JPH071593Y2 - Cryogenic fluid transfer pipe joint structure - Google Patents

Cryogenic fluid transfer pipe joint structure

Info

Publication number
JPH071593Y2
JPH071593Y2 JP1563590U JP1563590U JPH071593Y2 JP H071593 Y2 JPH071593 Y2 JP H071593Y2 JP 1563590 U JP1563590 U JP 1563590U JP 1563590 U JP1563590 U JP 1563590U JP H071593 Y2 JPH071593 Y2 JP H071593Y2
Authority
JP
Japan
Prior art keywords
pipe
flange
cryogenic fluid
transfer
transfer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1563590U
Other languages
Japanese (ja)
Other versions
JPH03107594U (en
Inventor
光豊 吉田
道廣 林
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP1563590U priority Critical patent/JPH071593Y2/en
Publication of JPH03107594U publication Critical patent/JPH03107594U/ja
Application granted granted Critical
Publication of JPH071593Y2 publication Critical patent/JPH071593Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Pipeline Systems (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、液体水素、液体ヘリウム等の極低温流体を移
送する極低温流体移送用配管に係り、特に、その配管同
志あるいは配管を容器ノズルとの継手部を改良した極低
温流体移送用配管の継手構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a cryogenic fluid transfer pipe for transferring a cryogenic fluid such as liquid hydrogen or liquid helium, and in particular, the pipes or pipes are used as container nozzles. The present invention relates to a joint structure of a pipe for cryogenic fluid transfer, which has an improved joint part with.

[従来の技術] 一般に、液体水素、液体ヘリウム等の極低温流体の移送
には、外部からの入熱によって移送管内の極低温流体が
蒸発し、これが原因で生ずる配管の振動や熱損失を低減
するために第2図に示すような構造の配管が用いられて
いる。
[Prior Art] Generally, when transferring a cryogenic fluid such as liquid hydrogen or liquid helium, heat input from the outside evaporates the cryogenic fluid in the transfer pipe, and reduces the vibration and heat loss of the pipe caused by this. In order to do so, piping having a structure as shown in FIG. 2 is used.

図示するように、この移送管aは上記極低温流体を実質
的に移送する内管bと、この内管bを覆うように所定の
空間を隔てた外管cとからなる二重管構造となってい
る。そして、この内管bと外管cの空間を真空状態とし
た真空断熱層dを形成して構成されている。
As shown in the figure, the transfer pipe a has a double pipe structure composed of an inner pipe b for substantially transferring the cryogenic fluid and an outer pipe c separated by a predetermined space so as to cover the inner pipe b. Has become. Then, a vacuum heat insulating layer d is formed so that the space between the inner tube b and the outer tube c is in a vacuum state.

従って、移送管a外部から内管bへ侵入する外部入熱
は、この真空断熱層dによって断熱され、内管bを流れ
る極低温流体に対しての熱影響が低減されることにな
る。
Therefore, the external heat input from the outside of the transfer pipe a into the inner pipe b is insulated by the vacuum heat insulating layer d, and the thermal influence on the cryogenic fluid flowing through the inner pipe b is reduced.

また、このような断熱性を有する移送管a同志を接続す
る継手の構造として、継手部における外部入熱を低減す
るために、図示するようなバイオネット継手構造eが用
いられている。
Further, as a joint structure for connecting the transfer pipes a having such heat insulating properties, a bayonet joint structure e as shown in the figure is used in order to reduce external heat input at the joint portion.

このバイオネット継手構造eは一方の移送管a1の内管b1
の端部を折り返して二重管構造にした雄形バイオネット
筒fと、この折り返し端部から外管c1を横断するように
移送管a1の径方向外方へ延出された第一フランジgと、
他方の移送管a2の内管b2を上記雄形バイオネット筒fが
挿入できるように、これよりも若干大径に拡管して成形
した雌形バイオネット筒hと、この端部から外管c2を横
断するように移送管a2の径方向外方へ延出された第二フ
ランジiとから主に構成されている。
This bayonet joint structure e has an inner tube b1 of one transfer tube a1.
A male bayonet cylinder f having a double tube structure by folding back the end of the first pipe and a first flange g extending outwardly in the radial direction of the transfer pipe a1 so as to cross the outer pipe c1 from the folded end. When,
A female bayonet tube h formed by expanding the inner tube b2 of the other transfer tube a2 into a diameter slightly larger than the inner tube b2 so that the male bayonet tube f can be inserted, and an outer tube c2 from this end. It is mainly composed of a second flange i extending outward in the radial direction of the transfer pipe a2 so as to traverse.

