JPH0222680Y2 - - Google Patents
Info
- Publication number
- JPH0222680Y2 JPH0222680Y2 JP17290585U JP17290585U JPH0222680Y2 JP H0222680 Y2 JPH0222680 Y2 JP H0222680Y2 JP 17290585 U JP17290585 U JP 17290585U JP 17290585 U JP17290585 U JP 17290585U JP H0222680 Y2 JPH0222680 Y2 JP H0222680Y2
- Authority
- JP
- Japan
- Prior art keywords
- dispensing nozzle
- sample
- dispensing
- pure water
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004140 cleaning Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 239000007788 liquid Substances 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Description
〔産業上の利用分野〕
この考案は、自動生化学分析装置などにおいて
検体試料を試料容器から分取し反応管に注入する
分注装置、特にその分注ノズルの改良に関する。
〔従来の技術〕
自動生化学分析装置などにおいて使用される分
注装置は、試料容器内に収容された試料を吸引分
取してその試料を反応管内に吐出注入する分注ノ
ズル、この分注ノズルを試料容器、反応管及びノ
ズル洗浄・排液槽の各位置間で移動させる移動機
構、分注ノズルによる試料の吸引及び排出並びに
分注ノズルの洗浄のための純水の吸引及び送り出
しを行なうシリンジポンプ、分注ノズル及び純水
容器とシリンジポンプとの流路の切換えを行なう
切換弁、各配管チユーブなどにより構成されてい
る。
このような構成の分注装置によつて分注操作を
行なう場合、各配管内は純水で満たされている。
そして試料の吸引・吐出は、分注ノズルと切換弁
とを繋ぐ配管チユーブにおいて行なわれ、1つの
試料の吸引・吐出後における分注ノズルの洗浄
は、シリンジポンプによつて純水容器から純水を
吸引した後、切換弁により流路を切り換え、純水
を配管チユーブ及び分注ノズルの内部を通してノ
ズル先端から洗浄・排液槽に吐出することによつ
て行なわれる。ところで、従来の分注ノズルは、
ステンレス製の直管でつくられており、液切れを
良くするためにその先端部を細く絞つている。
〔考案が解決しようとする問題点〕
分注ノズルは、一般にその内径が小さいと、流
路抵抗が大きくなつて送液するのに時間がかか
り、また同一容積でみれば大きい内径のものより
も、試料を吸入した際に試料が接触する管内壁面
積が大きくなり、従つて管内壁面に付着している
純水によつて試料が薄められる傾向がある。但
し、分注ノズルの内径が小さければ、その内部を
流れる液の流動状態は乱流となりやすく、また例
え層流となつた場合でも流れの中心部と管内壁面
付近との流速の差が小さいため、いずれにしても
分注ノズルの内壁面に付着した試料を洗浄するこ
とが比較的容易であり、しかも洗浄水量が少なく
て済むといつた利点はある。
一方、分注ノズルの内径が大きいと、流路抵抗
が小さくて送液にそれほど時間がかからず、また
試料が接触する管内壁面積が相対的に小さくなつ
て、管内壁面に付着した純水による試料の薄まり
は少なくなる。しかしながら、分注ノズルの内径
が大きくなれば、管内を流れる液の流動状態が層
流となり、かつ流れの中心部に比べて管内壁面付
近の流速が遅くなるため、そして洗浄水の送り出
し速度をいくら上げても管内壁面付近の流速はそ
れほど上がらないため、分注ノズルの内壁面に付
着した試料の洗浄が困難であり、しかも洗浄水量
を多く要するといつた欠点がある。
このように従来の分注ノズルには、その内径の
大小によつて一長一短があつた。そこでこの考案
は、それぞれの利点を併有し、流路断面積が大き
くても洗浄度の高い分注ノズルを提供しようとし
てなされたものである。
〔問題点を解決するための手段〕
この考案は、直管の適宜個所を扁平に変形さ
せ、もしくは直管を蛇行状に変形して分注ノズル
を構成することによつて上記課題を達成した。
〔作用〕
この考案に係る分注ノズルは単なる直管状では
なく、その内壁面が凹凸状になつており、あるい
はその管壁の断面形状が異形となつているので、
その内部流路を流れる液の流動状態は、分注ノズ
ルの流路断面積を大きくしても乱流状態となる。
そしてその場合、分注ノズルの流路断面積が大き
いので、内壁面が滑らかである限り流路抵抗はそ
れほど大きくならない。
〔実施例〕
以下、この考案の実施例について図面を参照し
ながら説明する。
まず、第4図に基づいて分注装置の概略構成を
説明する。図において、分注ノズル11は分注ノ
ズル移動装置13によつて、試料容器15、反応
管17及びノズル洗浄・排液槽19のそれぞれの
位置間を往復移動する。さらに、分注ノズル11
は上下方向にも移動自在とされており、試料容器
15の位置でそれに収容された試料を吸引分取
し、反応管17の位置へ移動してその分取した試
料を反応管17内に吐出注入する。また、分注ノ
ズル11はノズル洗浄・排液槽19の位置で、配
