JPH0222804A - Rare-earth, iron resin-bonded magnet - Google Patents

Rare-earth, iron resin-bonded magnet

Info

Publication number
JPH0222804A
JPH0222804A JP63173554A JP17355488A JPH0222804A JP H0222804 A JPH0222804 A JP H0222804A JP 63173554 A JP63173554 A JP 63173554A JP 17355488 A JP17355488 A JP 17355488A JP H0222804 A JPH0222804 A JP H0222804A
Authority
JP
Japan
Prior art keywords
magnet
iron
resin
organic resin
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63173554A
Other languages
Japanese (ja)
Inventor
Yukihiko Shiobara
幸彦 塩原
Mitsuru Sakurai
充 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63173554A priority Critical patent/JPH0222804A/en
Publication of JPH0222804A publication Critical patent/JPH0222804A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To enabled magnet to be prevented completely from corrosion even when it is cut on its midway by costing the surface of the magnet with two or more layers of an organic resin so that any pin hole in a coating film is covered with an overlaying coating film. CONSTITUTION:An organic resin is added to magnetic powder basically composed of a rare earth metal, iron and boron and produced by the super- quenching process. The mixture is molded and the surface of a magnet thus obtained is covered with two or more layers of organic resin having a total thickness of 1 to 50mum. The organic resin is one of epoxy resin, phenol resin, acryl resin and melamine resin or a mixture of two or more of them. If coating film has a thickness less than 1mum, it becomes so uninform that reliability can not be ensured. If it has a thickness over 50mum, however, it requires a prolonged working time and increases the cost. In said rate-earth magnet powder produced by said super-quenching process, the rare-earth metal, iron and boron occupy 8 to 18%, 73 to 88% and 4 to 9%, respectively, in atomic percentage. The rare-earth metal may be one of Y, La, Ce, Pr, Sm, Nd, Eu, Gd, Tb and Dy or a mixture of two or more of them. A part of iron is substituted with one or more transitions metals such as Al, Co and Nb.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成が希土類金属、鉄、ボロンからなる
超急冷法でつくられた磁石粉末に有機樹脂を混合して成
形後、2層以上の有機樹脂を磁石表面に被覆した耐酸化
性にすぐれた゛、高強度の希土類、鉄系樹脂結合型磁石
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of mixing magnetic powder made by an ultra-quenching method with a basic composition of rare earth metals, iron, and boron with an organic resin, and then molding the mixture into two layers. The present invention relates to a highly oxidation-resistant, high-strength rare-earth and iron-based resin bonded magnet in which the surface of the magnet is coated with the above-mentioned organic resin.

〔従来の技術〕[Conventional technology]

永久磁石は、太き(わせてフェライト磁石、アルニコ磁
石、希土類磁石の3つに分けられるが、近年のOA機器
、FAil器の小型化、高効率化に伴い、希土類磁石の
需要が大きく伸びてきた。
Permanent magnets can be divided into three types: ferrite magnets, alnico magnets, and rare earth magnets. Demand for rare earth magnets has increased significantly in recent years as OA equipment and FAIL equipment have become smaller and more efficient. Ta.

希土類磁石は、その組成から希土類、コバルト系と、希
土類、鉄系に大別される。
Rare earth magnets are broadly classified into rare earth/cobalt based magnets and rare earth/iron based magnets based on their composition.

希土類、鉄系磁石は、1983年にゼネラルモータス社
(GM社)、と住友特殊金属が発表した磁石で共にNd
FeBを主成分としているが、GM社が超急冷法を採用
して磁石粉末を製造したのに対し、住友特殊金属は、粉
末冶金法により焼結磁石を製造している。
Rare earth and iron magnets were introduced in 1983 by General Motors Corporation (GM) and Sumitomo Special Metals, both of which contain Nd.
The main component is FeB, but while GM uses an ultra-quenching method to manufacture magnet powder, Sumitomo Special Metals manufactures sintered magnets using a powder metallurgy method.

