材にてろ
う付けしPN接合部を形成したことを特徴とする熱電変
換素子である。
The present invention completed on the basis of various findings as described above is, in short, iron sulfide (FeSi).
2 ) In a thermoelectric conversion element having a structure in which a P-type semiconductor and an N-type semiconductor mainly composed of 2 ) are PN-junctioned, a metal plate for heat conduction made of titanium (Ti) or a titanium (Ti) alloy is provided between the pair of semiconductors. The thermoelectric conversion element is characterized in that a PN junction is formed by interposing it and brazing it with a copper (Cu) brazing material.

【0016】[0016]

【作用】図1は、この発明の熱電変換素子の一実施例を
示す概要説明図である。すなわち、鉄硅化物(FeSi
2)を主体とするP型半導体11とN型半導体12とを
チタン(Ti)からなる熱伝導用金属板13を介してP
N接合を形成して接合すべく、前記各々半導体11,1
2と熱伝導用金属板13とを銅(Cu)系ろう材14,
14にてろう付け一体化した構成からなる熱電変換素子
10である。15,15は各々半導体11,12の開放
端側に接合され、電極板と放熱板とを兼ねる銅(Cu)
板であり、該接合部の温度はPN接合部に比べて低温度
であるため銅(Cu)系ろう材を使用することなく亜鉛
−錫(Zn−Sn)半田等の融点の低いろう材16,1
6にて接合一体化しても目的とする特性の熱電変換素子
10を得ることができる。
FIG. 1 is a schematic explanatory view showing an embodiment of the thermoelectric conversion element of the present invention. That is, iron silicide (FeSi
2 ) The P-type semiconductor 11 and the N-type semiconductor 12 which are mainly composed of P are formed through a metal plate 13 for heat conduction made of titanium (Ti).
In order to form an N-junction and join the semiconductors 11, 1
2 and the metal plate 13 for heat conduction, a copper (Cu) -based brazing material 14,
The thermoelectric conversion element 10 has a structure in which it is brazed and integrated at 14. Reference numerals 15 and 15 are copper (Cu) bonded to the open ends of the semiconductors 11 and 12, respectively, which also serve as an electrode plate and a heat dissipation plate.
Since it is a plate and the temperature of the joint is lower than that of the PN joint, a brazing material 16 having a low melting point such as zinc-tin (Zn-Sn) solder without using a copper (Cu) brazing material 16 , 1
The thermoelectric conversion element 10 having the desired characteristics can be obtained by joining and unifying at 6.

【0017】以上の構成において、チタン(Ti)から
なる熱伝導用金属板13を熱源(図示せず)に近づける
と、熱源からの熱エネルギーが熱伝導用金属板13を介
して鉄硅化物(FeSi2)を主体とするP型半導体1
1とN型半導体12とに伝導、供給され、先に説明した
ようにゼーべック効果によって各々の半導体11,12
の開放端側(低温端側)にプラス(+)及びマイナス
(−)の電圧が発生し、該開放端から電力が取り出せる
のである。
In the above structure, when the heat conducting metal plate 13 made of titanium (Ti) is brought close to a heat source (not shown), thermal energy from the heat source is passed through the heat conducting metal plate 13 to form an iron silicide ( P-type semiconductor composed mainly of FeSi 2 1
1 and the N-type semiconductor 12 are conducted and supplied to each of the semiconductors 11 and 12 by the Seebeck effect as described above.
A plus (+) voltage and a minus (-) voltage are generated on the open end side (low temperature end side), and electric power can be taken out from the open end.

【0018】この構成においては、各々の半導体11,
12の接合部に熱エネルギー供給源としてチタン(T
i)からなる熱伝導用金属板13が配置され、各々の半
導体11,12の外部に位置する熱源(図示せず)から
たえず熱エネルギーが効率良く供給されることから、ペ
ルチェ効果による電子正孔対の発生の減少を防止するこ
とができ、発電効率を高めることができる。また、P型
半導体11とN型半導体12とが別個に製造され熱伝導
用金属板13を介して接合されていることからPN接合
部における各々半導体用合金粉末の混合等が生じること
なく安定した電力が取り出せる。
In this structure, each semiconductor 11,
Titanium (T
The metal plate 13 for heat conduction consisting of i) is arranged, and thermal energy is constantly efficiently supplied from a heat source (not shown) located outside each of the semiconductors 11 and 12, so that electron holes due to the Peltier effect are generated. The generation of pairs can be prevented from decreasing, and power generation efficiency can be improved. In addition, since the P-type semiconductor 11 and the N-type semiconductor 12 are manufactured separately and are bonded to each other via the heat conduction metal plate 13, it is stable without mixing of the alloy powder for semiconductor in the PN junction. Electricity can be taken out.

【0019】さらに、各々半導体11,12の開放端側
に銅(Cu)板からなる放熱板を接合することによって
各々半導体11,12の加熱部(PN接合部)と解放端
との温度差を拡大することが可能となり、発電効率の一
層の向上が達成される。各々半導体11,12の感温部
も実質的に熱伝導用金属板13との接合部分だけとなる
ことから、該各々半導体11,12の全長(L)を短く
することができ、各々半導体11,12が有する電気抵
抗をも低減することができ、発電効率の向上に寄与する
こととなる。その他、この発明の熱電変換素子10は種
々の特徴を有するが、それらの具体的な特徴は後述する
他の実施例とをあわせて詳細に説明する。
Further, a heat dissipation plate made of a copper (Cu) plate is joined to the open ends of the semiconductors 11 and 12, respectively, so that the temperature difference between the heating portion (PN junction portion) and the open end of the semiconductors 11 and 12 is reduced. It will be possible to expand and further improve the power generation efficiency. Since the temperature sensitive portions of the semiconductors 11 and 12 are substantially only the joint portion with the metal plate 13 for heat conduction, the total length (L) of the semiconductors 11 and 12 can be shortened. , 12 can also reduce the electrical resistance, which contributes to the improvement of power generation efficiency. Besides, the thermoelectric conversion element 10 of the present invention has various characteristics, and the specific characteristics thereof will be described in detail in combination with other embodiments described later.

【0020】以下に、この発明の熱電変換素子10を構
成する各々の部材について一層詳細に説明する。熱電変
換素子10を構成する各々半導体11,12は、これら
を各々別個に所定形状からなる成形空間(貫通孔)を有
するダイス内に充填して加圧圧縮成形する以外は先に説
明した従来の製造方法と実質的には同様方法にて得られ
る。すなわち、溶解鋳造にて得られるFe1-XMnXSi
2及びFe1-YCoYSi2の所定組成を有するP型半導体
用合金及びN型半導体用合金を粉砕、造粒した後、別個
に所定形状からなる成形空間(貫通孔)を有するダイス
内に充填し、さらに、加圧圧縮成形、脱バインダー処
理、焼結の各工程を経て、各々独立した単体品としてP
型半導体11とN型半導体12とを得るのである。
Each member constituting the thermoelectric conversion element 10 of the present invention will be described in more detail below. Each of the semiconductors 11 and 12 constituting the thermoelectric conversion element 10 is separately filled in a die having a molding space (through hole) having a predetermined shape and press-compressed, and the conventional semiconductors described above are used. It can be obtained by a method substantially similar to the manufacturing method. That is, Fe 1-X Mn X Si obtained by melt casting
In a die having a molding space (through hole) having a predetermined shape after crushing and granulating a P-type semiconductor alloy and an N-type semiconductor alloy having a predetermined composition of 2 and Fe 1 -Y Co Y Si 2 P, as a separate individual product through the processes of pressure compression molding, binder removal processing, and sintering.
The type semiconductor 11 and the N-type semiconductor 12 are obtained.