管チユーブ21内を通つて送られてくる純水によ
り分注ノズル11内壁面及び配管チユーブ21
の、分注ノズル11との接続部付近の内壁面に付
着した試料を洗い流して、その排液を吐出する。
配管チユーブ21は、耐薬品性を備えた可撓性
の、例えばテフロンチユーブなどからできてい
る。また純水はシリンジポンプ23によつて送液
されるが、シリンジポンプ23は配管チユーブ2
1を介して分注ノズル11に流路連絡されている
とともに、、純水吸入チユーブ25を介して純水
容器27にも連絡している。そして、シリンジポ
ンプ23と分注ノズル11及び純水容器27との
流路切換えが電磁弁等の切換弁29によつて行な
われる。前述したように分注操作中、配管チユー
ブ21及び純水吸入チユーブ25は純水で満たさ
れており、試料の吸引・排出は分注ノズル11及
び配管チユーブ21の一部で行なわれる。また分
注ノズル11の内壁面及び配管チユーブ21の一
部の内壁面に付着した試料を洗浄するときは、シ
リンジポンプ23により純水容器27から純水吸
入チユーブを介して純水を吸引した後、切換弁2
9によつて流路を切り換え、シリンジポンプ23
により分注ノズル11側へ純水を送り出して、分
注ノズル11から純水を吐出することによつて行
なわれる。
次に、この考案に係る分注ノズルについて説明
する。第1−1図はこの考案の1実施例を示す分
注ノズルの縦断面図であり、第1−2図はその分
注ノズルをそれぞれ矢視方向に見て各端面及び各
横断面だけを示した図である。分注ノズル31は
ステンレス製のパイプ(例えば外径1.5mm、内径
1.0mm)を使用してつくられる。その先端部は細
く絞られて液切れが良くなるようにしている。そ
してパイプの途中は、それぞれの長径方向を90゜
ずつ順次変化させながら複数個所において扁平に
変形が加えられ、その個所では横断面形状が楕円
形となつている。その楕円形断面の寸法を例示す
ると、外周部で長径が1.8mm、短径が1.0mmとなつ
ている。ここで、パイプの内面は凹凸状になつて
いるが、角張つた部分ができないように滑らかに
仕上げられる。尚、扁平部の成型加工は、例えば
一対の治具の間に直管状のパイプを保持し、治具
によりパイプを適当な力で挾みつけるようにすれ
ばよい。
この分注ノズル31を分注装置に装着して分注
操作を行なう場合、分注ノズル31の洗浄のため
にその内部に純水を流すと、内壁面が凹凸状とな
つており、またその横断面が円形でなく楕円形と
なつているため、純水は分注ノズル31内を乱流
状態となつて流れ、分注ノズル31の先端から吐
出される。この分注ノズル31を装着した分注装
置と従来の直管状の分注ノズル(太型及び細型の
2種)を装着した分注装置とについて、比較実験
を行なつた結果を次表に示す。尚、表中の括弧内
の数値は、リン酸水容液(試料)340μlを分注ノ
ズルによつて吸引・吐出した後、純水900μlを使
用して配管チユーブ及び分注ノズルの内壁面を洗
浄し、その洗浄後に純水340μlを分注ノズルによ
り吸引して吐出し、その吐出液のリンの濃度を測
定した実測値を示す。
[Industrial Application Field] This invention relates to a dispensing device for dispensing a specimen sample from a sample container and injecting it into a reaction tube in an automatic biochemical analyzer or the like, and in particular to an improvement of its dispensing nozzle. [Prior Art] A dispensing device used in an automatic biochemical analyzer etc. has a dispensing nozzle that aspirates a sample contained in a sample container and discharges the sample into a reaction tube. A moving mechanism that moves the nozzle between the sample container, reaction tube, and nozzle cleaning/drainage tank, aspirates and discharges the sample using the dispensing nozzle, and aspirates and sends out pure water for cleaning the dispensing nozzle. It consists of a syringe pump, a dispensing nozzle, a switching valve that switches the flow path between the pure water container and the syringe pump, and each piping tube. When performing a dispensing operation using a dispensing device having such a configuration, each pipe is filled with pure water.