超急冷法の場合、厚み20μm位の急冷薄膜が得られそ
の一つ一つの中には、単磁区粒子の臨界半径よりも微細
なサブミクロンオーダー(0,1〜0.5μm)の結晶
粒より構成されている。従って177μm以下のバルク
状粉末に粉砕しても保磁力が出る状態に保持されている
ので樹脂結合型磁石の原料として利用できる0以上の原
料を使用して有機樹脂を加えた磁石は、圧縮成形、射出
成形、押出成形、ロール成形等により所望の形状のもの
が得られていた。
In the case of the ultra-quenching method, a quenched thin film with a thickness of about 20 μm is obtained, and each film contains crystal grains on the submicron order (0.1 to 0.5 μm), which are finer than the critical radius of single-domain grains. It is configured. Therefore, even when crushed into a bulk powder of 177 μm or less, the coercive force is maintained, so it can be used as a raw material for resin-bonded magnets.Magnets made by adding organic resin using 0 or more raw materials are compression molded. Products of desired shapes were obtained by injection molding, extrusion molding, roll molding, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、希土類、鉄系樹脂結合型磁石は極めて錆
びやすくモータ、スピーカ、リレー等に組み込んだ場合
に、錆のために著しく性能を低下させるという問題を有
していた。このため従来は、磁石表面を有機樹脂で被覆
して防錆を行っていたが、有機樹脂をコーティングする
際に使用する溶剤や空気等が被覆層のピンホールとなり
完全な防錆は得られていなかった。
However, rare earth and iron-based resin-bonded magnets are extremely susceptible to rust, and when incorporated into motors, speakers, relays, etc., there has been a problem in that the rust significantly degrades performance. For this reason, conventionally, the magnet surface was coated with organic resin to prevent rust, but the solvent and air used when coating the organic resin create pinholes in the coating layer, making it impossible to achieve complete rust prevention. There wasn't.

そこで本発明は、従来のこのような問題点を解決するた
め、磁石表面に有機樹脂を2層以上コーティングして、
被膜中のピンホールを層状の被膜にすることにより途中
でカットして完全な防錆を行なうことを目的とする。第
1図に、モデル図を示す。
Therefore, in order to solve these conventional problems, the present invention coats the surface of the magnet with two or more layers of organic resin.
The purpose is to completely prevent rust by cutting out pinholes in the coating by creating a layered coating. Figure 1 shows a model diagram.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題を解決するために、本発明の希土類。 In order to solve the above problems, the rare earth of the present invention.

鉄系樹脂結合型磁石は、基本組成が、希土類金属。The basic composition of iron-based resin bonded magnets is rare earth metals.

鉄、ボロンからなり超急冷法でつくられた磁石粉末に有
機樹脂を加え成形後、磁石表面を、2層以上の有機樹脂
で1〜50μm被覆することを特徴とする。
It is characterized by adding an organic resin to magnet powder made of iron and boron and made by an ultra-quenching method, and after molding, the surface of the magnet is coated with two or more layers of organic resin of 1 to 50 μm.

本発明の被覆に使用する有機樹脂は、エポキシ樹脂、フ
ェノール樹脂、アクリル樹脂、メラミン樹脂の1種また
は、2種以上の混合物である。被膜は、1μm以下では
、不均一層の発生により信頼性確保が困難であり、50
μm以上では、作業時間が長くなり高コストになるため
上記の被覆厚みとした。
The organic resin used for the coating of the present invention is one or a mixture of two or more of epoxy resin, phenol resin, acrylic resin, and melamine resin. If the thickness of the film is less than 1 μm, it is difficult to ensure reliability due to the occurrence of a non-uniform layer;
If the coating thickness is more than μm, the working time becomes longer and the cost becomes higher, so the coating thickness was set as above.

なお、基本組成が、希土類金属、鉄、ボロンからなる超
急冷法により製造した希土類磁石粉末としては、原子比
で8〜18%、73〜88%、4〜9%であり、希土類
金属は、Y、La、Ce。
In addition, the basic composition of rare earth magnet powder produced by an ultra-quenching method consisting of rare earth metals, iron, and boron is 8 to 18%, 73 to 88%, and 4 to 9% in atomic ratio, and the rare earth metals are: Y, La, Ce.

Pr、Sm、Nd、Eu、Gd、Tb、Dy単体及び2
種以上の混合物、そして鉄の一部をAf。
Pr, Sm, Nd, Eu, Gd, Tb, Dy alone and 2
A mixture of seeds or more, and some of the iron is Af.