【0021】なお、この発明の熱電変換素子において
は、銅(Cu)系ろう材による熱伝導用金属板13と半
導体11,12とのろう付け温度が、通常800℃〜9
00℃程度にて実施されるため、半導体化熱処理は、該
ろう付け作業の工程終了後に行う。すなわち、半導体化
熱処理後に該熱処理温度以上に加熱することは、半導体
として有する本来の特性が損なわれ、目的とする発電作
用が得られなくなるからである。
In the thermoelectric conversion element of the present invention, the brazing temperature of the heat conductive metal plate 13 and the semiconductors 11 and 12 using the copper (Cu) type brazing material is usually 800 ° C. to 9 ° C.
Since it is carried out at about 00 ° C., the semiconductor heat treatment is performed after the end of the brazing process. That is, heating after the heat treatment for semi-conductor heating above the heat treatment temperature deteriorates the original characteristics of the semiconductor and makes it impossible to obtain the desired power generation effect.

【0022】P型半導体11とN型半導体12との接合
部に配置する熱伝導用金属板13は、熱源からの熱エネ
ルギーを各々半導体に効率よく伝導、供給できるととも
に、該材料の表面に加熱による酸化を防止するためチタ
ン(Ti)又はチタン(Ti)合金のいずれかを選定し
て用いるが、特にチタン(Ti)合金を用いる場合は、
目的とする耐酸化性や銅(Cu)系ろう材14との馴染
み等の観点から、合金中のチタン(Ti)含有量を70
at%以上とすることが好ましい。例えば、Ti−N
i、Ti−Zr等の組成が利用できる。
The heat-conducting metal plate 13 arranged at the joint between the P-type semiconductor 11 and the N-type semiconductor 12 can efficiently conduct and supply the heat energy from the heat source to the semiconductor, and heat the surface of the material. Either titanium (Ti) or titanium (Ti) alloy is selected and used in order to prevent oxidation due to, but especially when a titanium (Ti) alloy is used,
From the viewpoint of desired oxidation resistance and familiarity with the copper (Cu) brazing filler metal 14, the titanium (Ti) content in the alloy is set to 70.
It is preferably at% or more. For example, Ti-N
Compositions such as i and Ti-Zr can be used.

【0023】また、上記熱伝導用金属板13は、その機
械的強度とともに各々半導体と熱源との距離等を考慮し
て形状、寸法を選定するのが好ましい。例えば、熱源と
しては自動車やボイラーの排熱、ストーブの余熱等の内
燃、外燃機器のエネルギーのほか、地熱や太陽熱などの
自然エネルギーなどの種々の熱源が想定できるが、まず
熱源からの熱エネルギーを効率よく集熱する装置や治具
を使用する場合、これらの装置や治具からの熱エネルギ
ーを各々半導体に効率よく伝導、供給するため、装置や
治具等に応じて、あるいはこれらと一体化するため熱伝
導用金属板の材質、形状などが適宜選定されるため、熱
伝導用金属板は様々な形態を取り得る。当然、熱電変換
素子そのものを集熱装置等に適合させるよう構成する場
合においても熱伝導用金属板は様々な形態を取り得る。
The shape and dimensions of the heat conducting metal plate 13 are preferably selected in consideration of the mechanical strength thereof and the distance between the semiconductor and the heat source. For example, as heat sources, various heat sources such as exhaust heat of automobiles and boilers, internal combustion such as residual heat of stoves, energy of external combustion equipment, and natural energy such as geothermal heat and solar heat can be assumed. When using devices or jigs that efficiently collect heat, the heat energy from these devices or jigs can be efficiently conducted and supplied to the semiconductor, depending on the device or jig, or integrated with them. Since the material, shape, etc. of the metal plate for heat conduction are appropriately selected to realize the above, the metal plate for heat conduction can take various forms. Of course, even when the thermoelectric conversion element itself is configured to be adapted to a heat collecting device or the like, the heat conducting metal plate can take various forms.

【0024】各々半導体11,12と前記熱伝導用金属
板13とを接合一体化する銅(Cu)系ろう材14とし
ては、銅(Cu)又は銅(Cu)を50at%以上含有
する銅(Cu)系合金(例えば、Cu−Ni合金、Cu
−Ni−Zr合金等)を圧延や液体急冷法等によって箔
帯とした所謂箔帯ろう材、銅(Cu)を芯材としてその
両主面にニッケル(Ni)またニッケル−銅(Ni−C
u)合金箔等を圧接してなる所謂3層複合箔ろう材、銅
(Cu)粉末又は銅(Cu)を主成分とする合金粉末か
らなる所謂粉末状ろう材、これら粉末と有機バインダー
を用いてペースト状にした所謂ペースト状ろう材等公知
の種々の形態からなる銅(Cu)系ろう材の使用が可能
である。いずれにしても、銅(Cu)系ろう材14は、
P型半導体11とN型半導体12及び熱伝導用金属板1
3との馴染みを良好にし、高温度での使用に耐える接合
強度を得るためには、上記種々の形態からなるろう材が
溶融した時点で、前記熱伝導用金属板13との互いの溶
融・拡散によってろう材としての機能が発現されること
が必要であり、特に互いの溶融・拡散を効果的に実現す
るためには介装時の銅(Cu)系ろう材14の厚さを
0.1mm以下とすることが望ましい。
As the copper (Cu) -based brazing material 14 for joining and integrating the semiconductors 11 and 12 and the heat conducting metal plate 13, respectively, copper (Cu) or copper (Cu) containing 50 at% or more of copper (Cu) is used. Cu) -based alloy (for example, Cu-Ni alloy, Cu
-Ni-Zr alloy, etc.) is a so-called foil band brazing material made into a foil band by rolling or a liquid quenching method, and copper (Cu) is used as a core material and nickel (Ni) or nickel-copper (Ni-C) is provided on both main surfaces thereof.
u) A so-called three-layer composite foil brazing material made by pressure-bonding an alloy foil, a so-called powdered brazing material made of copper (Cu) powder or an alloy powder containing copper (Cu) as a main component, using these powders and an organic binder It is possible to use a copper (Cu) -based brazing material having various known forms such as a so-called paste-like brazing material formed into a paste. In any case, the copper (Cu) -based brazing material 14 is
P-type semiconductor 11, N-type semiconductor 12, and metal plate 1 for heat conduction
In order to improve the familiarity with 3 and to obtain the bonding strength to withstand use at high temperature, when the brazing filler metal having the above-mentioned various forms is melted, it is melted with the metal plate 13 for heat conduction. It is necessary that the function as a brazing filler metal is exhibited by diffusion, and in particular, in order to effectively realize mutual melting and diffusion, the thickness of the copper (Cu) -based brazing filler metal 14 at the time of interposing is 0. It is desirable to set it to 1 mm or less.

