JPH0222724B2 - - Google Patents

Info

Publication number
JPH0222724B2
JPH0222724B2 JP56161881A JP16188181A JPH0222724B2 JP H0222724 B2 JPH0222724 B2 JP H0222724B2 JP 56161881 A JP56161881 A JP 56161881A JP 16188181 A JP16188181 A JP 16188181A JP H0222724 B2 JPH0222724 B2 JP H0222724B2
Authority
JP
Japan
Prior art keywords
titanium oxide
rutile
average particle
emulsion
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56161881A
Other languages
Japanese (ja)
Other versions
JPS5862106A (en
Inventor
Fukuji Suzuki
Hiroaki Munakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP16188181A priority Critical patent/JPS5862106A/en
Publication of JPS5862106A publication Critical patent/JPS5862106A/en
Publication of JPH0222724B2 publication Critical patent/JPH0222724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、疎水化された超微粒子状酸化チタン
を配合する事を特徴とする化粧料に係るものであ
る。さらに詳しく述べれば、無機酸化物または無
機水酸化物を1〜20重量%含有し、かつ疎水化さ
れた平均粒子径10〜30mμのルチル型酸化チタン
を化粧料基材に混和し、可視光線を透過し日焼け
を起す有害な紫外線を反射散乱させることによつ
て、皮膚を日焼けから保護するに適した化粧持ち
が良く、分散性、安定性、使用性の良い化粧料に
関する。 皮膚に過度の紫外線が照射された場合、紅斑、
水泡、浮腫が起き、引き続き、色素沈着が起る事
が知られている。又頭髪に対しても紫外線は有害
で、切れ毛、枝毛の原因となる。 このように、紫外線は、美的観点からも、又健
康上からも極めて有害である場合が多い。 太陽光線中200nm〜400nmは紫外線領域で、そ
の波長により遠紫外線200nm〜280nm、中紫外線
280〜320nm、近紫外線320〜400nmの3つに分け
られているが、大気上層20〜25Kmにわたるオゾン
層があり、このオゾンが紫外線をよく吸収するた
めに、実際に、地球上で被曝しているのは、中紫
外線の一部と近紫外線である。中紫外線の最短波
長は、295nm前後と考えられている。従つて日常
被曝する紫外線は295〜400nmの中紫外線と近紫
外線に限定して考えるのが妥当である。日焼け
は、この295〜400nmの中紫外線(UV−B)と
近紫外線(UV−A)により惹起されるが、UV
−Bは皮膚に紅斑を惹起し、炎症後黒化をもたら
す。一方UV−AはUV−Bに比較し、紅斑惹起
力は非常に弱く、実質上紅斑を起さず皮膚を黒化
するとされている。このように290〜320nmの中
紫外線は、生物学的作用が最も強いとされている
ものである。 中でも297.6nmが最も強い波長とされている。 従来より、これらの障害を予防するため、各種
の紫外線吸収剤を配合した化粧料が開発され、市
販されているが、これ等に用いられる紫外線吸収
剤としては、P−アミノ安息香酸誘導体、サルチ
ル酸誘導体、ベンゾトリアゾール誘導体、ベンゾ
フエノン誘導体及びケイ皮酸誘導体等の合成紫外
線吸収剤と、酸化チタン、酸化亜鉛、酸化鉄等の
無機顔料が挙げられる。前者の合成紫外線吸収剤
は、化粧料基材に対し添加量を増すと溶解性に問
題があり、又皮膚に対する刺激、紫外線吸収によ
る変質、吸収力の低下、着色等化粧料用原料とし
ては多くの問題がある。一方後者の無機顔料は、
紫外線による変質が少なく、又経皮吸収されない
ため、皮膚に対する刺激性等については問題がな
いが、粒子径が大きい(例えば350mμ)ものは可
視光線を遮蔽する領域の粒子径であるため紫外部
での吸収が弱く、しかも隠蔽力が強過ぎ、白化な
いし着色し過ぎフアウンデイシヨンクリーム、な
いしは口紅の如くメイクアツプを目的とする場合
以外は使用不可能であつた。 また、平均30〜40mμの微粒子酸化チタンを配
合した日焼け止め化粧料も提案されているが(特
公昭47−42502号公報)、隠蔽力が高く、さらに、
紫外線吸収効果、化粧料基材への分散性、使用
性、安定性等については不充分である。 本発明者らは、こうした事情にかんがみ、上記
の欠点を解決すべく鋭意研究を重ねた結果、粒子
径の限定された特定の酸化チタンを特定量化粧料
基剤中に配合すれば、生物学的作用が最も強く皮
膚に紅斑を惹起する290〜320nmの中、最も強い
297.6nm付近の紫外線を反射散乱し皮膚を紫外線
から守り、しかも、可視光線をよく透過しうるこ
とを見出し、この知見に基づいて本発明を完成す
るに至つた。 すなわち、本発明は、無機酸化物または無機水
酸化物を1〜20重量%含有し、かつ疎水化された
平均粒子径10〜30mμのルチル型酸化チタンを、
0.1〜40重量%配合することを特徴とする化粧料
を提供するものである。 本発明の特定酸化チタンを配合した化粧料は、
前記の如く可視光線を透過し、日焼けを起す有害
な紫外線を反射散乱させることにより、皮膚を日
焼けから保護するとともに、化粧もちが良く、分
散性、安定性、使用性等に優れるという効果を有
する。 本発明に用いられる酸化チタンは、ルチル型の
酸化チタンが好ましく、これ以外の結晶構造のも
のに比べて効果は顕著である。 本発明に適用できるルチル型酸化チタンの粒子
径は、平均粒子径で10〜30mμのものである。前
記酸化チタンは、一般的なルチル型酸化チタンの
製法によつて製造することができる。たとえば、
硫酸チタニルを加水分解する方法である。この方
法によれば、一般的には粒子径5〜70mμの範囲
のものが得られる。この時、ケイ酸、酸化アルミ
ニウム、酸化亜鉛等の酸化物あるいは水酸化アル
ミニウム、水酸化亜鉛等の水酸化物等による一般
的な化学処理を行なうことが好ましい。添加量
は、ルチル型酸化チタンに対して1〜20重量%が
好ましく、添加量が少ないと太陽光線によりルチ
ル型酸化チタンが変質し表面黒化を起し、添加量
が多すぎるとルチル型酸化チタンの紫外線吸収効
果が低下する。 本発明に使用されるルチル型酸化チタンは、有
機化合物等で疎水化されたものが好ましい。顔料
の疎水化法に関しては多くの公知技術が提案され
ているが、処理剤として有機化合物を使用する場
合、皮膚に対する安全性、紫外線による変質等の
ないものを考慮すると炭素数C14〜C22からなる
高級脂肪酸又はそれらの塩で疎水化処理を行なう
のが好ましい。炭素数C13以下の高級脂肪酸では
皮膚に対する安全性に問題があり、炭素数C23以
上では処理する際の溶解度が低下するため処理効
果がみられない。酸化チタン特にルチル型は高級
脂肪酸と反応し、酸化チタン粒子表面のチタンと
化学反応して、チタン脂肪酸石僉になることか
ら、一般的な有機溶媒や化粧料基材、例えば、メ
タノール、エタノール、アセトン、ベンゼン、ト
ルエン、エーテル、流パラ、スクワラン、ヒマシ
油、IPM等には溶解しない。処理する脂肪酸の
量はルチル型酸化チタンに対して0.5〜10.0重量
%が好ましく、量が少ないと疎水化の効果が劣
り、量が多すぎると未反応の脂肪酸が残るように
なり有機溶媒にはもちろんのこと化粧料基材に対
しても溶解する可能性があり、化粧料の安定性を
害するおそれがある。 本発明に用いられる前記特定の酸化チタンは、
例えば次のようにして製造される。 硫酸チタニル水溶液を加熱(沸点温度)加水分
解させ、放冷後、口過、水洗する。次いで、この
スラリー状に、ステアリン酸ナトリウム及び水酸
化アルミニウムを加えて、加熱混練する。洗浄
後、乾燥して粉砕する。 その他、四塩化チタンを使う等の従来の一般的
なルチル型酸化チタンの製造方法に準じて製造さ
れる。 前記本発明の特定の酸化チタンは、化粧料基剤
中に0.1〜40重量%配合される。 次に、本発明の効果について説明する。 粒子径の異なる酸化チタン(ルチル型)を合成
し、隠蔽力と紫外線吸収効果について検討した。 粒子径の異なる酸化チタンの合成は四塩化チタ
ン水溶液と硫酸チタニル水溶液を用い、加水分解
法により合成した。合成した酸化チタンの隠蔽力
と紫外線吸収効果測定は、酸化チタン40部にヒマ
シ油60部を加え、三本ローラーを用いて充分に練
り、スラリーを作る。スラリー25部を取りヒマシ
油75部を加えて撹拌機を用いて更に酸化チタンを
分散させる。分散液を透明石英板に厚さ5μmの膜
厚を作り、日立340型分光々度計を用いて280〜
400nmの波長領域の吸光度(ABS)と400〜
700nmの波長領域の透過率を測定した。比較のた
めに特公昭47−42502号公報及び通常酸化チタン
についても同様な方法で測定した。各々の測定結
果を第1図及び第2図に示す。第1図の横軸は波
長(nm)を示し、縦軸は吸光度(Adsorption)
を示す。曲線aは平均粒子径350mμの通常の酸化
チタンを示し、曲線bは平均粒子径30〜40mμの
特公昭47−42502と同一の酸化チタンを示し、曲
線cは平均粒子径10〜30mμの硫酸チタニル水溶
液から合成したルチル型酸化チタンを示し、曲線
dは平均粒子径5〜10mμの四塩化チタン水溶液
から合成したルチル型酸化チタンを示した。第2
図の横軸は波長(nm)を示し、縦軸は透過率
(Transmittance、%)を示す。曲線aは平均粒
子径350mμの通常の酸化チタンを示し、曲線bは
平均粒子径30〜40mμの特公昭47−42502と同一の
酸化チタンを示し、曲線cは平均粒子径10〜
30mμの硫酸チタニル水溶液から合成したルチル
型酸化チタンを示し、曲線dは平均粒子径5〜
10mμの四塩化チタン水溶液から合成したルチル
型酸化チタンを示した。 第1図と第2図から明らかなように酸化チタン
の平均粒子径が350mμと大きいと、紫外線の吸収
効果はなく、可視光線に於ける透過率も小さい、
平均粒子径が30〜40mμになると紫外線の吸収効
果がみられるようになり、その最大吸収波長は
320〜340nm領域にある。可視光線の透過率も可
成高くなる。平均粒子径が10〜30mμとより小さ
くなると紫外線吸収効果もよりみられるようにな
り、最大吸収波長は、生物学的作用の最も強い
290〜320nmにもつようになる。可視光線の透過
率も非常に高くなる。平均粒子径が5〜10mμと
小さくなると可視光線の透過率は高くなるが、紫
外線吸収効果が弱まり最大吸収波長は290nm以下
にもつようになつてしまう。 したがつて、本発明に用いられる平均粒子径10
〜30mμのルチル型酸化チタンが生物学的作用が
最も強いとされている290〜320nmの中紫外線
(UV−B)波長領域をより効果的に吸収するこ
とが分る。 ルチル型酸化チタン超微粒子状顔料をそのまま
配合しようとすると吸油量が非常に大きいために
疎水化処理を行うのが好ましい。また化粧持ち、
即ち汗や水、海水に対して耐水でなければならな
いこと。油等の化粧料基剤に対する分散性が良
く、安定性に優れ使用性が良くないと紫外線吸収
に対する効果がなくなり、当然化粧料としての品
質も低下する。又、表面活性が強くなることによ
り、化粧料用基剤を変質させたり、太陽光線によ
り黒化したりする原因となる。このようなことか
らも超微粒子状酸化チタンを無機酸化物または無
機水酸化物を1〜20重量%含有させ、かつ疎水化
することが好ましい。即ち無機酸化物または無機
水酸化物を1〜20重量%含有させ、かつ疎水化す
ることによつて期待されることは、油に対して混
和性が良くなり分散性が良く吸油量が低下すると
ともに、耐光性が向上する。このため化粧料への
配合量を増すことができ、紫外線吸収効果を害す
ることのない化粧料が期待できるのである。 高級脂肪酸で疎水化処理した超微粒子状酸化チ
タンの吸油量を測定した。比較のために未処理及
び粒子径の異なる酸化チタンについても測定し
た。吸油量の測定は酸化チタン3gをガラス板に
取り、精製アマニ油を50ml入ビユレツトから少量
ずつ酸化チタン顔料中央に滴下し、その都度全体
をヘラで十分に練り合わせる。この操作を繰り返
し、全体が初めて堅いパテ状の一つの魂りとなつ
た時を終点とし、これに要した精製アマニ油量を
求め、次式から吸油量を算出した。 吸油量(ml/100g)=(アマニ油量(ml) /酸化チタン量(g))×100 結果を第1表に示した。
The present invention relates to a cosmetic containing hydrophobized ultrafine particulate titanium oxide. More specifically, rutile-type titanium oxide containing 1 to 20% by weight of an inorganic oxide or inorganic hydroxide and having an average particle diameter of 10 to 30 mμ, which has been made hydrophobic, is mixed into a cosmetic base material to emit visible light. The present invention relates to a cosmetic that has good makeup retention, good dispersibility, stability, and usability and is suitable for protecting the skin from sunburn by reflecting and scattering harmful ultraviolet rays that pass through and cause sunburn. If the skin is exposed to excessive ultraviolet rays, erythema,
Blisters, edema, and subsequent pigmentation are known to occur. Ultraviolet rays are also harmful to hair, causing hair breakage and split ends. As described above, ultraviolet rays are often extremely harmful both from an aesthetic point of view and from a health point of view. 200nm to 400nm in sunlight is the ultraviolet region, and depending on the wavelength, deep ultraviolet 200nm to 280nm, medium ultraviolet rays