従って、移送管a1、a2同志を接続すべく上記第一フラン
ジgと第二フランジiとをOリングKを挾んでボルトj
等の締結具で接合すると、上記雌形バイオネット筒hに
雄形バイオネット筒fが挿入されてそれぞれの移送管a
1、a2の内管b1、b2内が連通することになる。この際、
雄形バイオネット筒fとこれより若干径大に成形された
雌形バイオネット筒hとの間隙1にシールmを通って内
管b1、b2内の極低温流体が侵入し、気化してここに滞留
することになる。
Therefore, in order to connect the transfer pipes a1 and a2 to each other, the first flange g and the second flange i are clamped by the O-ring K and the bolt j is inserted.
And the like, the male bayonet tube f is inserted into the female bayonet tube h, and the respective transfer tubes a are inserted.
The inner pipes b1 and b2 of 1 and a2 communicate with each other. On this occasion,
The cryogenic fluid in the inner pipes b1 and b2 penetrates through the seal m into the gap 1 between the male bayonet cylinder f and the female bayonet cylinder h that is slightly larger than this, and is vaporized and Will stay in.

従って、このバイオネット筒f,hの存在により外気から
の侵入熱経路が長くなり、極低温流体に対する熱影響が
低減されることになる。
Therefore, the presence of the bayonet cylinders f and h lengthens the path of heat entering from the outside air and reduces the thermal effect on the cryogenic fluid.

[考案が解決しようとする課題] しかしながら、例えば、外気温度が20℃の場合、継手部
からの入熱と極低温流体である液体ヘリウム(大気圧下
で−269℃)との温度差は約290℃と極めて大きな温度差
を有しており、上記バイオネット継手によっても断熱効
果が充分とはいえなかった。すなわち、極低温流体が移
送管内を移送する際、この継手部を介して外部の熱が入
熱し、移送管内で極低温流体が蒸発したBOG(Boil Off
Gas)によって、移送管の振動を生じたり、蒸発ロスが
生じる問題があった。
[Problems to be solved by the invention] However, for example, when the outside air temperature is 20 ° C, the temperature difference between the heat input from the joint and liquid helium (-269 ° C at atmospheric pressure) which is a cryogenic fluid is about Since there was a very large temperature difference of 290 ° C, the adiabatic joint could not be said to have a sufficient heat insulating effect. That is, when the cryogenic fluid is transferred in the transfer pipe, external heat is input through this joint, and the cryogenic fluid is evaporated in the transfer pipe.
Gas) causes problems such as vibration of the transfer pipe and evaporation loss.

以上の事情を考慮して創案された本考案の目的は、上記
継手部を液体窒素等によって冷却し、極低温流体との温
度差を小さくして、熱損失を低減すると共に、継手部の
着霜を防止する極低温流体移送用配管の継手構造を提供
するものである。
The object of the present invention, which was devised in consideration of the above circumstances, is to cool the joint portion with liquid nitrogen or the like to reduce the temperature difference with the cryogenic fluid to reduce heat loss and to reduce the wear of the joint portion. (EN) A joint structure for a cryogenic fluid transfer pipe that prevents frost.

