JP3874637B2 - Glass element molding method and molding apparatus - Google Patents

Glass element molding method and molding apparatus Download PDF

Info

Publication number
JP3874637B2
JP3874637B2 JP2001291888A JP2001291888A JP3874637B2 JP 3874637 B2 JP3874637 B2 JP 3874637B2 JP 2001291888 A JP2001291888 A JP 2001291888A JP 2001291888 A JP2001291888 A JP 2001291888A JP 3874637 B2 JP3874637 B2 JP 3874637B2
Authority
JP
Japan
Prior art keywords
molding
quartz glass
glass tube
inert gas
molds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001291888A
Other languages
Japanese (ja)
Other versions
JP2003095672A (en
Inventor
洋 村越
修作 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2001291888A priority Critical patent/JP3874637B2/en
Publication of JP2003095672A publication Critical patent/JP2003095672A/en
Application granted granted Critical
Publication of JP3874637B2 publication Critical patent/JP3874637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/088Flat discs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス素子の成形方法及び成形装置に係わるもので、特に加熱チャンバーを形成する石英ガラス管の長寿命化に関するものである。
【0002】
【従来の技術】
ガラスレンズなどの高精度が要求されるガラス素子の製造方法としては、研削・研磨により製造されるものと、リヒートプレスにより製造されるものの二種類に大別される。
【0003】
一般に光学ガラス素子の製造方法としてガラス素材を研削・研磨して光学面を形成する方法が多く用いられる。しかし、研削・研磨による曲面形成には十数工程が必要であるうえに、作業者に有害なガラス研削粉が多量に発生する問題点、さらに、研削・研磨では、付加価値の高い非球面形状の光学面を持つガラスレンズを同じ精度で大量に製作することが困難であるという問題点を持っている。
【0004】
それに対してリヒートプレスは、溶融したガラスを一度冷却して製作したガラス素材を加熱し、プレスすることにより型の形状をガラス素材に転写させ、ガラスレンズなどのガラス素子を成形する方法であり、曲面形成に必要な工程はプレス形成の一工程のみであるという利点がある。また、型を一度製作すれば、型の精度に準じた成形品がいくつも製作することも可能である。この場合、型の周りの雰囲気を不活性雰囲気もしくは真空雰囲気として型の長寿命化を図るようにしている。
【0005】
【発明が解決しようとする課題】
近年、光通信分野や医療分野で、ガラス素子は非常に注目されている。中でも、熱膨張が少ない、不純物が少ない、紫外線透過率が良い等の理由から、石英ガラス素子が注目されている。そのためガラス素子は、マイクロレンズアレイ等形状の複雑なもの、また、大きさも超小型のものから大型のものまで各種必要となっている。
【0006】
上述したように、リヒートプレスでは、型の間にガラス素材を置き、型の酸化を防止する目的で型およびガラス素材を含む成形室内を不活性ガス雰囲気にしたうえで、高周波加熱装置や赤外線ランプ等により加熱し、ガラス素材を型によりプレスした後、成形品を冷却して取り出す方法が取られるが、石英ガラスのように成形温度が約1400度と高いガラス素材では、ガラス素材を加熱させる際に、成形室を構成する石英ガラス管の温度まで上昇し、石英ガラス管の結晶化が起きるために、石英ガラス管の寿命が短いという問題がある。
【0007】
そこで、本発明は、ガラス素子をリヒートプレスにより成形する際に、成形室を構成する石英ガラス管の温度の上昇を防ぎ、石英ガラス管の寿命を長くする、ガラス素子成形方法を提供することにある。
【0008】
【課題を解決するための手段】
この課題を解決するために本発明は以下の構成を備える。
【0010】
(1) 成形室を構成する石英ガラス管内に一対の型間にガラス素材を配置し、これら一対の型及びガラス素材を加熱してガラス素材をプレス成形する工程と、成形後に徐冷する工程と、加熱・成形時及び徐冷時のみに、不活性ガスを前記一対の型を通すことなく加熱チャンバーの石英ガラス管の内壁に沿って流す工程とを備えたガラス素子の成形方法。