Co、Nb等の1種以上の遷移金属で置換したものとす
る。
It is assumed that one or more transition metals such as Co and Nb are substituted.

また、磁石成形の際に使用される有機樹脂は、圧縮成形
の場合は、エポキシ樹脂等射出成形の場合はナイロン、
PPS等、押し出し成形、ロール成形の場合には、エポ
キシ樹脂、ナイロン、PPSと使用することが一般的で
ある。
In addition, the organic resin used during magnet molding is epoxy resin for compression molding, nylon for injection molding,
In the case of extrusion molding and roll molding, it is common to use epoxy resin, nylon, and PPS.

〔実施例〕 (実施例1) 原子比がN d +aF e soB hであり超急冷
法により得られた粉末を177μm以下に粉砕した後、
エポキシ樹脂を2%加え圧縮成形した。これを、150
°Cにおいて1時間保持して熱硬化させ磁石を得た。こ
の磁石表面にいろいろな条件でコーティングを施した後
70″c×95%の環境試験を行った。実験結果を第1
表に示す。
[Example] (Example 1) After pulverizing a powder having an atomic ratio of N d + aF e soB h and obtained by an ultra-quenching method to a size of 177 μm or less,
2% epoxy resin was added and compression molded. This is 150
The magnet was thermally cured by holding it at °C for 1 hour to obtain a magnet. After coating the surface of this magnet under various conditions, an environmental test of 70"c x 95% was conducted.The experimental results were
Shown in the table.

第1表より、Nal及び7のように膜厚1μm以下のサ
ンプルは、防錆力が低い。また、漱4.5または9,1
0,11.12のように同じ膜厚で膜の層の数を変えた
サンプルを比較すると、多層にした方がより防錆力が高
いことがわかる。
From Table 1, samples with a film thickness of 1 μm or less, such as Nal and 7, have low rust prevention ability. Also, Sō 4.5 or 9,1
Comparing samples with the same film thickness but different numbers of film layers, such as 0, 11, and 12, it can be seen that the multi-layered film has higher rust prevention ability.

第  1  表 ○:目視で間接して錆無し △:目視で観察して多少錆有り ×:錆多量 (実施例2) 原子比がN d 13F e ?&COb B5であり
超急冷法により得られた粉末を120μm以下に粉砕し
た後、エポキシ樹脂を20%加え圧縮成形した。
Table 1 ○: No indirect rust when visually observed △: Some rust when visually observed ×: A large amount of rust (Example 2) Atomic ratio is N d 13 Fe? &COb B5 powder obtained by an ultra-quenching method was pulverized to 120 μm or less, and then 20% of epoxy resin was added and compression molded.

これを150℃XIHで焼成して磁石を得た。この磁石
表面にいろいろな条件でコーティングを施した後、塩水
噴霧試験を行った。結果を第2表に示す。表面条件の記
号は実施例1と同様である。
This was fired at 150° C.XIH to obtain a magnet. After coating the magnet surface under various conditions, a salt spray test was conducted. The results are shown in Table 2. The symbols for surface conditions are the same as in Example 1.

第2表 第2表に示すとおり、コーテイング膜を多層化すること
により防錆力が高くなることがわかる。
Table 2 As shown in Table 2, it can be seen that the antirust ability is increased by making the coating film multilayered.

(実施例3) 実施例2で使用した粉末をナイロン12.5%を混合し
た後、磁石表面をいろいろな条件でコーチイブした。こ
の磁石を80℃×95%の環境試験した結果を第3表に
示す。表面状態の記号は実施例1と同様である。
(Example 3) After the powder used in Example 2 was mixed with 12.5% nylon, the surface of the magnet was coach-treated under various conditions. Table 3 shows the results of an environmental test of this magnet at 80°C x 95%. Symbols for surface conditions are the same as in Example 1.

第3表 実験結果より、膜厚を厚くすることとコーテイング膜を
多層化することにより高い防錆力が得られていることが
わかる。
From the experimental results in Table 3, it can be seen that high rust prevention power is obtained by increasing the film thickness and multilayering the coating film.