The suction and discharge of the sample is performed in the piping tube that connects the dispensing nozzle and the switching valve.The dispensing nozzle is cleaned after suctioning and dispensing one sample with pure water from the deionized water container using the syringe pump. After suctioning, the flow path is switched using a switching valve, and pure water is discharged from the nozzle tip into the cleaning/draining tank through the piping tube and the inside of the dispensing nozzle. By the way, conventional dispensing nozzles are
It is made from a straight stainless steel tube, and the tip is narrowed to make it easier to drain the liquid. [Problems that the invention aims to solve] In general, the smaller the inner diameter of a dispensing nozzle, the greater the flow resistance and the longer time it takes to transfer the liquid, and the smaller the inner diameter of the dispensing nozzle, the larger the inner diameter. When the sample is inhaled, the area of the inner wall of the tube that comes into contact with the sample increases, and therefore the sample tends to be diluted by the pure water adhering to the inner wall surface of the tube. However, if the inner diameter of the dispensing nozzle is small, the flow state of the liquid flowing inside it tends to be turbulent, and even if it becomes laminar flow, the difference in flow velocity between the center of the flow and the vicinity of the inner wall of the pipe is small. In any case, the advantages are that it is relatively easy to clean the sample adhering to the inner wall surface of the dispensing nozzle, and the amount of cleaning water is small. On the other hand, if the inner diameter of the dispensing nozzle is large, the flow path resistance is small, so it does not take much time to transfer the liquid, and the area of the inner wall that the sample comes into contact with is relatively small, resulting in pure water adhering to the inner wall of the tube. The dilution of the sample due to However, if the inner diameter of the dispensing nozzle becomes larger, the flow state of the liquid flowing inside the pipe becomes laminar, and the flow velocity near the inner wall of the pipe becomes slower than at the center of the flow, and the speed at which the cleaning water is sent out is limited. Even if the flow rate is increased, the flow velocity near the inner wall surface of the tube does not increase much, so it is difficult to clean the sample adhering to the inner wall surface of the dispensing nozzle, and there are disadvantages in that a large amount of washing water is required. As described above, conventional dispensing nozzles have advantages and disadvantages depending on their inner diameter. Therefore, this invention was made in an attempt to provide a dispensing nozzle that combines the advantages of each of these and has a high degree of cleaning even if the cross-sectional area of the flow path is large. [Means for solving the problem] This invention achieves the above-mentioned problems by deforming a straight pipe into a flattened shape at appropriate points, or by deforming a straight pipe into a meandering shape to construct a dispensing nozzle. . [Function] The dispensing nozzle according to this invention is not simply a straight tube, but has an uneven inner wall surface, or an irregular cross-sectional shape.
The flow state of the liquid flowing through the internal flow path remains turbulent even if the cross-sectional area of the flow path of the dispensing nozzle is increased.
In that case, since the flow passage cross-sectional area of the dispensing nozzle is large, the flow passage resistance does not become so large as long as the inner wall surface is smooth. [Example] Hereinafter, an example of this invention will be described with reference to the drawings. First, the schematic configuration of the dispensing device will be explained based on FIG. 4. In the figure, the dispensing nozzle 11 is reciprocated between the positions of the sample container 15, the reaction tube 17, and the nozzle cleaning/draining tank 19 by a dispensing nozzle moving device 13. Furthermore, the dispensing nozzle 11
is movable in the vertical direction, and sucks and separates the sample contained therein at the position of the sample container 15, moves to the position of the reaction tube 17, and discharges the collected sample into the reaction tube 17. inject. Further, the dispensing nozzle 11 is connected to the inner wall surface of the dispensing nozzle 11 and the piping tube 21 by pure water sent through the inside of the piping tube 21 at the position of the nozzle cleaning/drainage tank 19.
The sample adhering to the inner wall surface near the connection part with the dispensing nozzle 11 is washed away, and the drained liquid is discharged.