【0025】図2から図8に示す熱電変換素子は、この
発明の他の実施例を示す概略説明図である。この発明の
熱電変換素子においては、熱電変換素子を構成する各々
半導体が個別に独立して製造されることから、それらを
種々の形状とすることが可能であることを先に説明し
た。図1には、各々の半導体を略角柱状として、熱伝導
用金属板を介して接合することによって略U字型の熱電
変換素子とする構成が示されたが、図2から図5では立
方体または直方体(略立方体)からなる半導体を配置し
て構成した熱電変換素子を示している。
The thermoelectric conversion elements shown in FIGS. 2 to 8 are schematic explanatory views showing another embodiment of the present invention. In the thermoelectric conversion element of the present invention, since the semiconductors forming the thermoelectric conversion element are individually and independently manufactured, it is possible to make them into various shapes. FIG. 1 shows a structure in which each semiconductor is formed into a substantially prismatic shape, and is joined through a metal plate for heat conduction to form a substantially U-shaped thermoelectric conversion element, but in FIGS. 2 to 5, a cube is shown. Alternatively, the thermoelectric conversion element is configured by arranging semiconductors of rectangular parallelepiped (substantially cubic).

【0026】図2は直方体からなる鉄硅化物(FeSi
2)を主体とするP型半導体21とN型半導体22とを
チタン(Ti)板からなる熱伝導用金属板23を介して
PN接合を形成して接合して熱電変換素子20を構成し
ている。25,25はそれぞれP型半導体とN型半導体
との低温端側に接合し、放熱板の役割を兼ねる銅(C
u)板からなる電極板である。この電極板25,25は
後述する図3、図4に示す実施例の如く熱電変換素子2
0を複数接続する構成において電気的接続を容易にする
ために、それぞれ所定の角度をもって開放端部が開くよ
う接合されている。この熱電変換素子20においては、
P型半導体21およびN型半導体22と熱伝導用金属板
23とが銅(Cu)系ろう材24にてろう付け一体化さ
れており、その発電のメカニズムは図1に示した熱電変
換素子10の場合と同様である。なお、P型半導体21
およびN型半導体22と電極板25,25との接合に際
しては、図1に示す構成に比べ該接合部がPN接合部に
近く温度が比較的高温になるため、例えば、公知のチタ
ン(Ti)系活性ろう材26,26等が用いられる。
FIG. 2 shows an iron silicate (FeSi) composed of a rectangular parallelepiped.
2 ), a P-type semiconductor 21 and an N-type semiconductor 22 are formed to form a PN junction through a heat conduction metal plate 23 made of a titanium (Ti) plate, and are joined to form a thermoelectric conversion element 20. There is. Reference numerals 25 and 25 are copper (C) which is bonded to the low temperature end side of the P-type semiconductor and the N-type semiconductor, respectively, and which also functions as a heat sink.
u) An electrode plate composed of a plate. The electrode plates 25, 25 have the thermoelectric conversion element 2 as in the embodiment shown in FIGS.
In order to facilitate electrical connection in a structure in which a plurality of 0s are connected, the open ends are joined so as to open at a predetermined angle. In this thermoelectric conversion element 20,
The P-type semiconductor 21 and the N-type semiconductor 22 and the heat conduction metal plate 23 are brazed and integrated with a copper (Cu) -based brazing material 24, and the power generation mechanism thereof is the thermoelectric conversion element 10 shown in FIG. It is similar to the case of. The P-type semiconductor 21
When the N-type semiconductor 22 and the electrode plates 25, 25 are joined, the temperature of the junction is relatively close to the PN junction and is relatively high compared to the configuration shown in FIG. A system active brazing material 26, 26 or the like is used.

【0027】熱源が比較的広範囲におよぶ場合は、この
熱電変換素子20を複数直列または並列接続することに
よって、一層大きな電力を得ることができる。例えば、
図3に示す構成では、図2に示す構成と同様な構成から
なる熱電変換素子20a,20b,20cを水平方向に
所謂横並びに接続し、熱源(図示せず)に近接または接
触する各々熱伝導用金属板23a,23b,23cから
伝導、供給される熱エネルギーの総和に相当する電力を
電極板25aと25cの両端部から取り出すことができ
る。図中26は熱電変換素子20a,20b,20cの
各々電極板25a,25b,25cを電気的に接続する
リベット等の接続部材である。
When the heat source covers a relatively wide range, a larger amount of electric power can be obtained by connecting a plurality of the thermoelectric conversion elements 20 in series or in parallel. For example,
In the configuration shown in FIG. 3, the thermoelectric conversion elements 20a, 20b, 20c having the same configuration as the configuration shown in FIG. Electric power corresponding to the sum of the thermal energies conducted and supplied from the metal plates 23a, 23b, 23c can be taken out from both ends of the electrode plates 25a and 25c. In the figure, reference numeral 26 is a connecting member such as a rivet that electrically connects the electrode plates 25a, 25b, 25c of the thermoelectric conversion elements 20a, 20b, 20c.

【0028】図4に示す構成では、図2に示す構成と同
様な構成からなる熱電変換素子20d,20e,20f
を垂直方向に所謂縦並びに接続し、熱源(図示せず)に
近接または接触する各々熱伝導用金属板23d,23
e,23fから伝導、供給される熱エネルギーの総和に
相当する電力を電極板25dと25fの両端部から取り
出すことができる。
In the configuration shown in FIG. 4, thermoelectric conversion elements 20d, 20e, 20f having the same configuration as the configuration shown in FIG.
Are vertically connected in a so-called vertical arrangement, and are in close proximity to or in contact with a heat source (not shown).
Electric power corresponding to the sum of the thermal energy conducted and supplied from e and 23f can be taken out from both ends of the electrode plates 25d and 25f.

【0029】図5に示す構成の熱電変換素子50は、い
ままで説明した熱電変換素子がいずれもP型半導体およ
びN型半導体が熱伝導用金属板を挟んで垂直方向に積層
するよう接合配置した構成であるのに対し、一枚の熱伝
導用金属板の同一平面上にそれぞれP型半導体およびN
型半導体を接合配置した構成であり、いままで説明した
この発明の熱電変換素子と同様な作用効果を得ることが
できる。すなわち、一枚の熱伝導用金属板53の一方端
は、熱源(図示せず)に効率よく近接または接触するた
めに狭幅の長方形状となっており、またP型半導体51
およびN型半導体52を接合配置する他方端は広幅の正
方形状となっており、さらにそれぞれP型半導体51と
N型半導体52との低温端側(図面上面)には放熱板の
役割を兼ねる銅(Cu)板からなる電極板55,55を
接合配置している。
In the thermoelectric conversion element 50 having the structure shown in FIG. 5, the thermoelectric conversion elements described so far are arranged so that the P-type semiconductor and the N-type semiconductor are vertically laminated with the metal plate for heat conduction interposed therebetween. In contrast to the configuration, a P-type semiconductor and an N-type semiconductor are provided on the same plane of a single heat conduction metal plate.
This is a configuration in which the type semiconductors are joined and arranged, and the same effects as those of the thermoelectric conversion element of the present invention described so far can be obtained. That is, one end of the single metal plate 53 for heat conduction has a narrow rectangular shape so as to efficiently approach or contact a heat source (not shown), and the P-type semiconductor 51.
The other end where the N-type semiconductor 52 and the N-type semiconductor 52 are joined and arranged has a wide square shape, and copper that also serves as a heat sink is provided on the low temperature end side (upper surface of the drawing) of the P-type semiconductor 51 and the N-type semiconductor 52, respectively. The electrode plates 55, 55 made of (Cu) plates are arranged in a joined state.