It is divided into three types: 280 to 320 nm and near ultraviolet rays of 320 to 400 nm.There is an ozone layer that extends 20 to 25 km in the upper layer of the atmosphere, and because this ozone absorbs ultraviolet rays well, it is actually the case that most people on earth are exposed to ultraviolet rays. What is present is part of the mid-ultraviolet rays and near-ultraviolet rays. The shortest wavelength of medium ultraviolet rays is thought to be around 295 nm. Therefore, it is appropriate to limit the ultraviolet rays that we are exposed to on a daily basis to medium and near ultraviolet rays of 295 to 400 nm. Sunburn is caused by medium ultraviolet rays (UV-B) and near ultraviolet rays (UV-A) of 295 to 400 nm, but UV
-B causes erythema on the skin and causes post-inflammatory darkening. On the other hand, UV-A has a very weak erythema-inducing power compared to UV-B, and is said to darken the skin without substantially causing erythema. As described above, mid-ultraviolet light in the range of 290 to 320 nm is said to have the strongest biological effects. Among them, 297.6nm is said to be the strongest wavelength. In order to prevent these disorders, cosmetics containing various UV absorbers have been developed and marketed, but the UV absorbers used in these products include P-aminobenzoic acid derivatives, salutyl Examples include synthetic ultraviolet absorbers such as acid derivatives, benzotriazole derivatives, benzophenone derivatives, and cinnamic acid derivatives, and inorganic pigments such as titanium oxide, zinc oxide, and iron oxide. The former type of synthetic ultraviolet absorber has problems with solubility when added in large amounts to cosmetic base materials, and is often used as a raw material for cosmetics, such as irritation to the skin, deterioration due to ultraviolet absorption, decrease in absorbing power, and coloring. There is a problem. On the other hand, the latter inorganic pigment is
Since there is little deterioration due to ultraviolet rays and it is not absorbed through the skin, there is no problem with irritation to the skin, but particles with large particle sizes (for example, 350 mμ) are in the range that blocks visible light, so they are not exposed to ultraviolet light. It has weak absorption, has too strong hiding power, and causes too much whitening or coloring, making it impossible to use it for anything other than makeup applications such as foundation creams or lipsticks. In addition, sunscreen cosmetics containing fine titanium oxide particles with an average size of 30 to 40 mμ have been proposed (Japanese Patent Publication No. 47-42502), but they have high hiding power and
The UV absorption effect, dispersibility in cosmetic base materials, usability, stability, etc. are insufficient. In view of these circumstances, the present inventors have conducted intensive research to solve the above-mentioned drawbacks, and have found that if a specific amount of titanium oxide with a limited particle size is blended into a cosmetic base, biological The strongest of the 290 to 320 nm wavelengths, which have the strongest effect and cause erythema on the skin.
The inventors have discovered that they can reflect and scatter ultraviolet rays around 297.6 nm, protecting the skin from ultraviolet rays, and can also transmit visible rays well, and based on this knowledge, they have completed the present invention. That is, the present invention contains rutile-type titanium oxide containing 1 to 20% by weight of an inorganic oxide or inorganic hydroxide and having an average particle diameter of 10 to 30 mμ, which has been made hydrophobic.
The object of the present invention is to provide a cosmetic composition characterized by containing 0.1 to 40% by weight. Cosmetics containing the specific titanium oxide of the present invention include:
As mentioned above, by transmitting visible light and reflecting and scattering harmful ultraviolet rays that cause sunburn, it not only protects the skin from sunburn, but also has the effect of long-lasting makeup and excellent dispersibility, stability, and usability. . The titanium oxide used in the present invention is preferably rutile-type titanium oxide, and the effect is more pronounced than that of titanium oxide with other crystal structures. The average particle size of the rutile-type titanium oxide that can be applied to the present invention is 10 to 30 mμ. The titanium oxide can be produced by a general method for producing rutile-type titanium oxide. for example,
This is a method of hydrolyzing titanyl sulfate. According to this method, particles having a particle size in the range of 5 to 70 mμ are generally obtained. At this time, it is preferable to perform a general chemical treatment using an oxide such as silicic acid, aluminum oxide, zinc oxide, or a hydroxide such as aluminum hydroxide or zinc hydroxide. The amount added is preferably 1 to 20% by weight based on rutile-type titanium oxide. If the amount added is too small, the rutile-type titanium oxide will deteriorate due to sunlight and the surface will darken. If the amount added is too large, the rutile-type titanium oxide will deteriorate. The UV absorption effect of titanium decreases. The rutile-type titanium oxide used in the present invention is preferably one that has been made hydrophobic with an organic compound or the like. Many known techniques have been proposed for hydrophobizing pigments, but when using an organic compound as a treatment agent, considering the safety to the skin and the absence of deterioration due to ultraviolet rays, organic compounds with a carbon number of C14 to C22 are recommended. It is preferable to perform hydrophobization treatment with higher fatty acids or salts thereof. Higher fatty acids with a carbon number of C13 or less have safety issues for the skin, and those with a carbon number of C23 or more have lower solubility during treatment, so no treatment effect is observed. Titanium oxide, especially rutile type, reacts with higher fatty acids and chemically reacts with the titanium on the surface of titanium oxide particles to form titanium fatty acid stones. It does not dissolve in acetone, benzene, toluene, ether, liquid parasol, squalane, castor oil, IPM, etc. The amount of fatty acid to be treated is preferably 0.5 to 10.0% by weight based on rutile titanium oxide. If the amount is too small, the hydrophobization effect will be poor, and if the amount is too large, unreacted fatty acids will remain, and organic solvents will Needless to say, it may also dissolve in the cosmetic base material, which may impair the stability of the cosmetic. The specific titanium oxide used in the present invention is