(実施例4) 実施例2に使用した粉末を圧縮成形してφ18×φ16
)14のリング状の磁石を得た。この磁石に膜厚10μ
mのコーティングを3回行って30μmの被覆をした。
(Example 4) The powder used in Example 2 was compression molded into φ18×φ16
) 14 ring-shaped magnets were obtained. This magnet has a film thickness of 10μ.
Three coats of m were applied to give a 30 μm coating.

この磁石を第2図に示すようなステッピングモータに組
み込んだ。
This magnet was incorporated into a stepping motor as shown in FIG.

このモータを60°C×95%環境にて動作試験を行っ
た所5000Hまで内部の磁石に錆は見られず、正常に
駆動した。
When this motor was subjected to an operation test in a 60°C x 95% environment, no rust was observed on the internal magnets and it operated normally up to 5000 hours.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、希土類、鉄系樹脂結合型
磁石表面に有機樹脂を2層以上コーティングしたため非
常に優れた耐食性を有しておリモータ、スピーカ、セン
サー、リレー等に使用しても鯖等の発生が無(、その磁
気回路における磁束が安定しており、高い信頼性を維持
できるという効果を有するものである。
As described above, the present invention has extremely excellent corrosion resistance because the surface of the rare earth/iron resin-bonded magnet is coated with two or more layers of organic resin, making it suitable for use in remoters, speakers, sensors, relays, etc. However, the magnetic flux in the magnetic circuit is stable, and high reliability can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による多層のコーティングを施した磁
石の断面図。 1・・・磁石 2・・・コーティング層第1層 3・・・コーティング層第2層 4・・・コーティング層第3層 5川ピンホール 第2図は、実施例4において説明した3層コーティング
を施した希土類、鉄系樹脂結合型磁石を使用したステッ
ピングモータの断面図。 l・・・シャット 2・・・コイル 3・・・磁石 4・・・軸受 以上 出願人 セイコーエプソン株式会社 代理人弁理士 鈴木喜三部 他1名
FIG. 1 is a cross-sectional view of a magnet with a multilayer coating according to the invention. 1...Magnet 2...First coating layer 3...Second coating layer 4...Third coating layer Five River pinholes Figure 2 shows the three-layer coating explained in Example 4. A cross-sectional view of a stepping motor using rare earth and iron-based resin bonded magnets. l...Shut 2...Coil 3...Magnet 4...Bearing and above Applicant: Seiko Epson Co., Ltd. Representative Patent Attorney Kizobe Suzuki and 1 other person

Claims (3)

【特許請求の範囲】[Claims] (1)基本組成が、希土類金属,鉄,ボロンからなる超
急冷法でつくられた磁石粉末に有機樹脂を加え成形した
磁石において、その表面を有機樹脂を2層以上で1〜5
0μm被覆したことを特徴とする希土類,鉄系樹脂結合
型磁石。
(1) In a magnet formed by adding an organic resin to magnetic powder made by an ultra-quenching method whose basic composition is rare earth metal, iron, and boron, the surface is coated with two or more layers of organic resin for 1 to 5
A rare earth and iron-based resin bonded magnet characterized by a 0μm coating.
(2)前記鉄の一部を、コバルト等の鉄以外の遷移金属
で置換した請求項1記載の希土類,鉄系樹脂結合型磁石
(2) The rare earth/iron resin bonded magnet according to claim 1, wherein a part of the iron is replaced with a transition metal other than iron, such as cobalt.
(3)請求項1又は2に記載の磁石を使用したステッピ
ングモータ。
(3) A stepping motor using the magnet according to claim 1 or 2.
JP63173554A 1988-07-11 1988-07-11 Rare-earth, iron resin-bonded magnet Pending JPH0222804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63173554A JPH0222804A (en) 1988-07-11 1988-07-11 Rare-earth, iron resin-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63173554A JPH0222804A (en) 1988-07-11 1988-07-11 Rare-earth, iron resin-bonded magnet

Publications (1)

Publication Number Publication Date
JPH0222804A true JPH0222804A (en) 1990-01-25

Family

ID=15962696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63173554A Pending JPH0222804A (en) 1988-07-11 1988-07-11 Rare-earth, iron resin-bonded magnet