【0030】この熱電変換素子50においても、図2の
構成と同様にP型半導体51およびN型半導体52と熱
伝導用金属板53との接合には銅(Cu)系ろう材54
を用い、また、P型半導体51およびN型半導体52と
電極板55,55との接合には公知のチタン(Ti)系
活性ろう材56,56を用いてろう付け一体化されてい
る。熱源(図示せず)から供給される熱エネルギーは、
熱伝導用金属板53を介してそれぞれP型半導体51と
N型半導体52に伝導、供給される。この時、互いの半
導体51,52は熱伝導用金属板53の同一平面上に接
合配置しているが、該熱伝導用金属板53を介してPN
接合を形成して接合されていることから、各々半導体5
1,52の低温端側(図面上面)から電力を取り出すこ
とが可能となる。
Also in this thermoelectric conversion element 50, a copper (Cu) -based brazing material 54 is used for joining the P-type semiconductor 51 and the N-type semiconductor 52 to the metal plate 53 for heat conduction, as in the configuration of FIG.
Further, the P-type semiconductor 51 and the N-type semiconductor 52 are joined to the electrode plates 55, 55 by brazing and integrating with a known titanium (Ti) -based active brazing material 56, 56. The thermal energy supplied from the heat source (not shown) is
It is conducted and supplied to the P-type semiconductor 51 and the N-type semiconductor 52 through the heat conduction metal plate 53, respectively. At this time, the semiconductors 51, 52 are bonded and arranged on the same plane of the heat conduction metal plate 53, and the PN is interposed via the heat conduction metal plate 53.
Since they are joined to form a junction, each semiconductor 5
It is possible to extract electric power from the low temperature end side of 1,52 (the upper surface in the drawing).

【0031】図2から図5のいずれの構成においても、
半導体の低温端側に接合する電極板の面積を比較的大型
化して放熱板の役割を兼ねる構成したが、これらは図1
の構成における電極板15と同様に、各々半導体の加熱
部(PN接合部)と開放端との温度差を拡大し、発電効
率の向上を目的としたものである。さらに、これらの電
極板に強制冷却手段を配置することによって、その効果
を一層向上することが可能となる。なお、図2から図5
の構成においては、各々半導体と電極板との接続にチタ
ン(Ti)系活性ろう材を用いた例にて説明したが、上
記電極板の配置効果によって各々半導体の開放端側の温
度が十分に低い場合は、図1の構成と同様に亜鉛−錫
(Zn−Sn)半田等の融点の低いろう材を用いてもよ
い。
In any of the configurations shown in FIGS. 2 to 5,
The area of the electrode plate joined to the low temperature end side of the semiconductor is made relatively large so that it also serves as a heat sink.
Similar to the electrode plate 15 in the above configuration, the purpose is to increase the temperature difference between the heating portion (PN junction portion) and the open end of each semiconductor to improve the power generation efficiency. Further, by arranging the forced cooling means on these electrode plates, the effect can be further improved. 2 to 5
In the above configuration, the example in which the titanium (Ti) -based active brazing material is used for connecting the semiconductor and the electrode plate has been described, but the temperature on the open end side of each semiconductor is sufficiently increased due to the arrangement effect of the electrode plate. When the temperature is low, a brazing material having a low melting point such as zinc-tin (Zn-Sn) solder may be used as in the configuration of FIG.

【0032】図6に示す構成の熱電変換素子60は、リ
ング状からなる鉄硅化物(FeSi2)を主体とするP
型半導体61a,61b,61cとN型半導体62a,
62b,62cとをそれぞれの内周部および外周部に交
互に配置されるリング状のチタン(Ti)板からなる熱
伝導用金属板63a,63b,63c,63d,63e
を介してPN接合を形成して接合し、全体として円筒状
の熱電変換素子を構成している。図中64a,64b,
64c,64d,64eはそれぞれ半導体と熱伝導金用
属板とを接合する銅(Cu)系ろう材である。また、6
5,65はそれぞれ上端部に位置するP型半導体61
a、下端部に位置するN型半導体62cにチタン(T
i)系活性ろう材66によって接合される電極部材であ
る。
The thermoelectric conversion element 60 having the structure shown in FIG. 6 is composed mainly of a ring-shaped iron sulfide (FeSi 2 ).
Type semiconductors 61a, 61b, 61c and N type semiconductors 62a,
Heat conduction metal plates 63a, 63b, 63c, 63d, 63e made of ring-shaped titanium (Ti) plates alternately arranged on the inner and outer peripheral portions of 62b and 62c, respectively.
A PN junction is formed and joined through the above to form a cylindrical thermoelectric conversion element as a whole. 64a, 64b,
Reference numerals 64c, 64d, and 64e are copper (Cu) -based brazing materials for joining the semiconductor and the heat conductive metal base plate. Also, 6
5 and 65 are P-type semiconductors 61 located at the upper ends, respectively.
a, titanium (T
i) An electrode member joined by the active brazing filler metal 66.

【0033】このような構成からなる円筒状の熱電変換
素子60において、その内周に配置される円筒部材67
(例えば、表面を酸化処理して電気絶縁性を高めたアル
ミ(Al)管)内を通過する排ガス等の温度を熱源と
し、該円筒部材67の外周面に接触するリング状熱伝導
用金属板63a,63b,63cからP型半導体61
a,61b,61c及びN型半導体62a,62b,6
2cに伝導、供給される熱エネルギーに応じて電力を発
生し、電極部材65,65から電力を取り出すことがで
きる。この構成において、リング状熱伝導用金属板63
d,63eは各々半導体への熱エネルギー供給には直接
寄与していないが、各々半導体にて発生する電力を電気
的に直列接続する役割を果たす。
In the cylindrical thermoelectric conversion element 60 having such a structure, the cylindrical member 67 arranged on the inner circumference thereof.
(For example, a ring-shaped heat-conducting metal plate that comes into contact with the outer peripheral surface of the cylindrical member 67 by using the temperature of the exhaust gas or the like that passes through the inside of an aluminum (Al) tube whose surface has been oxidized to improve electrical insulation) as a heat source. 63a, 63b, 63c to P-type semiconductor 61
a, 61b, 61c and N-type semiconductors 62a, 62b, 6
Electric power can be generated from the electrode members 65, 65 by generating electric power according to the thermal energy conducted and supplied to the 2c. In this structure, the ring-shaped heat conduction metal plate 63
Each of d and 63e does not directly contribute to the thermal energy supply to the semiconductor, but each plays the role of electrically connecting the electric power generated in the semiconductor in series.