For example, it is manufactured as follows. The titanyl sulfate aqueous solution is hydrolyzed by heating (boiling point temperature), and after cooling, it is filtered and washed with water. Next, sodium stearate and aluminum hydroxide are added to this slurry, and the mixture is heated and kneaded. After washing, dry and crush. In addition, it is manufactured according to a conventional general method for manufacturing rutile-type titanium oxide, such as using titanium tetrachloride. The specific titanium oxide of the present invention is blended in a cosmetic base in an amount of 0.1 to 40% by weight. Next, the effects of the present invention will be explained. We synthesized titanium oxide (rutile type) with different particle sizes and investigated their hiding power and UV absorption effect. Titanium oxides with different particle sizes were synthesized by a hydrolysis method using an aqueous titanium tetrachloride solution and an aqueous titanyl sulfate solution. To measure the hiding power and ultraviolet absorption effect of the synthesized titanium oxide, make a slurry by adding 60 parts of castor oil to 40 parts of titanium oxide and kneading thoroughly using three rollers. Take 25 parts of the slurry, add 75 parts of castor oil, and use a stirrer to further disperse titanium oxide. A film with a thickness of 5 μm was made with the dispersion on a transparent quartz plate, and the film was measured at 280 μm using a Hitachi 340 spectrophotometer.
Absorbance (ABS) in the wavelength range of 400nm and 400~
Transmittance in the wavelength region of 700 nm was measured. For comparison, Japanese Patent Publication No. 47-42502 and ordinary titanium oxide were also measured in the same manner. The results of each measurement are shown in FIGS. 1 and 2. The horizontal axis in Figure 1 shows wavelength (nm), and the vertical axis shows absorbance (Adsorption).
shows. Curve a shows normal titanium oxide with an average particle size of 350 mμ, curve b shows the same titanium oxide as in Japanese Patent Publication No. 47-42502 with an average particle size of 30 to 40 mμ, and curve c shows titanium sulfate with an average particle size of 10 to 30 mμ. Curve d shows rutile-type titanium oxide synthesized from an aqueous solution, and curve d shows rutile-type titanium oxide synthesized from an aqueous titanium tetrachloride solution with an average particle size of 5 to 10 mμ. Second
The horizontal axis of the figure shows wavelength (nm), and the vertical axis shows transmittance (%). Curve a shows normal titanium oxide with an average particle size of 350 mμ, curve b shows the same titanium oxide as in Japanese Patent Publication No. 47-42502 with an average particle size of 30 to 40 mμ, and curve c shows titanium oxide with an average particle size of 10 to 40 mμ.
Curve d shows rutile-type titanium oxide synthesized from a 30 mμ titanyl sulfate aqueous solution, and curve d has an average particle size of 5 to 5.
Rutile type titanium oxide synthesized from a 10 mμ titanium tetrachloride aqueous solution is shown. As is clear from Figures 1 and 2, when the average particle diameter of titanium oxide is as large as 350 mμ, there is no effect of absorbing ultraviolet rays and the transmittance of visible light is low.
When the average particle size becomes 30 to 40 mμ, the effect of absorbing ultraviolet rays becomes visible, and the maximum absorption wavelength is
Located in the 320-340nm region. The transmittance of visible light is also considerably increased. As the average particle size becomes smaller (10 to 30 mμ), the ultraviolet absorption effect becomes more visible, and the maximum absorption wavelength is the one with the strongest biological effect.
It also has a wavelength of 290 to 320 nm. The transmittance of visible light is also very high. When the average particle diameter is reduced to 5 to 10 mμ, the transmittance of visible light increases, but the ultraviolet absorption effect weakens and the maximum absorption wavelength becomes 290 nm or less. Therefore, the average particle diameter used in the present invention is 10
It can be seen that rutile-type titanium oxide with a diameter of ~30 mμ more effectively absorbs the mid-ultraviolet (UV-B) wavelength region of 290 to 320 nm, which is said to have the strongest biological effect. If the rutile-type titanium oxide ultrafine particle pigment is blended as it is, the oil absorption amount will be very large, so it is preferable to perform a hydrophobization treatment. Also has makeup,
In other words, it must be waterproof against sweat, water, and seawater. If it does not have good dispersibility in cosmetic bases such as oils, excellent stability, and good usability, it will not be effective in absorbing ultraviolet rays, and its quality as a cosmetic will naturally deteriorate. In addition, the increased surface activity causes deterioration of the cosmetic base and blackening due to sunlight. For this reason as well, it is preferable that the ultrafine particulate titanium oxide contains 1 to 20% by weight of an inorganic oxide or inorganic hydroxide and is made hydrophobic. In other words, by containing 1 to 20% by weight of an inorganic oxide or inorganic hydroxide and making it hydrophobic, it is expected that miscibility with oil will improve, dispersibility will be good, and oil absorption will decrease. At the same time, light resistance is improved. For this reason, it is possible to increase the amount of the compound added to cosmetics, and cosmetics that do not impair the ultraviolet absorption effect can be expected. The oil absorption of ultrafine titanium oxide treated with higher fatty acids to make it hydrophobic was measured. For comparison, untreated titanium oxide and titanium oxide with different particle sizes were also measured. To measure the oil absorption amount, place 3 g of titanium oxide on a glass plate, drop refined linseed oil little by little into the center of the titanium oxide pigment from a 50 ml bottle, and mix thoroughly with a spatula each time. This operation was repeated, and the end point was when the whole became a solid putty-like lump for the first time.The amount of refined linseed oil required for this was determined, and the oil absorption was calculated from the following formula. Oil absorption amount (ml/100g) = (linseed oil amount (ml) / titanium oxide amount (g)) x 100 The results are shown in Table 1.

