JPH0222559Y2 - - Google Patents

Info

Publication number
JPH0222559Y2
JPH0222559Y2 JP1984016810U JP1681084U JPH0222559Y2 JP H0222559 Y2 JPH0222559 Y2 JP H0222559Y2 JP 1984016810 U JP1984016810 U JP 1984016810U JP 1681084 U JP1681084 U JP 1681084U JP H0222559 Y2 JPH0222559 Y2 JP H0222559Y2
Authority
JP
Japan
Prior art keywords
valve
cryogenic
inner pipe
piping
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984016810U
Other languages
Japanese (ja)
Other versions
JPS60129594U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1681084U priority Critical patent/JPS60129594U/en
Publication of JPS60129594U publication Critical patent/JPS60129594U/en
Application granted granted Critical
Publication of JPH0222559Y2 publication Critical patent/JPH0222559Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は極低温配管用弁の取付構造に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a mounting structure for a valve for cryogenic piping.

〔従来の技術〕[Conventional technology]

従来の極低温配管用弁の取付構造を第1図ない
し第3図によつて説明する。
A conventional mounting structure for a valve for cryogenic piping will be explained with reference to FIGS. 1 to 3.

極低温配管は、第1図に示すように冷媒源1、
例えば、液化機又は冷凍機から被冷却体又は貯槽
2へ極低温流体である液体ヘリウム、液体水素等
を移送するものである。移送すべき極低温流体へ
の外部からの熱侵入を防止するため配管はその外
側に真空層7を設けて断熱している。配管の途中
には、流体の量の調整あるいは仕切りのための弁
が設けられる場合が多々ある。
As shown in FIG. 1, the cryogenic piping includes a refrigerant source 1,
For example, it is used to transfer liquid helium, liquid hydrogen, etc., which are cryogenic fluids, from a liquefier or a refrigerator to an object to be cooled or a storage tank 2. In order to prevent heat from entering the cryogenic fluid to be transferred from the outside, the piping is insulated by providing a vacuum layer 7 on the outside thereof. In many cases, a valve is provided in the middle of the piping to adjust the amount of fluid or to partition the fluid.

第2図に弁3の取付け部の拡大図を示す。極低
温流体の通る内管5と真空層7を形成するための
外管6との間には200〜300℃の温度差が生じるた
め、内管5あるいは外管6に熱収縮量吸収のため
伸縮継手11が配設されている。このような状況
かで立体的な拡がりを有する配管には熱応力、内
圧スラストなど種々の荷重が生じ、弁3部にも
F1,F2などの力が作用する。例えば、F1≠F2
ときには第2図に示すように弁3部分に軸方向変
形δが生じることになる。
FIG. 2 shows an enlarged view of the mounting portion of the valve 3. Since there is a temperature difference of 200 to 300°C between the inner tube 5 through which the cryogenic fluid passes and the outer tube 6 for forming the vacuum layer 7, the inner tube 5 or the outer tube 6 is required to absorb the amount of heat shrinkage. An expansion joint 11 is provided. Under these circumstances, various loads such as thermal stress and internal pressure thrust are generated on the three-dimensionally expanded piping, and the three parts of the valve are also affected.
Forces such as F 1 and F 2 act. For example, when F 1 ≠ F 2 , an axial deformation δ occurs in the valve 3 portion as shown in FIG.

弁3は、第3図に示すように、外部からの伝導
熱侵入を極力小さくするために、弁ステム8は小
径薄肉管で、また、エクステンシヨン9も薄肉管
として、熱流路面積を極小としている。また、熱
流路長さを極力大きくするため、弁本体3と外部
支持部10との距離Hを十分に長く取つている。
このため、弁システム8、エクステンシヨン9は
共に剛性が小さく、弁部3に第2図に示したよう
に荷重F1,F2などが掛かると変形δを生じ易い
構造となつていた。
As shown in FIG. 3, the valve 3 has a valve stem 8 made of a small-diameter thin-walled tube and an extension 9 made of a thin-walled tube to minimize the area of the heat flow path in order to minimize conductive heat intrusion from the outside. There is. Further, in order to increase the length of the heat flow path as much as possible, the distance H between the valve body 3 and the external support portion 10 is set to be sufficiently long.
Therefore, both the valve system 8 and the extension 9 have a low rigidity, and have a structure that easily causes deformation δ when loads F 1 , F 2 , etc. are applied to the valve portion 3 as shown in FIG.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

上記従来技術は、弁部分における極低温配管の
熱収縮による影響について考慮されていなかつ
た。
The above-mentioned conventional technology does not take into account the influence of thermal contraction of the cryogenic piping in the valve portion.

