JPH02225325A - Apparatus for forming optical element - Google Patents
Apparatus for forming optical elementInfo
- Publication number
- JPH02225325A JPH02225325A JP4769889A JP4769889A JPH02225325A JP H02225325 A JPH02225325 A JP H02225325A JP 4769889 A JP4769889 A JP 4769889A JP 4769889 A JP4769889 A JP 4769889A JP H02225325 A JPH02225325 A JP H02225325A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- molding
- optical element
- mold
- molding chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 17
- 239000007789 gas Substances 0.000 claims abstract description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 8
- 238000000465 moulding Methods 0.000 claims description 48
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 16
- 239000001301 oxygen Substances 0.000 abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 abstract description 16
- 238000007789 sealing Methods 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 239000005304 optical glass Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/005—Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/05—Press-mould die materials
- C03B2215/06—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/66—Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光学ガラス素材を加熱軟化し、上下一対の成
形用金型を介して所望のレンズ形状に成形するための光
学素子の成形装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an optical element molding device for heating and softening an optical glass material and molding it into a desired lens shape through a pair of upper and lower molding molds. Regarding.
上記この種の成形装置としては、特開昭6228811
9号公報に開示された技術がある。この技術の概略構成
を第3図に示すが、図に示すように本成形装置において
は、上下成形型1.2が高温下で酸化されるのを防止す
るために、金型3の周囲を石英ガラス管4で囲み、装置
内部5内に雰囲気ガス供給装置6から窒素ガス等を供給
して金型3の酸化が防止されるように構成しである。The above-mentioned molding device of this type is disclosed in Japanese Patent Application Laid-Open No. 6228811.
There is a technique disclosed in Publication No. 9. A schematic configuration of this technology is shown in Fig. 3. As shown in the figure, in this molding apparatus, in order to prevent the upper and lower molds 1.2 from being oxidized at high temperatures, the surroundings of the mold 3 are The mold 3 is surrounded by a quartz glass tube 4, and nitrogen gas or the like is supplied from an atmospheric gas supply device 6 into the interior 5 of the device to prevent oxidation of the mold 3.
しかしながら、上記従来技術の構成においては、装置内
部5の雰囲気の温度が室温(20℃前後)程度ならば外
部からの酸素の進入をかなり防止でき、酸素濃度を1%
以下にすることが可能であるが、成形時、即ち、金型3
及び加熱炉が高温時においては、装置内部5の雰囲気も
高温になるので非酸化性ガスの対流が発生し、そのため
に主として下型2と下板2aとの隙より酸素が進入して
内部5の酸素濃度が上ってしまい、その結果、金型3が
酸化を生じ易くなるという問題点があった。However, in the configuration of the prior art described above, if the temperature of the atmosphere inside the device 5 is around room temperature (around 20°C), it is possible to considerably prevent oxygen from entering from the outside, and the oxygen concentration can be reduced to 1%.
It is possible to do the following, but at the time of molding, that is, the mold 3
When the heating furnace is at a high temperature, the atmosphere inside the device 5 also becomes high temperature, so a convection of non-oxidizing gas occurs, and as a result, oxygen mainly enters through the gap between the lower mold 2 and the lower plate 2a, causing the inside 5 to become hot. There was a problem in that the oxygen concentration of the metal mold 3 increased, and as a result, the mold 3 became susceptible to oxidation.