[課題を解決するための手段] 上記目的を達成するためには本考案は、液体水素、液体
ヘリウム等の極低温流体を移送する内管を外管で覆うと
共に、その間を真空状態とし、上記外管をフランジで接
続すると共に、そのフランジに内管同志を接続するバイ
オネット継手を設けた極低温流体移送用配管の継手構造
において、外管内の真空空間に液体窒素を流入する中管
を設け、該中管と上記フランジを熱伝導のためのサーマ
ルアンカによって連結し、さらに、該サーマルアンカ外
周のフランジに該フランジの径方向の熱切りを行うスリ
ーブを設けて構成されている [作用] 本考案は以上のような構成にしたので、液体ヘリウム等
の極低温流体が一方の移送管より継手部を通って他方の
移送管または容器へ移送する際に、継手部を中管内に流
入している液体窒素によってサーマルアンカを介して冷
却しており、極低温流体への入熱を極めて小さくしてい
る。また、継手部を液体窒素で冷却することによって継
手部に霜が着く虞があるが、継手部フランジに設けられ
たスリーブによって断熱しているので、継手部への着霜
を防止している。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an inner tube for transferring a cryogenic fluid such as liquid hydrogen or liquid helium with an outer tube, and a vacuum state between them, In the joint structure of the cryogenic fluid transfer pipe in which the outer pipe is connected with a flange and a bayonet joint for connecting the inner pipes to the flange is provided, a middle pipe for introducing liquid nitrogen into the vacuum space inside the outer pipe is provided. , The intermediate pipe and the flange are connected by a thermal anchor for heat conduction, and a sleeve for performing heat cutting in the radial direction of the flange is provided on the flange on the outer periphery of the thermal anchor. Since the invention is configured as described above, when a cryogenic fluid such as liquid helium is transferred from one transfer pipe through the joint to the other transfer pipe or container, the joint flows into the middle pipe. And it has been cooled through a thermal anchor by liquid nitrogen are, are very small heat input to the cryogenic fluid. Further, there is a possibility that frost may form on the joint portion by cooling the joint portion with liquid nitrogen, but since heat is insulated by the sleeve provided on the joint portion flange, frost formation on the joint portion is prevented.

[実施例] 以下、本考案の一実施例を添付図面を従って説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図に示すように、極低温流体を移送する移送管同志
の継手構造1は移送管2と、移送管3をバイオネット継
手8によって接続している。
As shown in FIG. 1, a joint structure 1 of transfer pipes for transferring a cryogenic fluid connects a transfer pipe 2 and a transfer pipe 3 with a bayonet joint 8.

尚、第1図は説明の便宜上、考案を移送管2側のみで実
施した例で説明する。
For convenience of explanation, FIG. 1 will be described with an example in which the invention is implemented only on the transfer pipe 2 side.

図示するように移送管2及び3には軸心部に極低温流体
を移送するための内管4,4aを形成し、この内管4,4aの外
側にこれを囲繞するように所定の間隔を隔てて外管5,5a
が形成されており、この内管4,4aと外管5,5aの空間は断
熱のために真空とした真空断熱層6,6aが形成されてい
る。そして、この移送管2及び3はバイオネット継手8
によって接続されている。このバイオネット8は一方の
移送管2の内管4の端部を折り返して二重管構造にした
雄形バイオネットスリーブ4bと、この折り返し端部から
の外管5を横断するように移送管2の径方向外方へ延出
された第一フランジ9と、他方の移送管3の内管4aを上
記雄形バイオネットスリーブ4bが挿入できるように、こ
れよりも若干大径に拡管して成形した雌形バイオネット
スリーブ4cと、その端部から外管5aを横断するように移
送管3の径方向外方へ延出された第二フランジ10とから
主に構成されている。
As shown in the figure, the transfer pipes 2 and 3 are formed with inner pipes 4 and 4a for transferring a cryogenic fluid at their axial center portions, and the inner pipes 4 and 4a are surrounded by a predetermined space so as to surround them. Separate the outer tube 5,5a
The inner tubes 4, 4a and the outer tubes 5, 5a are formed with vacuum heat insulation layers 6, 6a which are made vacuum for heat insulation. The transfer pipes 2 and 3 are connected to the bayonet joint 8
Connected by. The bayonet 8 is a transfer tube that crosses the male bayonet sleeve 4b in which the end of the inner tube 4 of one transfer tube 2 is folded back to form a double tube structure and the outer tube 5 from this folded end. The first flange 9 extending outward in the radial direction of 2 and the inner tube 4a of the other transfer tube 3 are expanded to a diameter slightly larger than this so that the male bayonet sleeve 4b can be inserted. It is mainly composed of a molded female bayonet sleeve 4c and a second flange 10 extending from the end of the female bayonet sleeve 4c outward in the radial direction of the transfer tube 3 so as to cross the outer tube 5a.