【0034】図7に示す構成の熱電変換素子70は、矩
形板状からなる鉄硅化物(FeSi2)を主体とするP
型半導体71a,71b,71cとN型半導体72a,
72b,72cとをそれぞれの対向位置にある両端部に
交互に配置される矩形板状のチタン(Ti)板からなる
熱伝導用金属板73a,73b,73c,73d,73
eを介してPN接合を形成して接合し、全体として直方
体状の熱電変換素子を構成している。図中74a,74
b,74c,74d,74eはそれぞれ半導体と熱伝導
用金属板とを接合する銅(Cu)系ろう材である。ま
た、75,75はそれぞれ上端部に位置するP型半導体
71a、下端部に位置するN型半導体72cにチタン
(Ti)系活性ろう材76によって接合される電極部材
である。
The thermoelectric conversion element 70 having the structure shown in FIG. 7 is composed mainly of iron sulfide (FeSi 2 ) having a rectangular plate shape.
Type semiconductors 71a, 71b, 71c and N type semiconductors 72a,
72b and 72c and metal plates 73a, 73b, 73c, 73d and 73 for heat conduction, which are rectangular plate-like titanium (Ti) plates alternately arranged at both ends at opposite positions.
A PN junction is formed via e and joined to form a rectangular parallelepiped thermoelectric conversion element as a whole. 74a, 74 in the figure
Reference numerals b, 74c, 74d, and 74e are copper (Cu) -based brazing materials for joining the semiconductor and the heat conduction metal plate. Further, 75 and 75 are electrode members joined to the P-type semiconductor 71a located at the upper end and the N-type semiconductor 72c located at the lower end by a titanium (Ti) -based active brazing material 76, respectively.

【0035】このような構成からなる直方体状の熱電変
換素子70においては、該熱電変換素子70の一外周面
側(図においては熱電変換素子70の右側)に位置する
熱源(図示せず)からの熱エネルギーを熱伝導用金属板
73a,73b,73cからP型半導体71a、71
b,71c及びN型半導体72a,72b,72cに伝
導、供給し、該熱エネルギーに応じて電力を発生し、電
極部材75,75から電力を取り出すことができる。こ
の構成において、熱伝導用金属板73d,73eは各々
半導体への熱エネルギー供給には直接寄与していない
が、各々半導体にて発生する電力を電気的に直列接続す
る役割を果たす。
In the rectangular parallelepiped thermoelectric conversion element 70 having such a structure, a heat source (not shown) located on one outer peripheral surface side of the thermoelectric conversion element 70 (right side of the thermoelectric conversion element 70 in the drawing) is used. Of the heat energy from the metal plates 73a, 73b, 73c for heat conduction to the P-type semiconductors 71a, 71
b, 71c and the N-type semiconductors 72a, 72b, 72c can be conducted and supplied, electric power can be generated according to the thermal energy, and electric power can be taken out from the electrode members 75, 75. In this configuration, the heat conduction metal plates 73d and 73e do not directly contribute to the thermal energy supply to the semiconductors, but each plays a role of electrically connecting the electric power generated in the semiconductors in series.

【0036】図8に示すこの熱電変換素子80は、基本
的に図1に示す構成からなる熱電変換素子10を複数個
並列配置した構成からなっている。すなわち、複数の鉄
硅化物(FeSi2)を主体とするP型半導体81a,
……81zとN型半導体82a,……82zとをそれぞ
れチタン(Ti)板からなる熱伝導用金属板83a……
83zを介してPN接合を形成して接合し、それらを放
熱板86と受熱板87とによって固定し、全体として平
板状の熱電変換素子を構成している。図中84a……8
4zはそれぞれ半導体と熱伝導用金属板とを接合する銅
(Cu)系ろう材である。また、85,85は放熱板8
6の端部に亜鉛−錫(Zn−Sn)半田にて接合一体化
された銅(Cu)板からなる電極部材である。さらに、
図中89は各々のP型半導体81a,……81zとN型
半導体82a,……82zとを電気的に直列接続する導
線である。
The thermoelectric conversion element 80 shown in FIG. 8 has a structure in which a plurality of thermoelectric conversion elements 10 basically having the structure shown in FIG. 1 are arranged in parallel. That is, the P-type semiconductor 81a mainly composed of a plurality of iron sulfides (FeSi 2 ),
...... 81z and N-type semiconductors 82a, ... 82z are made of titanium (Ti) plates, respectively, and are metal plates 83a for heat conduction.
A PN junction is formed and joined via 83z, and they are fixed by a heat radiating plate 86 and a heat receiving plate 87 to form a flat thermoelectric conversion element as a whole. 84a in the figure ... 8
4z is a copper (Cu) -based brazing material that joins the semiconductor and the metal plate for heat conduction. Also, 85 and 85 are heat sinks 8.
6 is an electrode member made of a copper (Cu) plate which is joined and integrated to the end portion of 6 with zinc-tin (Zn-Sn) solder. further,
Reference numeral 89 in the figure is a conductor wire for electrically connecting each P-type semiconductor 81a, ... 81z and N-type semiconductor 82a ,.

【0037】この熱電変換素子80を構成する放熱板8
6は、各々P型半導体81a,……81zとN型半導体
82a,……82zとの加熱部(PN接合部)側と開放
端側との温度差を拡大して発電効率を向上するととも
に、各々P型半導体81a,……81zとN型半導体8
2a,……82zを所定位置に配置して固定する機能を
有しており、例えば、Al板等の熱伝導性の良好な材料
に電気的絶縁性や耐熱性等を考慮してアルマイト処理を
施したものを使用する。また、受熱板87は、熱源(図
示せず)から供給される熱エネルギーを効率よく熱伝導
用金属板83a……83zに作用させるとともに、該熱
伝導用金属板83a……83zを介して、各々P型半導
体81a,……81zとN型半導体82a,……82z
を所定位置に配置して固定する機能を有しており、例え
ば、電気的絶縁性や耐熱性等を考慮して所定のセラミッ
クス板等を使用する。特に、放熱板86と受熱板87と
の間に形成される空間部88は、空気の流通を良好にす
ることで受熱部(熱伝導用金属板83a……83zの先
端部)とPN接合部との温度差を大きくすることがで
き、発電効率の向上を可能とする。必要に応じて、該空
間部88に公知の冷媒を通過させることも可能である。
Heat sink 8 constituting this thermoelectric conversion element 80
Reference numeral 6 increases the temperature difference between the heating portion (PN junction portion) side and the open end side of the P-type semiconductors 81a, ... 81z and the N-type semiconductors 82a ,. .. 81z and N-type semiconductor 8 respectively
2a, ... 82z has a function of arranging and fixing at a predetermined position. For example, a material having good thermal conductivity such as an Al plate is subjected to alumite treatment in consideration of electric insulation and heat resistance. Use the applied one. Further, the heat receiving plate 87 causes heat energy supplied from a heat source (not shown) to efficiently act on the heat conducting metal plates 83a ... 83z, and through the heat conducting metal plates 83a. 81z and P-type semiconductors 81a, ... 81z and N-type semiconductors 82a ,.
Has a function of arranging and fixing at a predetermined position, and for example, a predetermined ceramic plate or the like is used in consideration of electrical insulation and heat resistance. In particular, the space portion 88 formed between the heat radiation plate 86 and the heat receiving plate 87 has a PN junction portion with the heat receiving portion (the tips of the heat conduction metal plates 83a ... 83z) by improving the air flow. It is possible to increase the temperature difference between and, and it is possible to improve the power generation efficiency. A known refrigerant can be passed through the space 88, if necessary.