本発明は、上記問題点に鑑みなされたものであって、高
温時における酸素濃度の上昇による金型の酸化を防止し
、金型の耐久性の向上を図りうるようにした光学素子の
成形装置を提供することを目的とする。The present invention has been made in view of the above problems, and is an optical element molding apparatus that prevents oxidation of a mold due to an increase in oxygen concentration at high temperatures and improves the durability of the mold. The purpose is to provide
上記問題に鑑み、本発明に係る成形装置は、上下に対向
配置された成形型により所望の光学素子を成形する光学
素子の成形装置において、上型及び下型をそれぞれ保持
する上ベース、下ベース並びに成形部周囲を密閉するカ
バーにて成形室を構成するとともに、前記成形室に窒素
ガス等のガス流入部を設け、前記下型をその上部に固設
し前記下ベースに保持されたプレス軸の下部に、前記成
形室内に供給されるガスの排気装置を設けて構成しであ
る。In view of the above problems, the molding apparatus according to the present invention is an optical element molding apparatus that molds a desired optical element using molds arranged vertically opposite to each other. A molding chamber is configured with a cover that seals the periphery of the molding section, and a gas inlet such as nitrogen gas is provided in the molding chamber, the lower mold is fixed to the upper part of the molding chamber, and the press shaft is held by the lower base. An exhaust device for gas supplied into the molding chamber is provided at the bottom of the molding chamber.
又、上ベース及び下ベースに温度センサーを設け、上ベ
ースの温度が下ベースの温度より高くなった時点で排気
装置を作動させて成形室内のガスに下方向への流れを生
じさせるように構成してもよい。In addition, temperature sensors are provided on the upper base and the lower base, and when the temperature of the upper base becomes higher than the temperature of the lower base, the exhaust device is activated to cause the gas in the molding chamber to flow downward. You may.
上記構成においては、ガス流入部から形成室内に窒素ガ
ス等のガスを供給し、上ベース、下ベースの温度上昇に
伴って排気装置を作動させることにより、成形室内への
酸素の進入が防止される。In the above configuration, oxygen is prevented from entering the forming chamber by supplying gas such as nitrogen gas from the gas inlet into the forming chamber and activating the exhaust device as the temperature of the upper and lower bases rises. Ru.
以下、図面を用いて本発明の実施例について詳細に説明
する。Embodiments of the present invention will be described in detail below with reference to the drawings.
(第1実施例)
第1図は、本発明に係る光学素子の成形装置10の第1
実施例を示す縦断面図である。(First Embodiment) FIG. 1 shows a first embodiment of an optical element molding apparatus 10 according to the present invention.
FIG. 3 is a longitudinal cross-sectional view showing an example.
図において11で示すのは上型で、上型11は上型ヒー
ター12を介して上ベース13に固定しである。14で
示すのは下型で、下型14は下型ヒーター15を介して
プレス軸16に固定しである。プレス軸16は、下ベー
ス17に固定されたハウジング18に軸受(摺動用軸受
)19を介して軸方向摺動自在に保持されるとともに、
駆動用エアーシリンダー20を介して昇降駆動自在に構
成されている。上型11と下型14とは同一軸線上に対
向配置してあり、上型11.下型14とも、図示を省略
している温度制御装置と接続された前述の上型ヒーター
12、下型ヒーター15を介して所定温度に制御自在の
構成となっている。In the figure, reference numeral 11 indicates an upper mold, and the upper mold 11 is fixed to an upper base 13 via an upper mold heater 12. Reference numeral 14 indicates a lower mold, and the lower mold 14 is fixed to a press shaft 16 via a lower mold heater 15. The press shaft 16 is held in a housing 18 fixed to a lower base 17 via a bearing (sliding bearing) 19 so as to be freely slidable in the axial direction.
It is configured to be able to be driven up and down via a driving air cylinder 20. The upper mold 11 and the lower mold 14 are arranged facing each other on the same axis, and the upper mold 11. The lower mold 14 is also configured to be able to be controlled to a predetermined temperature via the above-mentioned upper mold heater 12 and lower mold heater 15, which are connected to a temperature control device (not shown).