【表】 ルチル型酸化チタン(水酸化アルミニウム
10%含有)
以上の結果より明らかなように超微粒子酸化チ
タンを高級脂肪酸で疎水化処理することにより吸
油量が著しく低下する。第2表は化粧料基剤に汎
用されている油に酸化チタンを分散させた時の分
散性を示したものである。分散性の評価方法は、
50ml入目盛付沈降管(ウケナ管)に酸化チタン1
g秤り、油50mlを加えて分散機(ポリトロン)を
用いて撹拌分散させ、静置後の分散状態を各時間
観察し、沈降した粒子のないものを5点とし、全
て沈降又は凝集状態にて沈降しているものを1点
とし、各観察時評価点をつけ、各観察時の評価点
に径日係数を乗じて合計し、観察時非常に分散の
良いものを10点、分散の悪いものを1点とし、10
段階法により評価した。なお観察時間は、分散静
置後、1分、5分、30分、1時間、1日、3日、
7日の7回観察した。
[Table] Rutile titanium oxide (aluminum hydroxide)
10%)
As is clear from the above results, oil absorption is significantly reduced by hydrophobicizing ultrafine titanium oxide particles with higher fatty acids. Table 2 shows the dispersibility of titanium oxide when dispersed in oil commonly used as a cosmetic base. The method for evaluating dispersion is
Titanium oxide 1 in a 50ml graduated sedimentation tube (Ukena tube)
g Weigh, add 50 ml of oil, stir and disperse using a dispersion machine (Polytron), observe the dispersion state after standing for each time, score 5 points if there are no settled particles, and all are in a settled or agglomerated state. 1 point is given to those with very good dispersion at the time of observation, 1 point is given to those with very good dispersion, and 1 point is given to those with very good dispersion at the time of observation, and 1 point is given to those with very good dispersion at the time of observation. Each item is counted as 1 point, and 10
Evaluation was performed using a stepwise method. The observation times were 1 minute, 5 minutes, 30 minutes, 1 hour, 1 day, 3 days, and 3 days after the dispersion was allowed to stand.
It was observed 7 times on the 7th day.