【0038】以上に説明した熱電変換素子80において
も、熱源(図示せず)から供給される熱エネルギーは、
熱伝導用金属板83a……83zを介してそれぞれP型
半導体81a,……81zとN型半導体82a,……8
2zに伝導、供給され、各々P型半導体81a,……8
1zとN型半導体82a,……82zの低温端側(図面
上面)から電力を取り出すことが可能となる。この熱電
変換素子80は多くのP型半導体81a,……81zと
N型半導体82a,……82zを電気的に直列接続して
いることから比較的大きな電力を取り出すことが可能で
あり、例えば、ゴミ処理用の煙突等の壁面や自動車のマ
フラー等に配置することで、この発明の構成を有効に活
用することができる。
Also in the thermoelectric conversion element 80 described above, the heat energy supplied from the heat source (not shown) is
.. 81z and N type semiconductors 82a, .. .8 through the heat conducting metal plates 83a ..
2z is conducted and supplied to the P-type semiconductors 81a, ... 8 respectively.
It is possible to extract electric power from the low temperature end side (upper surface of the drawing) of the 1z and the N-type semiconductors 82a, ... 82z. Since this thermoelectric conversion element 80 electrically connects a large number of P-type semiconductors 81a, ... 81z and N-type semiconductors 82a ,. The configuration of the present invention can be effectively utilized by disposing it on the wall surface of a chimney or the like for dust disposal, the muffler of an automobile, or the like.

【0039】[0039]

【実施例】図1に示すこの発明の熱電変換素子10と、
図9に示す従来の熱電変換素子1との負荷特性を測定す
ることによって、この発明の熱電変換素子10が優れて
いることを確認した。図1に示すこの発明の熱電変換素
子10を得るために、以下の構成部材を準備した。 鉄硅化物(FeSi2)を主体とするP型半導体11用
焼結体およびN型半導体12用焼結体 組成(wt%):P型→Fe43.5Mn4Si52.5
型→Fe44.5Co3.5Si51.5 寸法:高さ4mm×幅4mm×長さ20mm 熱伝導用金属板13 材質:チタン(Ti)板 寸法:厚さ0.5mm×幅5mm×長さ10mm 銅(Cu)系ろう材14 構成:Cu 寸法:厚さ0.08mm×幅3mm×長さ5mm 融点:900℃ 電極15 材質:銅(Cu)板 寸法:厚さ0.5mm×幅3mm×長さ10mm
EXAMPLE A thermoelectric conversion element 10 of the present invention shown in FIG.
By measuring the load characteristics with the conventional thermoelectric conversion element 1 shown in FIG. 9, it was confirmed that the thermoelectric conversion element 10 of the present invention was excellent. In order to obtain the thermoelectric conversion element 10 of the present invention shown in FIG. 1, the following constituent members were prepared. Sintered body for P-type semiconductor 11 and sintered body for N-type semiconductor 12 mainly composed of iron silicide (FeSi 2 ) Composition (wt%): P type → Fe 43.5 Mn 4 Si 52.5 N
Mold → Fe 44.5 Co 3.5 Si 51.5 Dimensions: height 4 mm x width 4 mm x length 20 mm Heat conduction metal plate 13 Material: Titanium (Ti) plate Dimensions: Thickness 0.5 mm x width 5 mm x length 10 mm Copper (Cu ) System brazing material 14 Structure: Cu Dimensions: Thickness 0.08 mm x width 3 mm x length 5 mm Melting point: 900 ° C Electrode 15 Material: Copper (Cu) plate Dimensions: thickness 0.5 mm x width 3 mm x length 10 mm

【0040】上記の各々半導体11,12用焼結体と熱
伝導用金属板13とを銅(Cu)系ろう材14を介し、
所定の圧力を加えて位置決めした状態にて、大気中、9
00℃×15minの条件にてろう付けして一体化し
た。その後、これら構成体に所定温度(750℃×10
0hr)にて半導体化処理を施し、さらに冷却後、電極
15をZn−Sn半田にて250℃で接合し、この発明
の熱電変換素子10を得た。
The above-mentioned sintered bodies for semiconductors 11 and 12 and the metal plate 13 for heat conduction are provided with a copper (Cu) -based brazing material 14 in between.
In a state of being positioned by applying a predetermined pressure,
They were integrated by brazing under the condition of 00 ° C. × 15 min. After that, a predetermined temperature (750 ° C. × 10
(0 hr), semiconductor treatment was performed, and after cooling, the electrode 15 was joined with Zn—Sn solder at 250 ° C. to obtain the thermoelectric conversion element 10 of the present invention.

【0041】従来の熱電変換素子1は、一対の半導体
が、この発明の熱電変換素子10と同組成でほぼ同寸法
になるよう従来の粉末冶金法にて一体成形したものを使
用した。それぞれの熱電変換素子10,1に図1および
図10に示すように電流計5、電圧計6、可変抵抗7を
接続し、この発明の熱電変換素子10においては熱伝導
用金属板13を、また、従来の熱電変換素子1において
は半導体のPN接合部をトーチにて加熱(約800℃)
することによって、それぞれの負荷特性を測定したとこ
ろ、図9に示すような特性を得た。図9よりこの発明の
熱電変換素子10の負荷特性が従来の熱電変換素子1の
負荷特性に比べて優れていることが明らかであり、この
発明の熱電変換素子10の発電能力(変換効率)が高い
ことが確認できた。
As the conventional thermoelectric conversion element 1, a pair of semiconductors integrally molded by the conventional powder metallurgy method has the same composition and the same dimensions as the thermoelectric conversion element 10 of the present invention. As shown in FIGS. 1 and 10, an ammeter 5, a voltmeter 6, and a variable resistor 7 are connected to each thermoelectric conversion element 10 and 1, and in the thermoelectric conversion element 10 of the present invention, the metal plate 13 for heat conduction is Further, in the conventional thermoelectric conversion element 1, the semiconductor PN junction is heated by the torch (about 800 ° C.).
By doing so, the respective load characteristics were measured, and the characteristics shown in FIG. 9 were obtained. It is clear from FIG. 9 that the load characteristics of the thermoelectric conversion element 10 of the present invention are superior to the load characteristics of the conventional thermoelectric conversion element 1, and the power generation capacity (conversion efficiency) of the thermoelectric conversion element 10 of the present invention is It was confirmed to be high.