加熱炉21及び成形部22周辺は、石英ガラス管又はス
テンレス製管で成形されたカバー23及び上下ベース1
3.17を介して閉塞されており、これらの部材23,
1.3,1.7により成形室24が形成されている。上
下ベース13.17には、雰囲気ガス供給装置(図示せ
ず)と接続されたガスノズル25が貫設してあり、この
ガスノズル25を介して成形室24内に供給される窒素
ガス、不活性ガス、又は還元性ガスにて成形室24内部
の酸化を防止しうるように構成しである。上下ベース1
3,17は、図示を省略している部材を介して結合され
ており、上ベース13と下ベース17との間の相互の距
離、位置が変化しない構成となっている。Around the heating furnace 21 and the molding section 22, a cover 23 and upper and lower bases 1 made of a quartz glass tube or a stainless steel tube are arranged.
3.17, and these members 23,
1.3 and 1.7 form a molding chamber 24. A gas nozzle 25 connected to an atmospheric gas supply device (not shown) is provided through the upper and lower bases 13.17, and nitrogen gas and inert gas are supplied into the molding chamber 24 through the gas nozzle 25. or reducing gas to prevent oxidation inside the molding chamber 24. Upper and lower base 1
3 and 17 are connected via a member not shown, so that the mutual distance and position between the upper base 13 and the lower base 17 do not change.
ハウジング18の下部には、排気装置30が固設してあ
り、成形室24及びハウジング18内部のガスを排気し
うるようになっている。An exhaust device 30 is fixedly installed at the lower part of the housing 18, and can exhaust the gas inside the molding chamber 24 and the housing 18.
上下ベース13.17は温度モニター31と接続してあ
り、上下各ベース13.17の温度が測定しうるように
構成しである。32で示すのは光学ガラス素材33及び
プレス成形後の光学素子を載置、搬送するキャリアで、
このキャリア32はキャリア搬送用アーム34により保
持され、図示しない温度制御′B装置によって所定の温
度に設定し得る加熱炉21中を移送され、前記上型11
と下型14間に搬送されるように制御構成されている。The upper and lower bases 13.17 are connected to a temperature monitor 31 so that the temperature of each of the upper and lower bases 13.17 can be measured. 32 is a carrier on which the optical glass material 33 and the optical element after press molding are placed and transported;
This carrier 32 is held by a carrier conveyance arm 34 and is transferred through a heating furnace 21 that can be set at a predetermined temperature by a temperature control device (not shown).
and the lower die 14.
35で示すのは0.′a度センサー、21aで示すのは
加熱炉ヒーターである。35 indicates 0. The temperature sensor 21a is a furnace heater.
次に上記構成の成形装置10にて光学素子を成形する作
用について説明する。Next, the operation of molding an optical element using the molding apparatus 10 having the above configuration will be explained.
まず、常温時、即ち加熱開始前において、成形室24内
部に上下のガスノズル25から窒素ガス等を供給し、成
形室24内部の酸素濃度を1%以下に置換する。この際
の酸素濃度は、成形室24の背面に配設しであるO!濃
度センサー35にて測定する。First, at room temperature, that is, before the start of heating, nitrogen gas or the like is supplied into the molding chamber 24 from the upper and lower gas nozzles 25 to replace the oxygen concentration inside the molding chamber 24 to 1% or less. At this time, the oxygen concentration is set to O! Measurement is performed using the concentration sensor 35.
次に、加熱炉ヒーター21a、上型ヒーター12、及び
下型ヒーター15により、加熱炉21゜上型11.下型
14を所定温度に加熱する。この加熱に伴って上ベース
13.下ベース17及び成形室24内部の温度も上昇す
るので、成形室24内に対流が生じ、この対流により主
としてハウジング18より外部の酸素が形成室24内に
進入し、成形室24内の酸素濃度が上昇する。このとき
のタイミングは、上ベース13と下ベース17の温度と
相関があるので、温度モニター31によす上下ベース1
3.17の温度を測定しておくことにより判断できる。Next, the heating furnace 21° and the upper mold 11.degree. The lower mold 14 is heated to a predetermined temperature. Along with this heating, the upper base 13. As the temperature inside the lower base 17 and the molding chamber 24 also rises, convection occurs within the molding chamber 24. Due to this convection, oxygen mainly from outside the housing 18 enters the molding chamber 24, and the oxygen concentration within the molding chamber 24 decreases. rises. The timing at this time is correlated with the temperature of the upper base 13 and lower base 17, so the upper and lower bases 1
This can be determined by measuring the temperature in 3.17.