【表】 ルチル型酸化チタン(水酸化アルミニウム
10%含有)
第2表から明らかなように高級脂肪酸で疎水化
処理を行なつた超微粒子状酸化チタンは汎用され
ている化粧料基材に対して非常に分散性が良好で
ある。更に詳細に分散状態を調べるためにO/W
型乳液に添加し酸化チタンの分散状態を調べた。
O/W型乳液の処方を第3表に示す。
[Table] Rutile titanium oxide (aluminum hydroxide)
10%)
As is clear from Table 2, ultrafine particulate titanium oxide that has been hydrophobized with higher fatty acids has very good dispersibility in commonly used cosmetic base materials. O/W to investigate the dispersion state in more detail
The dispersion state of titanium oxide was investigated by adding it to a mold emulsion.
Table 3 shows the formulation of the O/W type emulsion.

【表】 乳液の調整は精製水にポリエチレングリコール
を加え加熱溶解後、超微粒子状酸化チタン、ビー
ガム、ポリオキシエチレン(25モル)モノオレイ
ン酸エステルを加えホモミキサーで均一に分散
し、70℃に保つ(水相)。他の成分を混合し加熱
溶解して70℃に保つ(油相)。水相に油相を加え
ホモミキサーで均一に乳化分散し、乳化後かきま
ぜながら35℃まで冷却した。このようにして調整
した乳液中の酸化チタンの分散状態を光学顕微鏡
により観察した。第3図Aが平均粒子径10〜
30mμの通常の超微粒子状ルチル型酸化チタンを
用いた乳液の分散状態で第3図Bがステアリン酸
5%で疎水化処理した同超微粒子状水酸化アルミ
ニウム10%含有ルチル型酸化チタンを用いた乳液
の分散状態である。第3図から明らかなように疎
水化処理した超微粒子状酸化チタンBは非常に良
く分散しているのに対し、疎水化処理をしていな
い超微粒子状酸化チタンAは凝集状態となり分散
の悪い状態である。このように高級脂肪酸を用い
て疎水化処理を行なつた超微粒子状酸化チタンは
化粧料基材中で優れた分散状態を示すことが分
る。更に安定性や使用性、紫外線防御効果を調べ
た。 安定性は、粒子径の異なる酸化チタンの活性度
を測定し評価した。測定方法は、酸化チタン0.2
gをガラス管に秤り、マイクロリアクター法によ
りイソプロパノール(3μl)の分解率を求めた。 イソプロパノールは表面の活性(酸点、塩基
点)によつてプロピレンとアセトンに分解され
る。第4表がその結果である。
[Table] To prepare the emulsion, add polyethylene glycol to purified water, heat and dissolve, then add ultrafine titanium oxide, vegum, polyoxyethylene (25 mol) monooleic acid ester, disperse uniformly with a homomixer, and heat to 70℃. Keep (aqueous phase). Mix other ingredients, heat and dissolve and keep at 70℃ (oil phase). The oil phase was added to the water phase and uniformly emulsified and dispersed using a homomixer. After emulsification, the mixture was cooled to 35°C while stirring. The state of dispersion of titanium oxide in the emulsion thus prepared was observed using an optical microscope. Figure 3 A is an average particle size of 10~
Figure 3B shows the dispersion state of an emulsion using 30 mμ of ordinary ultrafine particle rutile titanium oxide using the same ultrafine particle rutile titanium oxide containing 10% aluminum hydroxide that has been hydrophobized with 5% stearic acid. This is the dispersed state of emulsion. As is clear from Figure 3, ultrafine titanium oxide B that has been hydrophobized is very well dispersed, whereas ultrafine titanium oxide A that has not been hydrophobized is in an agglomerated state and has poor dispersion. state. It can be seen that the ultrafine particulate titanium oxide that has been hydrophobized using a higher fatty acid exhibits an excellent dispersion state in the cosmetic base material. Furthermore, stability, usability, and UV protection effects were investigated. Stability was evaluated by measuring the activity of titanium oxide with different particle sizes. The measurement method is titanium oxide 0.2
g was weighed in a glass tube, and the decomposition rate of isopropanol (3 μl) was determined by the microreactor method. Isopropanol is decomposed into propylene and acetone due to surface activity (acid sites, basic sites). Table 4 shows the results.