また、移送管2の内管4と外管5の空間の真空断熱層6
内には内管4外側にこれを囲繞するように所定の間隔を
隔てて中管7が設けられている。
In addition, the vacuum heat insulating layer 6 in the space between the inner tube 4 and the outer tube 5 of the transfer tube 2
Inside, a middle pipe 7 is provided outside the inner pipe 4 at a predetermined interval so as to surround the inner pipe 4.

この中管7は径小の配管7aを径大の配管7bに挿通した二
重管構造をしており、内部に液体窒素等を流入するため
に配管7aと配管7bの端部を密閉して構成されており、こ
の中管7の端部には中管7と上記第一フランジ9を連結
するサーマルアンカ11が設けられている。
The middle pipe 7 has a double pipe structure in which a small-diameter pipe 7a is inserted into a large-diameter pipe 7b, and the ends of the pipe 7a and the pipe 7b are hermetically sealed so that liquid nitrogen or the like can flow into the inside. A thermal anchor 11 is provided at the end of the middle pipe 7 for connecting the middle pipe 7 and the first flange 9 to each other.

また、移送管2の第一フランジ9には第一フランジ9の
径方向の熱切りを行う熱切りスリーブ12が設けられてい
る。この熱切りスリーブ12はサーマルアンカ11の外周で
あって、真空断熱層6内で配管12aを一重に折り返して
内部中空に成形されており、第一フランジ9からの入熱
を低減している。
Further, the first flange 9 of the transfer pipe 2 is provided with a heat cutting sleeve 12 for cutting the first flange 9 in the radial direction. The heat cutting sleeve 12 is formed on the outer circumference of the thermal anchor 11 and is formed by hollowing the pipe 12a in the vacuum heat insulating layer 6 so as to reduce the heat input from the first flange 9.

そして、移送管2、3同志を接続すべく上記第一フラン
ジ9と第二フランジ10とをOリング13を挾んでボルト14
等の締結具で接合すると、雌形バイオネットスリーブ4c
に雄形バイオネットスリーブ4bが挿入されて、それぞれ
の移送管2、3の内管4、4a内が挿通することになる。
この際、雄形バイオネットスリーブ4bの先端部はシール
15によって内管4、4aを密閉している。
Then, in order to connect the transfer pipes 2 and 3, the first flange 9 and the second flange 10 are inserted into the O-ring 13 and the bolt 14 is inserted.
Female bayonet sleeve 4c when joined with fasteners such as
Then, the male bayonet sleeve 4b is inserted into the inner pipes 4 and 4a of the transfer pipes 2 and 3, respectively.
At this time, the tip of the male bayonet sleeve 4b is sealed.
The inner pipes 4 and 4a are closed by 15.

次に、本考案の作用について説明する。Next, the operation of the present invention will be described.

図中矢印の如く液体ヘリウム等の極低温流体は内管内を
移送管2より継手部8を通って移送管3へ移送すること
になる。この際、継手部8の第一フランジ9および第二
フランジ10からの入熱は上記雌形バイオネットスリーブ
4cおよび雄形バイオネットスリーブ4bによって低減され
ることになり、入熱によるBOGの発生を小さく抑えるこ
とになるが、さらに第一フランジ9を中管7内に流入し
ている液体窒素によってサーマルアンカ11を介して冷却
しており、極低温流体への入熱を極めて小さくしてい
る。また、第一フランジ9を液体窒素で冷却することに
よって第一フランジ9に霜が着く虞があるが、第一フラ
ンジ9に設けられてスリーブ12によって断熱し、第一フ
ランジ9への着霜を防止している。
A cryogenic fluid such as liquid helium is transferred from the transfer pipe 2 through the joint portion 8 to the transfer pipe 3 as indicated by an arrow in the figure. At this time, heat input from the first flange 9 and the second flange 10 of the joint portion 8 is generated by the female bayonet sleeve.
4c and the male bayonet sleeve 4b reduce the BOG generation due to heat input, but the first flange 9 is further heated by the liquid nitrogen flowing into the middle pipe 7 to provide thermal anchoring. It is cooled via 11, and the heat input to the cryogenic fluid is extremely small. Further, there is a possibility that frost may be formed on the first flange 9 by cooling the first flange 9 with liquid nitrogen, but heat is provided by the sleeve 12 provided on the first flange 9 to prevent frost formation on the first flange 9. To prevent.