そして、この時点において、排気袋230を作動させる
とともに下ベース17例のガスノズル25からのガス供
給を停止させ、上ベース13のガスノズル25からのみ
窒素ガス等を供給し、下方、即ち矢印40方向へのガス
の流れを発生させる。なお、このときのガス流量は、排
気装置30により供給と排出のバランスを考慮して最適
に設定する。これにより、成形室24内は対流のない層
流状態となり、外部からの酸素の進入をしゃ断すること
ができ、その結果、成形室24内の酸素濃度を1%以下
の低濃度に保つことができる。At this point, the exhaust bag 230 is activated, the gas supply from the gas nozzles 25 of the lower base 17 is stopped, nitrogen gas, etc. is supplied only from the gas nozzle 25 of the upper base 13, and the flow is directed downward, that is, in the direction of the arrow 40. generate a flow of gas. Note that the gas flow rate at this time is optimally set by the exhaust device 30 in consideration of the balance between supply and discharge. As a result, the inside of the molding chamber 24 becomes a laminar flow state with no convection, and the entry of oxygen from the outside can be blocked. As a result, the oxygen concentration inside the molding chamber 24 can be maintained at a low concentration of 1% or less. can.
この状態において、加熱炉21.上型11.下型14が
所定温度になった時点でキャリア32内に光学ガラス素
材33を載置し、キャリア搬送用アーム34を介して加
熱炉21内に搬入し、上下のヒーター21aを介して光
学ガラス素材33を成形可能状態になるまで(軟化点温
度まで)加熱軟化処理する。In this state, the heating furnace 21. Upper mold 11. When the lower mold 14 reaches a predetermined temperature, the optical glass material 33 is placed in the carrier 32 and carried into the heating furnace 21 via the carrier conveying arm 34, and the optical glass material 33 is placed in the carrier 32 through the upper and lower heaters 21a. 33 is heated and softened until it becomes moldable (up to the softening point temperature).
次に、搬送用アーム34を前進させ、キャリア32とと
もに光学ガラス素材33を上下型11゜14間に搬送す
る。その後、下型14をシリンダー20を介して上動さ
せ、上下の成形型11゜14を介して軟化状態にある光
学ガラス素材33をプレス成形する。Next, the conveying arm 34 is advanced to convey the optical glass material 33 together with the carrier 32 between the upper and lower molds 11 and 14. Thereafter, the lower mold 14 is moved upward through the cylinder 20, and the softened optical glass material 33 is press-molded through the upper and lower molds 11 and 14.
成形が完了したら、下型14を下動させて離型し、加熱
炉21に対して反対側に設けた徐冷炉(図示せず)中に
成形後の光学素子を搬送用アーム34を介して搬送し、
プレス成形された光学素子を冷却し、その後、光学素子
をキャリア32がら取り出す。When the molding is completed, the lower mold 14 is moved down to release the mold, and the molded optical element is transported via the transport arm 34 into a slow cooling furnace (not shown) provided on the opposite side to the heating furnace 21. death,
The press-molded optical element is cooled, and then the optical element is taken out from the carrier 32.
以上説明したように本実施例によれば、成形室24内部
の酸素濃度を高温時においても1%以下の低濃度に保持
することができるので、上下の成形型11.14の酸化
を防止でき、成形型11゜I4の耐久性の向上が図れる
ものである。As explained above, according to this embodiment, the oxygen concentration inside the molding chamber 24 can be maintained at a low concentration of 1% or less even at high temperatures, so oxidation of the upper and lower molds 11 and 14 can be prevented. , the durability of the mold 11°I4 can be improved.