Country Status (1)

Country Link
JP (1) JPH0222804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001326A1 (en) * 1990-07-12 1992-01-23 Seiko Epson Corporation Rotor of brushless motor and manufacture thereof
JPH0491406A (en) * 1990-08-01 1992-03-24 Sumitomo Special Metals Co Ltd Resin-molded magnet
WO1992007409A1 (en) * 1990-10-19 1992-04-30 Seiko Epson Corporation Rotor of brushless motor and its manufacturing method
WO2010109561A1 (en) * 2009-03-27 2010-09-30 株式会社 東芝 Core-shell magnetic material, method for producing core-shell magnetic material, device element, and antenna device
US8475922B2 (en) 2010-03-05 2013-07-02 Kabushiki Kaisha Toshiba Nanoparticle composite material and antenna device and electromagnetic wave absorber using the same
JP2014126140A (en) * 2012-12-26 2014-07-07 Hitachi Metals Ltd Magnet roller and method of producing magnet roller
JP2020511922A (en) * 2017-03-22 2020-04-16 ホワイロット エスアエス Rotor for radial flux electromagnetic motor or generator with mesh housing of unit magnets

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001326A1 (en) * 1990-07-12 1992-01-23 Seiko Epson Corporation Rotor of brushless motor and manufacture thereof
JPH0491406A (en) * 1990-08-01 1992-03-24 Sumitomo Special Metals Co Ltd Resin-molded magnet
WO1992007409A1 (en) * 1990-10-19 1992-04-30 Seiko Epson Corporation Rotor of brushless motor and its manufacturing method
WO2010109561A1 (en) * 2009-03-27 2010-09-30 株式会社 東芝 Core-shell magnetic material, method for producing core-shell magnetic material, device element, and antenna device
US8988301B2 (en) 2009-03-27 2015-03-24 Kabushiki Kaisha Toshiba Core-shell magnetic material, method for producing core-shell magnetic material, device, and antenna device
US8475922B2 (en) 2010-03-05 2013-07-02 Kabushiki Kaisha Toshiba Nanoparticle composite material and antenna device and electromagnetic wave absorber using the same
JP2014126140A (en) * 2012-12-26 2014-07-07 Hitachi Metals Ltd Magnet roller and method of producing magnet roller
JP2020511922A (en) * 2017-03-22 2020-04-16 ホワイロット エスアエス Rotor for radial flux electromagnetic motor or generator with mesh housing of unit magnets

Similar Documents

Publication Publication Date Title
CN1019245B (en) Corrosion resisting rare-earth metal magnet
KR20030051387A (en) Thick film composition yielding magnetic properties
JP4358743B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
KR20010015377A (en) Magnetic powder and isotropic bonded magnet
JPH0222804A (en) Rare-earth, iron resin-bonded magnet
US6338761B1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
US20100129540A1 (en) Method for the production of a magnetic layer on a substrate and printable magnetizable varnish
JPH07169633A (en) Manufacture of yoke-united permanent magnet, and yoke-united permanent magnet manufactured by that manufacture
JPS60153109A (en) Permanent magnet
JP3739266B2 (en) Method for manufacturing replacement spring magnet
JPS6063901A (en) Permanent magnet superior in resistance to oxidation
JPS6017905A (en) Permanent magnet alloy powder
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JP2002270415A (en) R-Fe-B PERMANENT MAGNET
JP2007250646A (en) Composition for resin bond type magnet, magnetically anisotropic bond magnet using same, and manufacturing method thereof
JP2018073988A (en) Isotropic bulk magnet, and method for manufacturing the same
JPS63241141A (en) Ferromagnetic alloy
JPH097810A (en) High corrosion resistant permanent magnet and its manufacturing method
JPH0247808A (en) Rare earth and iron resin bonded type magnet
JPH03219056A (en) Rare earth magnetic alloy excellent in corrosion resistance
JP2620956B2 (en) permanent magnet
JPS59204209A (en) Isotropic permanent magnet and manufacture thereof
JP5159521B2 (en) Semi-rigid bonded magnet
JP2007116060A (en) Rare-earth magnet ring and thin motor using same