【表】 酸化チタンの粒子が細かくなると表面活性によ
つてイソプロパノールが90%以上分解されるが、
高級脂肪酸で疎水化処理した超微粒子状酸化チタ
ンは通常(350mμ)の酸化チタンとほぼ同程度の
活性度を持ち、非常に弱くなつていることが分か
る。又、光に対する安定性を調べるため、第3表
に示した同一処方でO/W型乳液を調整したもの
及び比較対称のために微粒子状酸化チタン(平均
粒子径30〜40mμ)を同一量の6.0重量%同一処方
に添加し調整したO/W型乳液、試料No.Cの3品
をキセノンランプを用いて50℃で90時間照射し、
その時の黒化度を調べた。第5表がその結果であ
る。
[Table] When the particles of titanium oxide become fine, more than 90% of isopropanol is decomposed due to surface activity.
It can be seen that the ultrafine particulate titanium oxide that has been hydrophobized with higher fatty acids has almost the same activity as normal (350 mμ) titanium oxide, and is much weaker. In addition, in order to examine the stability against light, an O/W type emulsion was prepared using the same formulation shown in Table 3, and for comparison, the same amount of fine particulate titanium oxide (average particle size 30 to 40 mμ) was prepared. Three products of sample No. C, an O/W type emulsion prepared by adding 6.0% by weight to the same formulation, were irradiated for 90 hours at 50°C using a xenon lamp.
The degree of blackening at that time was investigated. Table 5 shows the results.

【表】 *印:ステアリン酸5%で疎水化処理した超
微粒子状ルチル型酸化チタン(10%水酸化
アルミニウム含有)
第5表から分かるように疎水化処理し、さらに
10%水酸化アルミニウムを含有した超微粒子状酸
化チタンは光に対しても安定である。次に第5表
のO/W型乳液の使用性と紫外線防御効果をパネ
ルによる実使用と分光光度計による機器測定によ
り調べた。O/W型乳液の使用性は女性パネル20
名にA、B、CのO/W型乳液を顔全体に実使用
し、使用時の「のび」、「つき」、「さつぱり感」、
「白つぽさ」、「総合評価」の5項目について評価
した。評価法は「のび」と「つき」と「総合評
価」については良い順に評価した。「さつぱり感」
については「さつぱり」している順に評価した。
「白つぽさ」については「白つぽ」くない順に評
価した。各々の評価項目に対して「良い」、「さつ
ぱり」、「白つぽくない」と答えた人の人数を第6
表にまとめた。
[Table] *Mark: Ultrafine rutile-type titanium oxide treated with 5% stearic acid to make it hydrophobic (contains 10% aluminum hydroxide)
As shown in Table 5, after hydrophobic treatment,
Ultrafine titanium oxide containing 10% aluminum hydroxide is stable against light. Next, the usability and UV protection effect of the O/W type emulsions shown in Table 5 were investigated by actual use using a panel and instrumental measurement using a spectrophotometer. Usability of O/W type emulsion is based on female panel 20
The O/W type emulsion with names A, B, and C is actually used on the entire face, and when used, it gives a feeling of ``spreadiness,''``stickiness,'' and ``sweetness.''
Evaluation was made on five items: "whiteness" and "overall evaluation." The evaluation method was to evaluate "spreading", "tsuki", and "overall evaluation" in order of strength. "Sweet feeling"
The items were rated in order of "freshness".
Regarding "white spots", the items were evaluated in descending order of "white spots". The number of people who answered ``good'', ``satsuppari'', or ``not white'' for each evaluation item was calculated in the 6th test.
It is summarized in the table.

【表】 第6表からわかるように疎水化処理した超微粒
子状酸化チタンを用いた乳液Bは塗布しても白く
なくさつぱりしており非常に良好な乳液であると
評価された。 次に実使用時の耐水性と紫外線防御効果を調べ
るため、女性パネル4名にO/W型乳液A、B、
Cを背中に各々1平方センチメートル(cm2)当り
2マイクロリツトル(μl)塗布し、真夏(7月快
晴)沖縄県恩納村字山田海岸で耐水性と紫外線防
御効果テストを行なつた。耐水性テストは背中に
乳液を塗布した女性パネル2名を午前10時50分か
ら11時迄の10分間、海に入つて泳いだ。泳いだパ
ネル2名と背中に乳液を塗布して泳がないパネル
2名を、各々午前11時より午後1時迄の2時間塗
布試料面皮膚の日焼けテストを行なつた。2時間
日光に照射後試料を落し、日焼け、特に紅斑の強
弱を1時間後と1日後の2回肉眼判定した。第7
表がその結果である。
[Table] As can be seen from Table 6, emulsion B using hydrophobized ultrafine titanium oxide was not white and had a crisp texture even when applied, and was evaluated as a very good emulsion. Next, in order to investigate the water resistance and UV protection effect during actual use, four female panels were asked to use O/W type emulsions A, B,
Two microliters (μl) of C was applied to each square centimeter (cm 2 ) on the back, and water resistance and ultraviolet protection effects tests were conducted at Yamada Beach, Onna Village, Okinawa Prefecture in midsummer (clear weather in July). In the water resistance test, two female panelists applied emulsion to their backs and swam in the ocean for 10 minutes from 10:50 a.m. to 11:00 a.m. Two panelists who swam and two panelists who applied the emulsion to their backs and did not swim were each subjected to a tanning test on the skin of the applied sample for 2 hours from 11 a.m. to 1 p.m. After being exposed to sunlight for 2 hours, the sample was dropped, and the intensity of sunburn, especially erythema, was visually determined twice, one hour later and one day later. 7th
The table is the result.