The piping tube 21 is made of a flexible, chemical-resistant material, such as a Teflon tube. Further, pure water is sent by the syringe pump 23, which is connected to the piping tube 2.
1 to the dispensing nozzle 11, and also to a pure water container 27 via a pure water suction tube 25. Then, flow path switching between the syringe pump 23, the dispensing nozzle 11, and the pure water container 27 is performed by a switching valve 29 such as a solenoid valve. As described above, during the dispensing operation, the piping tube 21 and the pure water suction tube 25 are filled with pure water, and the sample is sucked and discharged by the dispensing nozzle 11 and a part of the piping tube 21. In addition, when cleaning the sample adhering to the inner wall surface of the dispensing nozzle 11 and a part of the inner wall surface of the piping tube 21, after sucking pure water from the pure water container 27 via the pure water suction tube using the syringe pump 23, , switching valve 2
9 switches the flow path, and the syringe pump 23
This is performed by sending pure water to the dispensing nozzle 11 side and discharging the pure water from the dispensing nozzle 11. Next, the dispensing nozzle according to this invention will be explained. Fig. 1-1 is a longitudinal sectional view of a dispensing nozzle showing one embodiment of this invention, and Fig. 1-2 shows only each end face and each cross-section of the dispensing nozzle when viewed in the direction of the arrow. FIG. The dispensing nozzle 31 is made of stainless steel pipe (for example, outer diameter 1.5 mm, inner diameter
1.0mm). The tip is narrowly squeezed to allow for better liquid drainage. In the middle of the pipe, the pipe is flattened at multiple locations by sequentially changing the major diameter direction by 90 degrees, and the cross-sectional shape at each location becomes elliptical. To give an example of the dimensions of the elliptical cross section, the major axis is 1.8 mm and the minor axis is 1.0 mm at the outer periphery. Here, the inner surface of the pipe is uneven, but it is finished smoothly to avoid any angular parts. The flat portion may be formed by, for example, holding a straight pipe between a pair of jigs and sandwiching the pipe with an appropriate force between the jigs. When this dispensing nozzle 31 is attached to a dispensing device and dispensing operation is performed, when pure water is flowed inside the dispensing nozzle 31 to clean it, the inner wall surface is uneven and the Since the cross section is not circular but elliptical, the pure water flows in a turbulent state within the dispensing nozzle 31 and is discharged from the tip of the dispensing nozzle 31. The following table shows the results of a comparative experiment between a dispensing device equipped with this dispensing nozzle 31 and a dispensing device equipped with a conventional straight pipe dispensing nozzle (two types, thick and narrow). . The values in parentheses in the table are as follows: After aspirating and discharging 340 μl of phosphoric acid aqueous solution (sample) through the dispensing nozzle, use 900 μl of pure water to clean the inner wall surface of the piping tube and dispensing nozzle. After washing, 340 μl of pure water was sucked and discharged through a dispensing nozzle, and the concentration of phosphorus in the discharged liquid was measured.Actually measured values are shown.
この考案は以上説明したように構成され、かつ
作用するので、この考案に係る分注ノズルによれ
ば、その流路断面積を大きくすることができるか
ら、流路抵抗が小さくなつて、分注ノズルによる
試料の吸引・吐出、並びに洗浄水の送り出しが比
較的短時間で行なえる。また試料の吸入の際にお
ける、試料と接触する管内壁面積が相対的に小さ
くなつて、管内壁面に付着した純水によつて起こ
る試料の薄まりは少なくなり分注精度の低下をを
防止することができる。そして、流路断面積を大
きくしても、分注ノズル内部を液が流れる際には
乱流状態となるので、洗浄度が高く、しかも洗浄
水量が少なくて済む。さらにその成型加工は簡単
に行なえるといつた利点もある。
This invention is constructed and operates as described above. According to the dispensing nozzle according to this invention, the cross-sectional area of the flow path can be increased, so the flow path resistance is reduced, and the dispensing nozzle according to the invention is The nozzle can aspirate and discharge the sample as well as send out the cleaning water in a relatively short time. In addition, when the sample is inhaled, the area of the inner wall of the tube that comes into contact with the sample becomes relatively small, which reduces the dilution of the sample caused by pure water adhering to the inner wall of the tube, thereby preventing a drop in dispensing accuracy. Can be done. Even if the cross-sectional area of the flow path is increased, a turbulent flow occurs when the liquid flows inside the dispensing nozzle, so the degree of cleaning is high and the amount of cleaning water is small. Another advantage is that the molding process is easy.