なお、本実施例においては、下ベース17のガスノズル
25からのガス供給を停止し、上ベース13のガスノズ
ル25だけからガス供給をするようにしたが、下ベース
I7のガスノズル25から弱いガス供給をしても成形室
24内において対流が生じない範囲、即ち、ガスの層流
が確保される範囲にあっては、同様の効果を奏しうるち
のであ(第2実施例)
第2図に本発明の第2実施例を示す6本実施例は、第1
図にて示す構成において、成形室24と加熱炉21との
間にシャッター枠50を介して水平前後方向に可動自在
に保持されたジャッジ中−51を配備して構成したもの
である。その他の構成は、第1実施例と同様であるので
、同一部材には同一符号を付してその説明を省略する。In this embodiment, the gas supply from the gas nozzle 25 of the lower base 17 was stopped and gas was supplied only from the gas nozzle 25 of the upper base 13, but a weak gas supply from the gas nozzle 25 of the lower base I7 was However, in the range where no convection occurs in the molding chamber 24, that is, in the range where laminar flow of gas is ensured, the same effect can be achieved (Second Embodiment). Embodiment 6 This embodiment shows the second embodiment of the invention.
In the configuration shown in the figure, a judge medium 51 is disposed between the molding chamber 24 and the heating furnace 21 and is held movably in the horizontal front and rear directions via a shutter frame 50. The rest of the configuration is the same as in the first embodiment, so the same members are given the same reference numerals and their explanations will be omitted.
本実施例によれば、成形室24の密閉度の向上を図りう
る効果がある。その他の作用、効果は、第1実施例と同
様であるのでその説明を省略する。According to this embodiment, there is an effect that the degree of sealing of the molding chamber 24 can be improved. Other functions and effects are the same as those in the first embodiment, so their explanation will be omitted.
以上のように本発明によれば、高温時における成形室内
の酸素濃度の上昇を防止できるので、常に酸素濃度を1
%以下に保つことができ、金型の酸化を防止して金型耐
久性の向上を図りうるものである。As described above, according to the present invention, it is possible to prevent the oxygen concentration in the molding chamber from increasing at high temperatures, so the oxygen concentration is always kept at 1.
% or less, thereby preventing oxidation of the mold and improving the durability of the mold.
第1図は、本発明に係る装置の第1実施例を示す縦断面
図、
第2図は、
す縦断面図、
第3図は従来技術の説明図である。
11・・・上型
13・・・上ベース
14・・・下型
16・・・プレス軸
17・・・下ヘース
23・・・カバー
24・・・成形室
25・・・ガスノズル
39・・・排気装置
本発明に係る装置の第2実施例を示
時
許
出
願
人
オリンパス光学工業株式会社FIG. 1 is a vertical cross-sectional view showing a first embodiment of the apparatus according to the present invention, FIG. 2 is a vertical cross-sectional view, and FIG. 3 is an explanatory diagram of the prior art. 11... Upper die 13... Upper base 14... Lower die 16... Press shaft 17... Lower heath 23... Cover 24... Molding chamber 25... Gas nozzle 39... Exhaust device The second embodiment of the device according to the present invention is presented by the applicant Olympus Optical Industry Co., Ltd.
Claims (2)
子を成形する光学素子の成形装置において、上型及び下
型をそれぞれ保持する上ベース。 下ベース並びに成形部周囲を密閉するカバーにて成形室
を構成するとともに、前記成形室に窒素ガス等のガス流
入部を設け、前記下型をその上部に固設し前記下ベース
に保持されたプレス軸の下部に、前記成形室内に供給さ
れるガスの排気装置を設けて構成したことを特徴とする
光学素子の成形装置。(1) An upper base that holds an upper mold and a lower mold, respectively, in an optical element molding apparatus that molds a desired optical element using molds arranged vertically to face each other. A molding chamber is configured with a lower base and a cover that seals around the molding section, and a gas inflow port for nitrogen gas or the like is provided in the molding chamber, and the lower mold is fixed on the upper part and held by the lower base. 1. A molding apparatus for an optical element, characterized in that an exhaust device for gas supplied into the molding chamber is provided at a lower part of a press shaft.