弁部分における内管軸方向の変形δが生じたと
きの問題を第4図により説明する。正常な状態a
での弁座部14は、弁棒12の中心線12cと弁
座側中心線15cとが同一線上にあるため全周で
均一に接し、一次側流路13aと二次側流路13
bとを完全に仕切ることができる。ところが、弁
座側15が外部荷重などで変形した状態bでは、
弁座側中心線15cと弁棒側中心線12cとは食
い違いを生じ、弁座部14の円周の一部には隙間
14′が発生して、一次側13aと二次側13b
との間で完全に仕切りができず、弁座漏洩14′
が生じ、弁の機能を損なうことになる。このよう
に、従来技術ではこの弁部の変形が最大の問題点
となつていた。
The problem when deformation δ occurs in the valve portion in the axial direction of the inner tube will be explained with reference to FIG. normal state a
Since the center line 12c of the valve stem 12 and the valve seat side center line 15c are on the same line, the valve seat part 14 is in uniform contact with the entire circumference, and the primary side flow path 13a and the secondary side flow path 13
b can be completely separated. However, in state b where the valve seat side 15 is deformed due to an external load, etc.
There is a discrepancy between the valve seat side center line 15c and the valve stem side center line 12c, and a gap 14' is generated in a part of the circumference of the valve seat part 14, and the primary side 13a and the secondary side 13b are separated.
There was no complete partition between the valve seat and the valve seat leaked 14'
occurs, impairing the function of the valve. As described above, in the prior art, the deformation of the valve portion has been the biggest problem.

本考案の目的は、従来技術の問題点である弁部
の変形を極力小さく抑え、弁本体の機能の信頼性
を向上させることのできる極低温配管用弁の取付
構造を提供することにある。
An object of the present invention is to provide a mounting structure for a valve for cryogenic piping that can minimize deformation of the valve part, which is a problem in the prior art, and improve the reliability of the function of the valve body.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、極低温流体を移送する内管と、内
管の外側に真空断熱層を形成する外管とからなる
極低温配管の途中に、極低温配管に対して直角方
向に長い真空空間を形成し、該真空空間を通して
内管途中に極低温弁を設け、極低温弁の弁体を内
管の軸方向に移動しないように低熱伝導材料のサ
ポートを介して外管に固定することにより、達成
される。
The above purpose is to create a long vacuum space perpendicular to the cryogenic pipe in the middle of the cryogenic pipe, which consists of an inner pipe that transfers cryogenic fluid and an outer pipe that forms a vacuum insulation layer on the outside of the inner pipe. A cryogenic valve is provided in the middle of the inner pipe through the vacuum space, and the valve body of the cryogenic valve is fixed to the outer pipe via a support made of a low thermal conductive material so as not to move in the axial direction of the inner pipe. achieved.

〔作用〕[Effect]

極低温配管の内管に取り付けられた極低温弁の
弁体は、低熱伝導材料を介して外管に固定してあ
るので、内管への侵入熱は極力抑えられ、熱収縮
によつて内管に軸方向の力が作用しても変形は極
力小さく抑えられる。
The valve body of the cryogenic valve attached to the inner pipe of cryogenic piping is fixed to the outer pipe through a low thermal conductivity material, so the heat entering the inner pipe is suppressed as much as possible, and the inner pipe is reduced by heat contraction. Even if an axial force is applied to the tube, deformation is kept to a minimum.

〔実施例〕〔Example〕

以下、本考案の一実施例を第5図により説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

本図において、第3図と同符号は同一部材を示
す。本図が第3図と異なる点は、エクステンシヨ
ン9の下部、すなわち、弁部3に近い位置にサポ
ート17を設けている点と、弁部3の下部にブラ
ケツト19を取り付け、中央部にねじを有する細
長いサポート18をブラケツト19に貫通させて
螺着し、該サポート18の端部を外管6の内面に
取り付けたブラケツトに当接させた点である。
In this figure, the same reference numerals as in FIG. 3 indicate the same members. This figure differs from Figure 3 in that a support 17 is provided at the bottom of the extension 9, that is, near the valve part 3, and a bracket 19 is attached to the bottom of the valve part 3, and a screw is installed in the center. An elongated support 18 having a diameter is passed through a bracket 19 and screwed onto the bracket 19, and the end of the support 18 is brought into contact with a bracket attached to the inner surface of the outer tube 6.