【0012】
(2) 成形室を構成する石英ガラス管内に配置され、ガラス素材をプレス成形するための一対の型と、これら一対の型及びガラス素材を加熱する加熱源と、不活性ガスを前記一対の型を通すことなく石英ガラス管の内壁に沿って流す不活性ガス供給路と、加熱・成形時及び徐冷時のみに不活性ガスがこの経路に沿って流れるように制御する制御手段を備えたガラス素子の成形装置。
【0013】
【発明の実施の形態】
本発明は、成形室をO−リング等で大気から遮断したうえで、一対の型間にガラス素材を配置し、これらを加熱してプレス成形するガラス素子の成形方法において、一連の加熱・冷却工程、特に、型およびガラス素材の加熱・成形時および徐冷時に成形室を構成する石英ガラス管の内壁に沿って不活性ガスを流して石英ガラス管を冷却し、このことにより、成形室を構成する石英ガラス管の結晶化(クリストバライト)を防止し、白濁化を防ぎ、石英ガラス管の寿命を飛躍的に延ばす方法である。さらに型がある程度冷えてからは型を直接冷却することが可能なため、型の均熱性が悪化せず、冷却時間を短縮することもできる。
【0014】
【実施例】
以下、本発明の実施例を、図面を参照し説明する。
【0015】
図1はガラス素子34の成形装置の1例を示す。この成形装置は、フレーム1の上部から固定軸2が下方に向かって伸びており、その下端にセラミック製の断熱筒3を介して上型組み立て4が図示しないボルト等により取り付けられている。上型組み立て4は、金属製又はセラミック・カーボン製のダイプレート5、セラミックや超硬合金などで作られた上型6、ならびにこの上型6をダイプレート5に取り付けると共に型の一部を形成する固定ダイ7からなっている。
【0016】
フレーム1の下部にはサーボモータ8aを駆動源とし、サーボモータ8aの回転運動を直線運動推力に変換するスクリュージャッキ等の駆動装置8が設けられ、駆動装置8には荷重検出装置8bを介して移動軸9が取り付けられている。移動軸9は制御装置29に入力したプログラムにより、速度、位置およびトルク制御可能に上下動し、固定軸2と対向して上方に向かって伸びている。移動軸9の上端には断熱筒3と同様の断熱筒10が取り付けられている。下型組み立て11は、ダイプレート12、下型13および移動ダイ14からなっている。
【0017】
固定軸2には図示しない駆動装置によって上下動させるブラケット15が移動可能に結合されている。ブラケット15には対をなす型組み立て4、11の周囲を囲むフランジ付透明石英ガラス管16が取り付けられている。ブラケット15には石英ガラス管16と外筒18が取り付けられ、外筒18にはランプユニット19が取り付けられている。ランプユニット19は、赤外線ランプ20とその後方に配置された反射ミラー21、さらに反射ミラー21を冷却するための図示しない水冷パイプから構成されており、型組み立て4、11を加熱するようになっている。
【0018】
石英ガラス管16の上端はブラケット15に、はめ込まれたO−リングに気密当接している。また、フランジ付透明石英管16の下端は、移動軸9が貫通している中間プレート1aのO−リングに気密当接し、型組み立て4、11の周囲に大気から遮断される成形室17を形成するようになっている。
【0019】
固定軸2、移動軸9、中間プレート1aには、成形室17内を不活性ガス雰囲気にしたり、型組み立て4、11を冷却するための不活性ガス供給路及び石英ガラス管の内壁を冷却するための不活性ガス供給路が設けられ、これらはライン切換バルブ37(図2,3参照)により切換可能となっている。
【0020】
型組み立て4、11を冷却するための不活性ガス供給路は、図2に示すように、固定軸2側に、型組み立て4内に不活性ガスを流すための経路22a,22b,35,26を形成し、移動軸9側に、型組み立て11内に不活性ガスを流すための経路23a,23b,36,26を形成している。
【0021】
石英ガラス管の内壁を冷却するための不活性ガス供給路は、図3に示すように、24,25,26を形成し、型組み立て4、11内を通すことなく、石英ガラス管の内壁を冷却するようになっている。これら不活性ガス供給路には、不活性ガスを図示しない流量コントロール計を介して所定流量供給されるようになっている。成形室17へ供給された不活性ガスは、ガス排出路26から排気される。なお、28は下型組み立て11の温度検出用熱電対、29は温度検出用熱電対からの信号を受けて赤外線ランプ20、駆動装置8、及びライン切換バルブ37を制御する制御装置部、27は真空排気口、30は真空バルブ、31はガス排気バルブ、32は真空排気装置、33は真空計である。
【0022】
この実施例では、ガラス素材34を型組み立て4、11とともに所定温度まで加熱し、プレス成形し、その後、徐冷し、急冷する。その際、制御装置部29で加熱・成形時及び徐冷時を検出し、切換バルブ37を切り替えて、不活性ガスが図3に示す経路(型組み立て内を通らないで石英ガラス管内壁を通る経路)を通るようにし、急冷時には、切換バルブ37を切り替えて、不活性ガスが図2に示す経路(型組み立て内を通る経路)を通るようにした。若しくは、いずれの場合も不活性ガスが図3に示す経路(型組み立て内を通らないで石英ガラス管内壁を通る経路)を通るようにした。
【0023】
次に、本発明の実験例を説明する。
【0024】