【表】【table】

【表】 ○印:強い紅斑が認められる
△印:弱い紅斑が認められる
×印:全く紅斑が認められない
第7表から明らかなように乳液を塗布した後、
海水にて泳いだパネルはA、C乳液を塗布した皮
膚に強い紅斑が認められ、B乳液を塗布した皮膚
は全く紅斑が認められない。このことはAとCは
耐水性に劣り海水によつて容易に塗布した乳液が
落ちてしまうことを意味している。これらに比べ
疎水化処理を行なつた超微粒子状酸化チタンを用
いた乳液Bは耐水性に優れ泳いでも塗布した乳液
が落ちないで優れた紫外線防御効果が認められ
た。 海水で泳がないパネルでの紫外線防御効果の結
果AとC乳液は弱い紅斑が認められるのに対しB
乳液は全く紅斑が認められないことから紫外線の
防御能に対しても疎水化処理し分散性の優れた乳
液の方が防御能が優れている。更にこれら3種の
乳液に対して、紫外線領域での吸光度を測定し
た。測定法は、各々の乳液A、B、Cを透明石英
板に厚さ5μmの膜厚を作り、日立340型分光光度
計により波長280nm〜400nmでの吸光度を測定し
た。第4図がその結果である。第4図から分かる
ように紅斑の惹起力が強い中紫外線領域(290〜
320nm)に対してB乳液の吸光度が強く、AやC
乳液では吸光度が弱い。このような測定結果と実
使用に於ける紅斑判定結果とは非常に良い一致を
示しており、機器測定から中紫外線(290〜
320nm)の吸光度が高いほど太陽光に対する紫外
線防御能効果も優れていることを示している。 これらの結果より疎水化されたルチル型超微粒
子状酸化チタン、平均粒子径10〜30mμは最大吸
収波長が290〜320nmに持ち、化粧料基材に対す
る分散性も良く、可視領域400〜700nmでの透過
力が優れているため、隠蔽力がなく、紫外線に対
する防御能は非常に優れている。これは特公昭47
−42502「日焼け止め化粧料」に比較しても遥に有
効な成績であつた。 以下に本発明の実施例を示す。(配合割合は重
量%である) 実施例1 乳液 ステアリン酸 2.4% セチルアルコール 1.5〃 ワセリン 5.0〃 流動パラフイン 12.0〃 ポリオキシエチレン(10モル) モノオレイン酸エステル 2.0 ポリエチレングリコール1500 3.0 トリエタノールアミン 1.0 精製水 72.5 ミリスチン酸ナトリウム3%で疎水化された酸
化亜鉛2%含有ルチル型超微粒子酸化チタン
(平均粒子径10〜30mμ) 0.1 香料 適量 精製水にポリエチレングリコール、トリエタノ
ールアミンを加え加熱溶解し70℃に保つ(水相)、
他の成分を混合し、加熱溶解して70℃に保つ(油
相)、水相に油相を加え予備乳化を行ないホモミ
キサーで均一に乳化し、乳化後撹拌しながら30℃
まで冷却する。 実施例2 フアウンデイシヨンクリーム タルク 15.0% 通常酸化チタン 4.0〃 カオリン 3.0〃 パルミチン酸0.5%で疎水化された酸化ケイ素
5%含有ルチル型超微粒子状酸化チタン(平均
粒子径10〜30mμ) 15.0〃 酸化鉄(赤) 0.29〃 〃 (黄) 0.67〃 〃 (黒) 0.04〃 固形パラフイン 3.0〃 ラノリン 10.0% 流動パラフイン 27.0 ソルビタンセスキオレイン酸エステル 5.0 精製水 17.0 香料 適量 タルク、通常酸化チタン、カオリン、疎水化さ
れたルチル型超微粒子状酸化チタン、酸化鉄
(赤、黄、黒)を混合し粉砕機で処理する(粉末
部)。粉末部に流動パラフインの一部とソルビタ
ンセスキオレイン酸エステルを加えホモミキサー
で均一に分散し、精製水を除く他の成分を加熱融
解してこれに加え70℃に保つ(油相)。精製水を
70℃に加熱し、油相に加えホモミキサーで均一に
乳化分散し、乳化後撹拌しながら40℃まで冷却す
る。 実施例3 フアウンデイシヨンスチツク カオリン 10.0% 雲母末 21.0〃 通常酸化チタン 4.58〃 酸化鉄(赤) 0.34〃 〃 (黄) 1.08〃 ベヘン酸4%で疎水化された酸化アルミニウム
10%含有ルチル型超微粒子状酸化チタン(平均
粒子径10〜30mμ) 20.0% 固型パラフイン 2.0〃 カルナバロウ 3.0〃 スクワラン 31.0〃 イソプロピルミリスチン酸エステル 5.0〃 ソルビタンセスキオレイン酸エステル 2.0〃 香料 適量 カオリン、雲母末、通常酸化チタン、酸化鉄、
疎水化されたルチル型超微粒子状酸化チタンをブ
レンダーでよく混合する(粉末部)。粉末部にス
クワランの一部とソルビタンセスキオレイン酸エ
ステルを加えホモミキサーで均一に分散し、他の
成分を加熱融解してこれに加えよく撹拌する。こ
れを容器に流し込み冷却する。 実施例4 リツプスチツク ステアリン酸ナトリウム5%、パルミチン酸ナ
トリウム2%で疎水化された酸化ケイ素20%含
有ルチル型超微粒子状酸化チタン(平均粒子径
10〜30mμ) 5.0% 赤色204号 0.6% 橙色203号 1.0〃 赤色223号 0.2〃 キヤンデリラロウ 9.0〃 固形パラフイン 8.0〃 ミツロウ 5.0〃 カルナウバロウ 5.0〃 ラノリン 11.0〃 ヒマシ油 44.8〃 イソプロピルミリスチン酸エステル 10.0〃 香料 適量 疎水化されたルチル型超微粒子状酸化チタン、
赤色204号、橙色203号をヒマシ油の一部に加えロ
ーラーで処理する(顔料部)。赤色223号をヒマシ
油の一部に溶解する(染料部)。他の成分を混合
し加熱融解した後、顔料部、染料部を加えホモミ
キサーで均一に分散する。分散後、型に流し込み
急冷し、スチツク状になつたものを容器に差し込
みフレーミングを行なう。 実施例5 固形白粉 タルク 45.0% ステアリン酸10%で疎水化された水酸化アルミ
ニウム8%、酸化ケイ素5%含有ルチル型超微
粒子状 酸化チタン(平均粒子径10〜30mμ) 40.0% 通常酸化チタン 3.0〃 酸化鉄赤 1.00〃 酸化鉄黄 2.88〃 酸化鉄黒 0.12〃 ステアリン酸 2.0〃 スクワラン 2.5〃 ラノリン 2.0〃 ソルビタンセスキオレイン酸エステル 0.5〃 トリエタノールアミン 1.0〃 香料 適量 タルク、疎水化されたルチル型超微粒子状酸化
チタン、通常酸化チタン、酸化鉄をブレンダーで
よく混合しながら、これに他の成分の混合したも
のを均一に加え、粉砕機で処理し圧縮成型する。
[Table] ○: Strong erythema is observed △: Weak erythema is observed ×: No erythema is observed. As is clear from Table 7, after applying the emulsion,
In the panel that swam in seawater, strong erythema was observed on the skin to which the A and C emulsions were applied, and no erythema was observed at all on the skin to which the B emulsion was applied. This means that A and C have poor water resistance and the applied emulsion is easily washed off by seawater. Compared to these, emulsion B using ultrafine titanium oxide that had been subjected to hydrophobization treatment had excellent water resistance, and the applied emulsion did not fall off even when swimming, and an excellent ultraviolet protection effect was observed. As a result of the UV protection effect on panels that do not swim in seawater, weak erythema was observed for emulsions A and C, whereas for B
Since no erythema is observed in the emulsion, the emulsion that has been hydrophobized and has excellent dispersibility has better protection against ultraviolet rays. Furthermore, the absorbance of these three types of emulsions in the ultraviolet region was measured. The measurement method was to form a film with a thickness of 5 μm on a transparent quartz plate with each emulsion A, B, and C, and measure the absorbance at a wavelength of 280 nm to 400 nm using a Hitachi Model 340 spectrophotometer. Figure 4 shows the results. As can be seen from Figure 4, the medium ultraviolet region (290~
320 nm), the absorbance of emulsion B is strong, and the absorbance of emulsion A and C is strong.
Emulsion has weak absorbance. There is a very good agreement between these measurement results and the erythema judgment results in actual use.
The higher the absorbance at 320 nm), the better the UV protection effect against sunlight. These results show that hydrophobized rutile-type ultrafine particulate titanium oxide, with an average particle diameter of 10 to 30 mμ, has a maximum absorption wavelength of 290 to 320 nm, has good dispersibility in cosmetic base materials, and has good dispersibility in the visible region of 400 to 700 nm. Because it has excellent penetrating power, it has no hiding power and has excellent protection against ultraviolet rays. This is a special public service from 1977.
-42502 "Sunscreen cosmetics" had far more effective results. Examples of the present invention are shown below. (Blending proportions are in weight%) Example 1 Emulsion Stearic acid 2.4% Cetyl alcohol 1.5〃 Vaseline 5.0〃 Liquid paraffin 12.0〃 Polyoxyethylene (10 mol) Monooleic acid ester 2.0 Polyethylene glycol 1500 3.0 Triethanolamine 1.0 Purified water 72.5 Rutile-type ultrafine particle titanium oxide containing 2% zinc oxide hydrophobized with 3% sodium myristate (average particle size 10-30mμ) 0.1 Flavor Appropriate amount Add polyethylene glycol and triethanolamine to purified water and heat to dissolve at 70℃. keep (aqueous phase),
Mix the other ingredients, heat and dissolve and keep at 70℃ (oil phase), add the oil phase to the water phase and pre-emulsify, homogeneously emulsify with a homomixer, and after emulsification, hold at 70℃ while stirring.
Cool until cool. Example 2 Foundation cream Talc 15.0% Regular titanium oxide 4.0〃 Kaolin 3.0〃 Rutile type ultrafine particle titanium oxide containing 5% silicon oxide hydrophobized with 0.5% palmitic acid (average particle size 10-30 mμ) 15.0〃 Iron oxide (red) 0.29〃〃 (yellow) 0.67〃〃 (black) 0.04〃 Solid paraffin 3.0〃 Lanolin 10.0% Liquid paraffin 27.0 Sorbitan sesquioleate 5.0 Purified water 17.0 Fragrance Appropriate amount Talc, usually titanium oxide, kaolin, hydrophobized The rutile-type ultrafine particle titanium oxide and iron oxide (red, yellow, black) are mixed and processed in a pulverizer (powder section). Add a part of liquid paraffin and sorbitan sesquioleic acid ester to the powder part and uniformly disperse with a homomixer, heat and melt the other ingredients except purified water, add to this and keep at 70°C (oil phase). purified water
Heat to 70°C, add to the oil phase, and uniformly emulsify and disperse with a homomixer. After emulsification, cool to 40°C while stirring. Example 3 Foundation Stick Kaolin 10.0% Mica powder 21.0〃 Normal titanium oxide 4.58〃 Iron oxide (red) 0.34〃〃 (yellow) 1.08〃 Aluminum oxide hydrophobized with 4% behenic acid
Rutile-type ultrafine titanium oxide containing 10% (average particle size 10 to 30 mμ) 20.0% Solid paraffin 2.0〃 Carnauba wax 3.0〃 Squalane 31.0〃 Isopropyl myristate 5.0〃 Sorbitan sesquioleate ester 2.0〃 Fragrance Appropriate amount Kaolin, mica powder , usually titanium oxide, iron oxide,
The hydrophobized rutile-type ultrafine particulate titanium oxide is thoroughly mixed with a blender (powder part). A portion of squalane and sorbitan sesquioleic acid ester are added to the powder part and uniformly dispersed using a homomixer, and the other components are heated and melted, and then added to this and stirred well. Pour this into a container and cool it. Example 4 Rutile-type ultrafine particle titanium oxide (average particle size) containing 20% silicon oxide hydrophobized with 5% sodium stearate and 2% sodium palmitate
10~30mμ) 5.0% Red No. 204 0.6% Orange No. 203 1.0〃 Red No. 223 0.2〃 Candelilla wax 9.0〃 Solid paraffin 8.0〃 Beeswax 5.0〃 Carnauba wax 5.0〃 Lanolin 11.0〃 Castor oil 44.8〃 Isopropyl myristate ester 10.0 Fragrance Appropriate amount Hydrophobic rutile-type ultrafine particle titanium oxide,
Add red No. 204 and orange No. 203 to some of the castor oil and process with a roller (pigment section). Dissolve Red No. 223 in a portion of castor oil (dye part). After mixing the other ingredients and heating and melting, add the pigment part and dye part and uniformly disperse with a homomixer. After dispersion, it is poured into a mold and rapidly cooled, and the stick-like material is inserted into a container for framing. Example 5 Solid white powder Talc 45.0% Rutile-type ultrafine particles containing 8% aluminum hydroxide hydrophobized with 10% stearic acid and 5% silicon oxide Titanium oxide (average particle size 10 to 30 mμ) 40.0% Regular titanium oxide 3.0〃 Iron oxide red 1.00〃 Iron oxide yellow 2.88〃 Iron oxide black 0.12〃 Stearic acid 2.0〃 Squalane 2.5〃 Lanolin 2.0〃 Sorbitan sesquioleate 0.5〃 Triethanolamine 1.0〃 Fragrance Appropriate amount Talc, hydrophobized rutile type ultrafine particles While titanium oxide, usually titanium oxide, and iron oxide are thoroughly mixed in a blender, a mixture of other ingredients is added uniformly to this mixture, processed in a pulverizer, and compression molded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、化粧料基材であるヒマシ油にa(平
均粒子径350mμ)、b(同30〜40mμ)、c(同10〜
30mμ)、d(同5〜10mμ)の酸化チタンを分散し
た場合の紫外線波長領域に対する吸光度を示す。
第2図は、化粧料基材であるヒマシ油にa(平均
粒子径350mμ)、b(同30〜40mμ)、c(同10〜
30mμ)、d(同5〜10mμ)の酸化チタンを分散し
た場合の可視光線領域に対する透過率を示す。第
3図は、平均粒子径10〜30mμのルチル型超微粒
子状酸化チタンを(A)未処理、(B)ステアリン酸5%
で疎水化処理したもの(10%水酸化アルミニウム
含有)をO/W型乳液に配合した場合の600倍に
於ける粒子構造を示す光学顕微鏡写真を示す。第
4図は、O/W型乳液にA(平均粒子径10〜
30mμ)、B(ステアリン酸5%で疎水化され水酸
化アルミニウム10%含有の平均粒子径10〜
30mμ)、C(平均粒子径30〜40mμ)の酸化チタン
を配合した場合の紫外線波長領域に対する吸光度
を示す。
Figure 1 shows castor oil, which is a base material for cosmetics, a (average particle diameter 350 mμ), b (average particle diameter 30-40 mμ), and c (average particle diameter 10-40 mμ).
30 mμ) and d (5 to 10 mμ) of titanium oxide dispersed therein.
Figure 2 shows a (average particle size of 350 mμ), b (30-40 mμ), and c (10-40 mμ) of castor oil, which is a base material for cosmetics.
The transmittance in the visible light region is shown when titanium oxide of 30 mμ) and d (5 to 10 mμ) is dispersed. Figure 3 shows rutile-type ultrafine particle titanium oxide with an average particle size of 10 to 30 mμ (A) untreated, (B) 5% stearic acid.
An optical micrograph showing the particle structure at 600 times magnification is shown when the hydrophobized product (containing 10% aluminum hydroxide) is blended into an O/W type emulsion. Figure 4 shows O/W type emulsion with A (average particle size 10~
30 mμ), B (average particle size 10 ~ hydrophobized with 5% stearic acid and containing 10% aluminum hydroxide)
30 mμ) and C (average particle diameter 30 to 40 mμ) in the case of blending titanium oxide in the ultraviolet wavelength region.