【0042】[0042]

【発明の効果】この発明の熱電変換素子においては、鉄
硅化物(FeSi2)を主体とするP型半導体およびN
型半導体の接合部に熱エネルギー供給源としてチタン
(Ti)又はチタン(Ti)合金からなる熱伝導用金属
板が配置され、各々の半導体の外部に位置する熱源から
絶えず熱エネルギーが効率良く供給されることから、ペ
ルチェ効果による電子正孔対の発生の減少を防止するこ
とができ、発電効率を高めることができる。従来の直熱
式の場合、接合部以外が熱せられるので、冷接点部を離
すために素子が長くなり、内部抵抗が増加するが、この
発明の熱電変換素子においては、熱が熱伝導用金属板を
熱することにより供給されて、PN接合部のみが加熱さ
れるので、冷接点部近くにも温度差が得られ、内部抵抗
が小さくなり、発電能力が著しく向上する。
According to the thermoelectric conversion element of the present invention, a P-type semiconductor mainly composed of iron silicide (FeSi 2 ) and an N-type semiconductor are used.
A metal plate for heat conduction made of titanium (Ti) or a titanium (Ti) alloy is arranged as a heat energy supply source at the junction of the semiconductors, and heat energy is continuously and efficiently supplied from heat sources located outside each semiconductor. Therefore, it is possible to prevent the generation of electron-hole pairs from being reduced due to the Peltier effect, and it is possible to improve power generation efficiency. In the case of the conventional direct heating type, since the elements other than the joint portion are heated, the element becomes longer to separate the cold junction portion and the internal resistance increases, but in the thermoelectric conversion element of the present invention, the heat is a metal for heat conduction. Since it is supplied by heating the plate and only the PN junction is heated, a temperature difference is obtained near the cold junction, the internal resistance is reduced, and the power generation capacity is significantly improved.

【0043】また、P型半導体とN型半導体とが別個に
製造され熱伝導用金属板を介して接合されていることか
ら従来構成の如きPN接合部における各々半導体用合金
粉末の混合等が生じることなく、該PN接合部にて特性
劣化が生じたり電気的特性にバラツキ生じたりすること
がなく安定した電力が取り出せる。さらに、P型半導体
とN型半導体とを別個に製造することが可能になったこ
とにより、製造方法(充填−成形工程)が容易になり、
量産性に優れた構成となった。また、P型半導体とN型
半導体との個々の形状を用途に応じて任意に製造するこ
とが可能となったことより、実施例に示すような種々な
構成からなる熱電変換素子の提供が実現でき、これら熱
電変換素子の用途を一層広げることができる。
Further, since the P-type semiconductor and the N-type semiconductor are manufactured separately and are joined through the metal plate for heat conduction, mixing of the alloy powder for semiconductor in the PN junction as in the conventional structure occurs. In this way, stable electric power can be taken out without deterioration of characteristics or variation of electric characteristics at the PN junction. Furthermore, since it is possible to manufacture the P-type semiconductor and the N-type semiconductor separately, the manufacturing method (filling-molding step) becomes easy,
The configuration has excellent mass productivity. Further, since individual shapes of the P-type semiconductor and the N-type semiconductor can be arbitrarily manufactured according to the application, it is possible to provide the thermoelectric conversion element having various configurations as shown in the examples. Therefore, the applications of these thermoelectric conversion elements can be further expanded.

【0044】この発明の熱電変換素子においては、特に
各々半導体の低温端側に銅(Cu)板等からなる放熱板
を接合することによって各々半導体の加熱部(PN接合
部)と低温端側との温度差を拡大することが可能とな
り、発電効率の一層の向上が達成される。熱電変換素子
を構成する各々部材を比較的融点の高い銅(Cu)系ろ
う材にて接合一体化するため、高温度雰囲気での使用に
も耐え、鉄硅化物(FeSi2)を主体とする半導体が
本来有する耐熱特性を有効に活用することができること
も大きな効果の一つであり、特に400℃〜900℃の
温度範囲における熱センサーとして、また電源として有
効である。
In the thermoelectric conversion element of the present invention, a heat radiating plate made of a copper (Cu) plate or the like is joined to the low temperature end side of each semiconductor to form a semiconductor heating portion (PN junction portion) and a low temperature end side. It is possible to widen the temperature difference and the power generation efficiency is further improved. Since each member constituting the thermoelectric conversion element is joined and integrated with a copper (Cu) -based brazing material having a relatively high melting point, it can withstand use in a high temperature atmosphere and is mainly composed of iron silicide (FeSi 2 ). It is also one of the great effects that the heat resistance characteristic of semiconductors can be effectively utilized, and is particularly effective as a thermal sensor in the temperature range of 400 ° C. to 900 ° C. and as a power source.

【0045】以上に説明するように、この発明の熱電変
換素子は多くの長所を有しており、例えばストーブやコ
ンロの近傍に配置することによって、これらの作動に基
づきファンモーターを回転させたり、自動車の排熱エネ
ルギーを利用してリニアアクチュエーターを作動して各
種部品を駆動させたり、例えば、熱電変換された電力を
電池などに蓄電して電池を電源として、あるいは発電さ
れたものを直接使用して電子機器を作動させたり、多く
の用途への活用が考えられる。また、熱源も自動車やボ
イラーの排熱、ストーブの余熱のほか、地熱や太陽熱な
どの自然エネルギーの活用も可能で、種々の集熱治具や
装置を利用して高熱をこの発明の熱電変換素子の高熱伝
導金属板に伝熱することにより、多くの電子機器を作動
させることが可能になる。
As described above, the thermoelectric conversion element of the present invention has many advantages. For example, by disposing the thermoelectric conversion element in the vicinity of the stove or the stove, the fan motor can be rotated based on these operations, By using the exhaust heat energy of the car to operate the linear actuator to drive various parts, for example, the thermoelectrically converted electric power is stored in a battery or the like and the battery is used as the power source, or the generated power is used directly. It can be used to operate electronic devices and be used for many purposes. In addition to the exhaust heat of automobiles and boilers, the residual heat of the stove, it is also possible to utilize natural energy such as geothermal heat and solar heat as the heat source, and high heat can be generated by using various heat collecting jigs and devices. It is possible to operate many electronic devices by transferring heat to the high thermal conductive metal plate of.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の熱電変換素子の一構成例を示す縦断
説明図である。
FIG. 1 is a vertical cross-sectional explanatory view showing one structural example of a thermoelectric conversion element of the present invention.

【図2】この発明の熱電変換素子の他の構成例を示す説
明図であり、aは上面説明図、bは縦断説明図である。
2A and 2B are explanatory views showing another configuration example of the thermoelectric conversion element of the present invention, in which a is a top view and b is a longitudinal section.

【図3】この発明の熱電変換素子の他の構成例を示す上
面説明図である。
FIG. 3 is an explanatory top view showing another configuration example of the thermoelectric conversion element of the present invention.