外部荷重は、図中F1,F2で示すように配管軸
方向が主体となる。これは熱収縮も、圧力荷重も
ともに軸方向に発生することが主体となるからで
ある。本構造の極低温弁であれば、運転スタート
アツプ時、定常運転時および運転停止時などで
様々に変化する外部荷重F1,F2のバランスに関
係なく、サポート18のタンメンがブラケツト2
0のどちらかに当接して支持されるので、何れの
方向の荷重も吸収でき、弁部3の変形を防いで、
弁の機能を損なうことがない。
The external load is mainly applied in the axial direction of the pipe, as shown by F 1 and F 2 in the figure. This is because both thermal contraction and pressure load mainly occur in the axial direction. With a cryogenic valve of this structure, the support 18's tangmen can be adjusted to the bracket 2 regardless of the balance of external loads F 1 and F 2 that change variously during start-up, steady operation, and stoppage of operation.
0, it can absorb loads in either direction, prevent deformation of the valve part 3,
Does not impair valve function.

また、外部からの熱侵入に対しても、サポート
17および18をFRPなどの低熱伝導材料とし、
接触面間長さlおよびLを検討すれば、実用上問
題ないよう小さく抑えることが可能である。
In addition, to prevent heat from entering from the outside, the supports 17 and 18 are made of a low heat conductive material such as FRP.
By considering the lengths l and L between the contact surfaces, it is possible to keep them small enough to cause no practical problems.

また、サポート18の構造は本例の如くねじ式
であくともいんろう形式などでも良く、さらに図
中に17で示したエクステンシヨン部でのサポー
トの併用の有無は、何れでも設計条件に応じて採
用すれば良い。
Further, the structure of the support 18 may be a screw type as in this example, or at least a pin-type type, and whether or not a support is used together with the extension part shown at 17 in the figure depends on the design conditions. Just adopt it.

以上説明したように、本実施例によれば、弁部
で外部荷重をサポートおよびブラケツトにより支
持することができるので、弁側の構成は従来の構
造より小さく、すなわち、薄くすることができ、
弁ステム、エクステンシヨンからの侵入熱量は小
さくできる。従つて、サポートよりの侵入熱が若
干プラスされても、全体としては実用性を損なう
値にはならない。一方、弁部の変形が発生しない
ため、弁本体の機能が向上し信頼性が向上する。
As explained above, according to this embodiment, the external load can be supported at the valve part by the support and the bracket, so the structure on the valve side can be made smaller, that is, thinner, than the conventional structure.
The amount of heat entering from the valve stem and extension can be reduced. Therefore, even if there is a slight increase in heat intrusion from the support, the value does not impair practicality as a whole. On the other hand, since deformation of the valve portion does not occur, the function of the valve body is improved and reliability is improved.

従つて、全体としては配管の信頼性の向上が図
れるという効果がある。
Therefore, the overall effect is that the reliability of the piping can be improved.

〔考案の効果〕[Effect of idea]