第1−1図及び第1−2図は、この考案の1実
施例を示し、第1−1図は分注ノズルの縦断面
図、第1−2図はその分注ノズルをそれぞれ第1
−1図の矢視方向に見て各端面及び各横断面だけ
を示した図であり、第2−1図及び第2−2図
は、この考案の別の実施例を、それぞれ第1−1
図及び第1−2図と同様に示した図、第3図は、
この考案のさらに別の実施例である分注ノズルの
縦断面図である。また第4図は、分注装置の概略
構成を説明するための図である。
11,31,31′,31″……分注ノズル、1
3……分注ノズル移動装置、15……試料容器、
17……反応管。
1-1 and 1-2 show one embodiment of this invention, FIG. 1-1 is a longitudinal sectional view of the dispensing nozzle, and FIG. 1-2 is a first embodiment of the dispensing nozzle.
2-1 and 2-2 show another embodiment of this invention, respectively, as viewed in the direction of the arrow in FIG. 1. 1
The figure shown in the same way as Figures 1-2, and Figure 3 are as follows:
FIG. 7 is a longitudinal cross-sectional view of a dispensing nozzle that is still another embodiment of this invention. Moreover, FIG. 4 is a diagram for explaining the schematic configuration of the dispensing device. 11, 31, 31', 31''...dispensing nozzle, 1
3...Dispensing nozzle moving device, 15...Sample container,
17...Reaction tube.
Claims (1)
自在とされ、試料容器内に収容された試料を吸引
分取してその試料を反応管内に吐出注入する分注
ノズルにおいて、直管の適宜個所を扁平に変形さ
せ、もしくは直管を蛇行状に変形したことを特徴
とする分注装置。 In a dispensing nozzle that is movable between the positions of a sample container, a reaction tube, and a cleaning tank, and that sucks and separates a sample contained in a sample container and discharges and injects the sample into a reaction tube, A dispensing device characterized by having a portion deformed into a flattened portion or a straight pipe deformed into a meandering shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17290585U JPH0222680Y2 (en) | 1985-11-09 | 1985-11-09 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17290585U JPH0222680Y2 (en) | 1985-11-09 | 1985-11-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6281039U JPS6281039U (en) | 1987-05-23 |
JPH0222680Y2 true JPH0222680Y2 (en) | 1990-06-19 |
Family
ID=31109869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17290585U Expired JPH0222680Y2 (en) | 1985-11-09 | 1985-11-09 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0222680Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5463239B2 (en) * | 2010-08-25 | 2014-04-09 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
-
1985
- 1985-11-09 JP JP17290585U patent/JPH0222680Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6281039U (en) | 1987-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS634552Y2 (en) | ||
EP2145016B1 (en) | Wash ring assembly and method of use | |
JP2000506979A (en) | Pipette probe or stirrer cleaning device | |
JPS61169736A (en) | Liquid pipet device and pipet method | |
JP4522432B2 (en) | Sample injection needle unit and syringe sample suction and cleaning device using the same | |
US3643689A (en) | Fluid distribution manifold | |
JPH0222680Y2 (en) | ||
JP2001504749A (en) | Apparatus and method for cleaning pipette probe | |
KR20070037487A (en) | Device and method for automatically analysing blood samples | |
JPS60135766A (en) | Method of diluting liquid specimen | |
JPH0212598Y2 (en) | ||
JPS643061Y2 (en) | ||
JPS5866853A (en) | Purification method for reaction tube of autoanalyzer of the like | |
CN212321249U (en) | Tandem injection pump set structure for diluting trace liquid sample | |
JP3965043B2 (en) | Nozzle cleaning device | |
CN208944761U (en) | A kind of sample needle cleaning device | |
JP2515920Y2 (en) | Dispensing device | |
JPS5813338Y2 (en) | Liquid sample dispensing device | |
JPH0413657Y2 (en) | ||
JP2002001136A (en) | Nozzle | |
CN219130198U (en) | Liquid device for removing outer wall of sampling needle of glycosylated hemoglobin instrument | |
KR102721229B1 (en) | A fluid system that can prevent sample contamination and a sample measurement method using the fluid system | |
CN216964657U (en) | Pipette filters auxiliary device | |
JPH0332025B2 (en) | ||
CN216979100U (en) | Sample analysis apparatus |