Claims (1)

【特許請求の範囲】[Claims] 1 無機酸化物または無機水酸化物を1〜20重量
%含有し、かつ疎水化された平均粒子径10〜
30mμのルチル型酸化チタンを、0.1〜40重量%配
合することを特徴とする化粧料。
1 Containing 1 to 20% by weight of inorganic oxide or inorganic hydroxide, and hydrophobized average particle size of 10 to 20% by weight
A cosmetic containing 0.1 to 40% by weight of 30mμ rutile titanium oxide.
JP16188181A 1981-10-09 1981-10-09 Cosmetic Granted JPS5862106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16188181A JPS5862106A (en) 1981-10-09 1981-10-09 Cosmetic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16188181A JPS5862106A (en) 1981-10-09 1981-10-09 Cosmetic

Publications (2)

Publication Number Publication Date
JPS5862106A JPS5862106A (en) 1983-04-13
JPH0222724B2 true JPH0222724B2 (en) 1990-05-21

Family

ID=15743757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16188181A Granted JPS5862106A (en) 1981-10-09 1981-10-09 Cosmetic

Country Status (1)

Country Link
JP (1) JPS5862106A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993013A (en) * 1982-11-16 1984-05-29 Pola Chem Ind Inc Pressed powdery cosmetic
JPH0723294B2 (en) * 1984-04-28 1995-03-15 株式会社コーセー Sunscreen cosmetics
JPS61286309A (en) * 1985-06-12 1986-12-16 Shiseido Co Ltd Makeup cosmetic
JP2593296B2 (en) * 1985-10-08 1997-03-26 岡村製油株式会社 Cosmetic composition and method for producing the same
JPS62180029U (en) * 1986-05-06 1987-11-16
JPH0774142B2 (en) * 1986-07-17 1995-08-09 ポーラ化成工業株式会社 Make-up cosmetics
GB8712752D0 (en) * 1987-05-30 1987-07-01 Tioxide Group Plc Particulate material
JP2656773B2 (en) * 1987-09-16 1997-09-24 ポーラ化成工業株式会社 Cosmetics
JP2610153B2 (en) * 1987-12-28 1997-05-14 有限会社野々川商事 Makeup cosmetics
GB8829402D0 (en) * 1988-12-16 1989-02-01 Tioxide Group Plc Dispersion
JPH03279323A (en) * 1989-12-15 1991-12-10 Johnson & Johnson Consumer Prod Inc Anti-sunburn composition
GB9102315D0 (en) * 1991-02-02 1991-03-20 Tioxide Group Services Ltd Oxides and the production thereof
GB9121153D0 (en) * 1991-10-04 1991-11-13 Tioxide Chemicals Ltd Method of preparing sunscreens
GB9121143D0 (en) * 1991-10-04 1991-11-13 Tioxide Chemicals Limited Dispersions
GB9204387D0 (en) * 1992-02-29 1992-04-15 Tioxide Specialties Ltd Oil-in-water emulsions
GB9204388D0 (en) * 1992-02-29 1992-04-15 Tioxide Specialties Ltd Water-in-oil emulsions
US5603863A (en) * 1993-03-01 1997-02-18 Tioxide Specialties Limited Water-in-oil emulsions
US5747012A (en) * 1993-06-11 1998-05-05 Tioxide Specialties Limited Compositions containing sunscreens
JPH0725727A (en) * 1993-07-12 1995-01-27 Toshiba Silicone Co Ltd Complex globular powder and cosmetic containing the same
JPH07165533A (en) * 1993-12-08 1995-06-27 Shiseido Co Ltd Solid powdery cosmetic
JP3819069B2 (en) * 1995-06-02 2006-09-06 三好化成株式会社 Cosmetics
JP3686166B2 (en) * 1996-05-16 2005-08-24 三好化成株式会社 Cosmetic composition and cosmetics
JP4030652B2 (en) * 1998-05-15 2008-01-09 花王株式会社 Sunscreen and makeup base
JP5201856B2 (en) * 2007-03-15 2013-06-05 花王株式会社 Oily cosmetics
JP2010138074A (en) * 2007-04-13 2010-06-24 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous dispersion and aqueous cosmetic
JP6109486B2 (en) * 2012-03-22 2017-04-05 株式会社セプテム総研 Thermal barrier cosmetic
JP5813745B2 (en) * 2013-12-26 2015-11-17 株式会社 資生堂 Water-in-oil emulsified sunscreen cosmetics
WO2017006488A1 (en) * 2015-07-09 2017-01-12 株式会社 資生堂 Oil-in-water-type emulsified cosmetic
US11091641B2 (en) 2019-04-09 2021-08-17 Micro Powders, Inc. Liquid composite emulsions
US10646412B1 (en) 2019-04-09 2020-05-12 Micro Powders, Inc. Micronized composite powder additive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49450A (en) * 1972-04-17 1974-01-05
JPS49122535A (en) * 1973-03-30 1974-11-22
JPS53124627A (en) * 1977-04-01 1978-10-31 Shiseido Co Ltd Skin cosmetics
JPS55167209A (en) * 1979-06-14 1980-12-26 Teijin Ltd Cosmetic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49450A (en) * 1972-04-17 1974-01-05
JPS49122535A (en) * 1973-03-30 1974-11-22
JPS53124627A (en) * 1977-04-01 1978-10-31 Shiseido Co Ltd Skin cosmetics
JPS55167209A (en) * 1979-06-14 1980-12-26 Teijin Ltd Cosmetic

Also Published As

Publication number Publication date
JPS5862106A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
JPH0222724B2 (en)
US5032390A (en) Anti-suntan cosmetic composition
JPH10504520A (en) Composite UV sunblock composition
AU623662B2 (en) Photochromic color rendering regulating composition or cosmetic
US5628934A (en) Photochromic color rendering regulatory composition and cosmetics
JPS60231607A (en) Antisuntan cosmetic
JPH10158115A (en) Cosmetic
JPH022867A (en) Microcapsule containing ultraviolet absorber, production thereof and cosmetic containing the same microcapsule
JPH03115211A (en) Cosmetic
JPS62149613A (en) Cosmetic containing infrared ray shielding substance
JPS624212A (en) Cosmetic composition
JP3267508B2 (en) Silica / cerium oxide composite particles, method for producing the same, resin composition containing the same, and cosmetics
JPH02251240A (en) Ultraviolet absorber included microcapsule, preparation thereof and cosmetics containing same microcapsule
JP3479895B2 (en) Cosmetics containing titanium dioxide
JPH02247109A (en) Cosmetic
JP3441553B2 (en) Cosmetic with ultraviolet shielding effect
JP3920380B2 (en) Moisturizing agent dispersion having ultraviolet blocking function and cosmetic comprising the same
JP3506755B2 (en) Photochromic composite, method for producing the same, and external preparation for skin
JPS6372620A (en) Cosmetic
JP3677610B2 (en) Iron oxide-containing titanium dioxide and composition containing the same
JPH10212211A (en) Cosmetic material
JPS62145011A (en) Anti-suntan cosmetic
JPS60149515A (en) Anti-sunburn cosmetic
JPH0543682B2 (en)
JPH11116457A (en) Cosmetic