すなわち、外気温度が20℃の場合、極低温流体である液
体ヘリウム(大気圧下で−269℃)との温度差は約290℃
と極めて大きな温度差を有しており、上記バイオネット
継手によっても断熱効果が芳しくなかった。従って、中
管7内に流入させた液体窒素(大気圧下で−196℃)に
よって第一フランジ9を冷却して液体ヘリウムと第一フ
ランジ9の温度差を小さくして液体ヘリウムのBOGの発
生を低く抑えることが可能となった。
That is, when the outside air temperature is 20 ° C, the temperature difference with liquid helium (-269 ° C at atmospheric pressure), which is a cryogenic fluid, is about 290 ° C.
There was an extremely large temperature difference, and the adiabatic joint had a poor heat insulating effect. Therefore, the first flange 9 is cooled by the liquid nitrogen (−196 ° C. under atmospheric pressure) that has flowed into the middle pipe 7, and the temperature difference between the liquid helium and the first flange 9 is reduced to generate BOG of liquid helium. It has become possible to keep the value low.

[考案の効果] 本考案は次の如き優れた効果を有する。[Effect of the Invention] The present invention has the following excellent effects.

(1)BOGの発生を低減することによって、エネルギ効
率が向上すると共に、BOGによる配管の振動等を防止
し、信頼性が向上する。
(1) By reducing the generation of BOG, energy efficiency is improved, and vibration of the pipe due to BOG is prevented, and reliability is improved.

(2)熱切りスリーブを設けることによって、フランジ
部の着霜を防止できる。
(2) By providing the heat cutting sleeve, it is possible to prevent frost formation on the flange portion.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例である極低温流体移送用配管
の継手構造の断面図、第2図は従来のバイオネット継手
構造を示す断面図である。 図中1は極低温流体移送用配管の継手構造、4,4a内管、
5,5aは外管、7は中管、8はバイオネット継手、9,10は
フランジ、11はサーマルアンカ、12はスリーブである。
FIG. 1 is a sectional view of a joint structure of a cryogenic fluid transfer pipe according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional bayonet joint structure. In the figure, 1 is the joint structure of the cryogenic fluid transfer pipe, 4, 4a inner pipe,
5, 5a is an outer pipe, 7 is a middle pipe, 8 is a bayonet joint, 9 and 10 are flanges, 11 is a thermal anchor, and 12 is a sleeve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】液体水素、液体ヘリウム等の極低温流体を
移送する内管を外管で覆うと共に、その間を真空状態と
し、上記外管をフランジで接続すると共に、そのフラン
ジに内管同志を接続するバイオネット継手を設けた極低
温流体移送用配管の継手構造において、外管内の真空空
間に液体窒素を流入する中管を設け、該中管と上記フラ
ンジを熱伝導のためのサーマルアンカによって連結し、
さらに、該サーマルアンカ外周のフランジに該フランジ
の径方向の熱切りを行うスリーブを設けたことを特徴と
する極低温流体移送用配管の継手構造
1. An inner pipe for transferring a cryogenic fluid such as liquid hydrogen or liquid helium is covered with an outer pipe, a vacuum state is provided between them, and the outer pipe is connected with a flange, and the inner pipe is attached to the flange. In a joint structure of a cryogenic fluid transfer pipe provided with a bayonet joint to be connected, a middle pipe for introducing liquid nitrogen into a vacuum space in an outer pipe is provided, and the middle pipe and the flange are connected by a thermal anchor for heat conduction. Connect
Further, a joint structure for a cryogenic fluid transfer pipe, characterized in that a sleeve for performing heat cutting in a radial direction of the flange is provided on a flange on the outer periphery of the thermal anchor.
JP1563590U 1990-02-21 1990-02-21 Cryogenic fluid transfer pipe joint structure Expired - Lifetime JPH071593Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1563590U JPH071593Y2 (en) 1990-02-21 1990-02-21 Cryogenic fluid transfer pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1563590U JPH071593Y2 (en) 1990-02-21 1990-02-21 Cryogenic fluid transfer pipe joint structure