本考案によれば、弁部の変形が極力小さく抑え
られ、弁本体の機能の信頼性を向上させることが
できるという効果がある。
According to the present invention, deformation of the valve portion can be suppressed to a minimum, and the reliability of the function of the valve body can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は極低温配管の取付図、第2図は第1図
の弁部の変形拡大図、第3図は第2図の弁部の取
付構造の断面図、第4図は第3図の弁座部のa正
常状態、b弁変形時の状態を示す拡大断面図、第
5図は本考案による弁取付構造の一実施例を示す
弁部の拡大断面図である。 5……内管、6……外管、7……真空層、14
……弁座部、17,18……サポート。
Figure 1 is an installation diagram of the cryogenic piping, Figure 2 is a modified enlarged view of the valve part in Figure 1, Figure 3 is a sectional view of the mounting structure of the valve part in Figure 2, and Figure 4 is Figure 3. FIG. 5 is an enlarged cross-sectional view of the valve seat showing an embodiment of the valve mounting structure according to the present invention. 5... Inner tube, 6... Outer tube, 7... Vacuum layer, 14
... Valve seat, 17, 18... Support.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 極低温流体を移送する内管と、該内管の外側に
真空断熱層を形成する外管とからなる極低温配管
の途中に、前記極低温配管に対して直角方向に長
い真空空間を形成し、該真空空間を通して前記内
管途中に極低温弁を設け、該極低温弁の弁体を前
記内管の軸方向に移動しないように低熱伝導材料
のサポートを介して前記外管に固定したことを特
徴とする極低温配管用弁の取付構造。
A long vacuum space is formed in a direction perpendicular to the cryogenic piping in the middle of the cryogenic piping, which consists of an inner pipe that transfers cryogenic fluid and an outer pipe that forms a vacuum insulation layer on the outside of the inner pipe. , a cryogenic valve is provided in the middle of the inner pipe through the vacuum space, and the valve body of the cryogenic valve is fixed to the outer pipe via a support made of a low heat conductive material so as not to move in the axial direction of the inner pipe. A mounting structure for cryogenic piping valves featuring:
JP1681084U 1984-02-10 1984-02-10 Installation structure of valve for cryogenic piping Granted JPS60129594U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1681084U JPS60129594U (en) 1984-02-10 1984-02-10 Installation structure of valve for cryogenic piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1681084U JPS60129594U (en) 1984-02-10 1984-02-10 Installation structure of valve for cryogenic piping

Publications (2)

Publication Number Publication Date
JPS60129594U JPS60129594U (en) 1985-08-30
JPH0222559Y2 true JPH0222559Y2 (en) 1990-06-18

Family

ID=30503926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1681084U Granted JPS60129594U (en) 1984-02-10 1984-02-10 Installation structure of valve for cryogenic piping

Country Status (1)

Country Link
JP (1) JPS60129594U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208666A (en) * 2010-03-29 2011-10-20 Ckd Corp Valve unit for vacuum double pipe, and connected structure of the valve unit and the vacuum double pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320006U (en) * 1976-07-29 1978-02-20
JPS5663170A (en) * 1979-10-26 1981-05-29 Aisin Seiki Co Ltd Low-temperature valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320006U (en) * 1976-07-29 1978-02-20
JPS5663170A (en) * 1979-10-26 1981-05-29 Aisin Seiki Co Ltd Low-temperature valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208666A (en) * 2010-03-29 2011-10-20 Ckd Corp Valve unit for vacuum double pipe, and connected structure of the valve unit and the vacuum double pipe

Also Published As

Publication number Publication date
JPS60129594U (en) 1985-08-30

Similar Documents

Publication Publication Date Title
KR0166608B1 (en) Insulated liquefied gas tanks
CN102606821A (en) Flange joint of vacuum heat-insulation low-temperature pipeline
US6164077A (en) Thermal link device for a cryogenic machine
JPH0222559Y2 (en)
US5158106A (en) Ultra-low heat leak cryogenic valve
CN102606820A (en) Flange connector for vacuum insulation low-temperature pipelines
JP2911094B2 (en) Vacuum double tube joint structure
US3309884A (en) Dewar design for storage and transportation of low temperature fluids
CN112503306A (en) Energy-saving active rolling heat insulation pipe carrier structure with monitoring function
JPH024320Y2 (en)
JPS634876Y2 (en)
CN216813238U (en) Corrugated compensator for prefabricated heat-preservation reinforced overhead pipeline rigidity
JPH0141880B2 (en)
JPH071593Y2 (en) Cryogenic fluid transfer pipe joint structure
JPH04307195A (en) Pipe with heat insulating layer
JPS60245895A (en) Double even pipe structure
JPH0129343Y2 (en)
WO2024079830A1 (en) Piping unit for cryogenic fluid transfer
JP6830076B2 (en) Internal piping structure of vacuum insulation piping
JPH0142696Y2 (en)
JPH0424600B2 (en)
JP7409867B2 (en) Bimetal piping, insulation piping and refrigeration systems
JP2576730B2 (en) Intermediate fixing structure of buried heat supply double pipe
JP2564155Y2 (en) Ultra low temperature liquid transfer pipe
JP2000161558A (en) Pipe joint device