ベース温度が下ベースの温度より高くなった時点で排気
装置を作動させて成形室内のガスに下方向への流れを生
じさせるように構成したことを特徴とする請求項1記載
の光学素子の成形装置。(2) Temperature sensors are installed on the upper and lower bases, and when the temperature of the upper base becomes higher than the temperature of the lower base, the exhaust device is activated to cause the gas in the molding chamber to flow downward. The optical element molding apparatus according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4769889A JPH02225325A (en) | 1989-02-28 | 1989-02-28 | Apparatus for forming optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4769889A JPH02225325A (en) | 1989-02-28 | 1989-02-28 | Apparatus for forming optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02225325A true JPH02225325A (en) | 1990-09-07 |
Family
ID=12782509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4769889A Pending JPH02225325A (en) | 1989-02-28 | 1989-02-28 | Apparatus for forming optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02225325A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006096604A (en) * | 2004-09-29 | 2006-04-13 | Canon Inc | Method and apparatus for molding optical device |
JP2009242139A (en) * | 2008-03-28 | 2009-10-22 | Fujinon Corp | Forming method and apparatus |
JP2009242137A (en) * | 2008-03-28 | 2009-10-22 | Fujinon Corp | Forming method and apparatus |
-
1989
- 1989-02-28 JP JP4769889A patent/JPH02225325A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006096604A (en) * | 2004-09-29 | 2006-04-13 | Canon Inc | Method and apparatus for molding optical device |
JP4566673B2 (en) * | 2004-09-29 | 2010-10-20 | キヤノン株式会社 | Optical element molding method and apparatus |
JP2009242139A (en) * | 2008-03-28 | 2009-10-22 | Fujinon Corp | Forming method and apparatus |
JP2009242137A (en) * | 2008-03-28 | 2009-10-22 | Fujinon Corp | Forming method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2511025B2 (en) | Sheet glass forming equipment | |
CN106795032B (en) | Overpressure assisted gravity bending method and apparatus suitable for use in the method | |
TW201345846A (en) | Apparatus for moulding glass case and method for moulding same | |
KR930000400A (en) | Bending method and apparatus of glass sheet | |
JPH02225325A (en) | Apparatus for forming optical element | |
US20080282737A1 (en) | Press-molding apparatus | |
KR100552609B1 (en) | Press-forming method and machine for glass | |
JP3854113B2 (en) | Method and apparatus for forming quartz glass element | |
WO2007061071A1 (en) | Press molding apparatus and method of delivering carriage item for press molding apparatus | |
JP6051272B2 (en) | Molding equipment | |
JP3874637B2 (en) | Glass element molding method and molding apparatus | |
ES422976A1 (en) | Apparatus and method for the production of a surface coated sheet of glass | |
JP3845595B2 (en) | Manufacturing method of microfluidic chip | |
JP2723139B2 (en) | Optical element molding method and molding apparatus | |
JP2003137570A (en) | Method for molding optical element | |
JP2008056502A (en) | Apparatus for molding optical element | |
JP3854112B2 (en) | Glass element molding equipment | |
JPH04149034A (en) | Lens forming device | |
JPS62241832A (en) | Heating apparatus for optical element | |
JP2003342026A (en) | Glass molding apparatus | |
JP2005035859A (en) | Method and apparatus for manufacturing optical element | |
JP4557416B2 (en) | Glass and mold heating method | |
JP2003137568A (en) | Apparatus for molding glass element | |
JPH0748133A (en) | Method for forming optical element and apparatus therefor | |
JPH03223126A (en) | Apparatus for producing glass lens |