Publications (2)

Publication Number Publication Date
JPH03107594U JPH03107594U (en) 1991-11-06
JPH071593Y2 true JPH071593Y2 (en) 1995-01-18

Family

ID=31518929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1563590U Expired - Lifetime JPH071593Y2 (en) 1990-02-21 1990-02-21 Cryogenic fluid transfer pipe joint structure

Country Status (1)

Country Link
JP (1) JPH071593Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448240B1 (en) * 2013-04-26 2014-10-14 정우이앤이 주식회사 Vacuum insulated pipe
JP2016070374A (en) * 2014-09-30 2016-05-09 川崎重工業株式会社 High heat-insulation joint structure of vacuum heat-insulating double pipe for low-temperature fluid
KR20190127285A (en) * 2018-05-04 2019-11-13 홍창덕 Flange sturucture and vacuum-insulated pipe includimg same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711369B2 (en) * 2001-10-02 2005-11-02 独立行政法人 宇宙航空研究開発機構 Cryogenic piping joint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448240B1 (en) * 2013-04-26 2014-10-14 정우이앤이 주식회사 Vacuum insulated pipe
JP2016070374A (en) * 2014-09-30 2016-05-09 川崎重工業株式会社 High heat-insulation joint structure of vacuum heat-insulating double pipe for low-temperature fluid
KR20190127285A (en) * 2018-05-04 2019-11-13 홍창덕 Flange sturucture and vacuum-insulated pipe includimg same

Also Published As

Publication number Publication date
JPH03107594U (en) 1991-11-06

Similar Documents

Publication Publication Date Title
US20080169037A1 (en) Cryogenic bayonet connection
US6263678B1 (en) Method of evaporating a low temperature liquid medium
US6257282B1 (en) Vacuum insulated pipe
JPH071593Y2 (en) Cryogenic fluid transfer pipe joint structure
CN102606821A (en) Flange joint of vacuum heat-insulation low-temperature pipeline
JP2926188B2 (en) Connectors used for uncooled tubes and tubes to be cooled
US3765705A (en) Vacuum-insulated pipeline
US4106796A (en) Connector for duct systems for low temperature fluids
JP2016070374A (en) High heat-insulation joint structure of vacuum heat-insulating double pipe for low-temperature fluid
JPH0389099A (en) Structure of low temperature liquefied gas transfer pipe and joint structure therefor
JPH1194188A (en) Vacuum insulating body, vacuum insulating pipe and vacuum insulating and heat transporting piping
JPH11153290A (en) Vacuum heat insulation pipe
JP6480693B2 (en) Joint structure of vacuum insulated double pipe for cryogenic fluid
US3034319A (en) High-efficiency fluid transfer line coupling
JPH0740791Y2 (en) Vacuum insulation piping joint structure
JPH0726638Y2 (en) Vacuum insulated quadruple pipe joint structure
JP2003269878A (en) Loop type heat pipe evaporator
JPH0586050B2 (en)
JP3669911B2 (en) Liquefied gas storage device
CN216200979U (en) Vacuum tube for low-temperature heat-insulation vacuum valve
JP2018115763A (en) Plug-in coupling for cryogenic line
WO2022183773A1 (en) Loop heat pipe, and method and component for reducing heat transfer temperature difference of loop heat pipe
JPH0120550Y2 (en)
JPH01238797A (en) Vacuum adiabatic pipe
JPH0222559Y2 (en)