【図4】この発明の熱電変換素子の他の構成例を示す縦
断説明図である。
FIG. 4 is a vertical cross-sectional explanatory view showing another configuration example of the thermoelectric conversion element of the present invention.

【図5】この発明の熱電変換素子の他の構成例を示す説
明図であり、aは上面説明図、bは縦断説明図である。
5A and 5B are explanatory views showing another configuration example of the thermoelectric conversion element of the present invention, in which a is a top view and b is a longitudinal section.

【図6】この発明の熱電変換素子の他の構成例を示す横
断説明図である
FIG. 6 is a transverse cross-sectional view showing another configuration example of the thermoelectric conversion element of the present invention.

【図7】この発明の熱電変換素子の他の構成例を示す縦
断説明図である。
FIG. 7 is a vertical cross-sectional explanatory view showing another configuration example of the thermoelectric conversion element of the present invention.

【図8】この発明の熱電変換素子の他の構成例を示す説
明図であり、aは上面説明図、bは縦断説明図である。
8A and 8B are explanatory views showing another configuration example of the thermoelectric conversion element of the present invention, in which a is a top view and b is a longitudinal section.

【図9】この発明の熱電変換素子と従来の熱電変換素子
との負荷特性を測定した結果を示す負荷特性曲線図であ
る。
FIG. 9 is a load characteristic curve diagram showing the results of measuring the load characteristics of the thermoelectric conversion element of the present invention and the conventional thermoelectric conversion element.

【図10】従来の熱電変換素子の概要説明図である。FIG. 10 is a schematic explanatory diagram of a conventional thermoelectric conversion element.

【符号の説明】[Explanation of symbols]

1,10,20,20a,20b,20c,20d,2
0e,20f,50,60,70,80 熱電変換素子 2,11,21,51,61a,61b,61c,71
a,71b,71c,81a P型半導体 3,12,22,52,62a,62b,62c,72
a,72b,72c,82a N型半導体 4 PN接合部 5 電流計 6 電圧計 7 可変抵抗 13,23,23a,23b,23c,23d,23
e,23f,53,63a,63b,63c,63d,
63e,73a,73b,73c,73d,73e,8
3a 熱伝導用金属板 14,24,54,64a,64b,64c,64d,
64e,74,74a,74b,74c,74d,74
e,84a 銅(Cu)系ろう材 15,25,25a,25c,25d,25f,55,
65,75,85 電極板 16,26,56,66,76 ろう材 26 接続部材 67 円筒部材 86 放熱板 87 受熱板 88 空間部
1, 10, 20, 20a, 20b, 20c, 20d, 2
0e, 20f, 50, 60, 70, 80 Thermoelectric conversion element 2, 11, 21, 51, 61a, 61b, 61c, 71
a, 71b, 71c, 81a P-type semiconductor 3, 12, 22, 52, 62a, 62b, 62c, 72
a, 72b, 72c, 82a N-type semiconductor 4 PN junction part 5 Ammeter 6 Voltmeter 7 Variable resistance 13, 23, 23a, 23b, 23c, 23d, 23
e, 23f, 53, 63a, 63b, 63c, 63d,
63e, 73a, 73b, 73c, 73d, 73e, 8
3a Metal plate for heat conduction 14, 24, 54, 64a, 64b, 64c, 64d,
64e, 74, 74a, 74b, 74c, 74d, 74
e, 84a Copper (Cu) brazing material 15, 25, 25a, 25c, 25d, 25f, 55,
65,75,85 Electrode plate 16,26,56,66,76 Brazing material 26 Connection member 67 Cylindrical member 86 Radiating plate 87 Heat receiving plate 88 Space part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄硅化物(FeSi2)を主体とするP
型半導体とN型半導体とをPN接合した構成からなる熱
電変換素子において、前記一対の半導体間にチタン(T
i)又はチタン(Ti)合金からなる熱伝導用金属板を
介在させ銅(Cu)系ろう材にてろう付けしPN接合部
を形成したことを特徴とする熱電変換素子。
1. A P containing iron sulfide (FeSi 2 ) as a main component.
In a thermoelectric conversion element having a structure in which a p-type semiconductor and an n-type semiconductor are pn-junctioned, titanium (T
A thermoelectric conversion element characterized in that a PN junction is formed by brazing a copper (Cu) -based brazing material with a metal plate for heat conduction made of i) or a titanium (Ti) alloy interposed.
JP31122093A 1993-11-16 1993-11-16 Thermoelectric conversion element Expired - Lifetime JP3450397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31122093A JP3450397B2 (en) 1993-11-16 1993-11-16 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31122093A JP3450397B2 (en) 1993-11-16 1993-11-16 Thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH07142768A true JPH07142768A (en) 1995-06-02
JP3450397B2 JP3450397B2 (en) 2003-09-22

Family

ID=18014549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31122093A Expired - Lifetime JP3450397B2 (en) 1993-11-16 1993-11-16 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3450397B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140583A (en) * 1997-07-23 1999-02-12 Daido Steel Co Ltd Alloy for soldering and solder bonding method
JP2005317834A (en) * 2004-04-30 2005-11-10 Hitachi Powdered Metals Co Ltd Thermoelectric transformation module and method of manufacturing the same
JP2012508967A (en) * 2008-11-14 2012-04-12 カール フークス,ヘルベルト How to convert thermal energy into electrical energy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140583A (en) * 1997-07-23 1999-02-12 Daido Steel Co Ltd Alloy for soldering and solder bonding method
JP2005317834A (en) * 2004-04-30 2005-11-10 Hitachi Powdered Metals Co Ltd Thermoelectric transformation module and method of manufacturing the same
JP4570071B2 (en) * 2004-04-30 2010-10-27 日立粉末冶金株式会社 Thermoelectric conversion module and manufacturing method thereof
JP2012508967A (en) * 2008-11-14 2012-04-12 カール フークス,ヘルベルト How to convert thermal energy into electrical energy

Also Published As

Publication number Publication date
JP3450397B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
JPH0697512A (en) Thermoelectric conversion element
Matsubara Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles
JP5212937B2 (en) Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
WO2002023643A1 (en) Thermoelectric conversion element
US20140102500A1 (en) Thermoelectric Device Assembly, Thermoelectric Module and its Manufacturing Method
TWI505522B (en) Method for manufacturing thermoelectric conversion module
WO2010101049A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2006294738A (en) Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP2003092435A (en) Thermoelectric module and its manufacturing method
WO2006043402A1 (en) Thermoelectric conversion module
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
WO2017020833A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JP2001217469A (en) Thermoelectric conversion element and its manufacturing method
CN109065697B (en) Annular thermoelectric power generation device
CN109065700B (en) Preparation method of annular thermoelectric power generation device
JP7314927B2 (en) Thermoelectric conversion module member, thermoelectric conversion module, and method for manufacturing thermoelectric conversion module member
JPH07142768A (en) Thermoelectric conversion element
JP2003234516A (en) Thermoelectric module
JP6708339B2 (en) Thermoelectric conversion element, thermoelectric conversion module
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term