従来のガラス素子成形方法と本発明によるガラス素子成形方法との比較を、図1に示す装置で成形することにより行った。
【0025】
ガラス素材である石英ガラス(ES:日本石英ガラス)を、金型温度200℃から加熱し、加熱温度1400℃、プレス時間120secで成形し、650℃まで徐冷し、200℃まで急冷した場合、図4に示すような温度線図を描くが、それに準じた温度線図を描くように加熱テストを行った。
【0026】
方法としては、図2に示すように、加熱時間A・プレス時間B・徐冷時間C・急冷時間Dともに、型組み立て内を通る経路のみを使用した場合(パターン1:従来例)と、加熱時間A・プレス時間B・徐冷時間Cには、図3に示すように、型組み立て内を通らないで石英ガラス管内壁を通る経路を用い、急冷時間Dのみ図2に示すように、型組み立て内を通るガス供給路を使用した場合(パターン2:実施例1)とでそれぞれ200回ずつテストを行った。
その結果、パターン1の場合、石英ガラス管に明確な白濁が観察され、分析の結果、クリストバライトが発生していることが確認された。
それに比べ、パターン2の場合は、石英ガラス管には変化は見られなかった。
【0027】
また、パターン1、パターン2・および、加熱時間A・プレス時間B・徐冷時間C・急冷時間D全ての時間に於いて、図3に示すように、石英ガラス管に沿って不活性ガスを流した場合(パターン3:参考例)の時間を比較した。下記に結果を記す。
【0028】
【表1】

Figure 0003874637
【0029】
この結果、パターン1の場合が最もテスト時間が早く、パターン3の場合が最も遅かった。さらにパターン3の場合は、200℃冷却後の上下型の温度差が30℃と大きく、次回の成形では上下の型の温度調節に支障をきたすことも確認された。
【0030】
パターン2の場合、パターン1と比べると3分遅いが、石英ガラス管の寿命が長くなることから、トータルコストとしては安くなることが分かる。
【0031】
さらに、流量コントロールを行うことにより、冷却中の金型温度差も解消されるため、1400℃で成形時に、金型温度差をなくすことができる。
【0032】
【発明の効果】
以上説明した様に、本発明のガラス素子の成形方法によれば、石英ガラスなどの高融点ガラスを成形する場合でも、石英ガラス管の結晶化を防止することが出来、石英ガラス管の寿命を長くすることができるため、ガラス素子の製作コストの削減が可能となる。
【図面の簡単な説明】
【図1】本発明による光学素子の成形装置の実施例を示す概略断面図である。
【図2】ガラス成形方法の1例を示す図である。
【図3】ガラス成形方法の1例を示す図である。
【図4】ガラス成形の時間を示す図である。
【符号の説明】
1 フレーム
1a 中間プレート
2 固定軸
3 断熱筒
4 上型組み立て
5 ダイプレート
6 上型
7 固定ダイ
8 駆動装置
8a サーボモータ
8b 荷重検出器
9 移動軸
10 断熱筒
11 下型組み立て
12 ダイプレート
13 下型
14 移動ダイ
15 ブラケット
16 石英ガラス管
17 成形室
18 外筒
19 ランプユニット
20 赤外線ランプ
21 反射ミラー
22a,22b,23a,23b,36 型組み立て内を通る経路
24,25,26 型組み立て内を通らないで石英ガラス管内壁を通る経路
26 ガス排出路
27 真空排気口
28 温度検出用熱電対
29 制御装置部
30 真空バルブ
31 ガス排気バルブ
32 真空排気装置
33 真空計
34 ガラス素材
35 上型ガス流路
36 下型ガス流路
37 ライン切替バルブ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass element molding method and a molding apparatus, and more particularly to extending the life of a quartz glass tube forming a heating chamber.
[0002]
[Prior art]
Glass element manufacturing methods that require high accuracy such as glass lenses are roughly classified into two types: those manufactured by grinding / polishing and those manufactured by reheat press.
[0003]
In general, a method of forming an optical surface by grinding and polishing a glass material is often used as a method for manufacturing an optical glass element. However, the curved surface formation by grinding and polishing requires more than a dozen processes, and there is a problem that a large amount of glass grinding powder harmful to workers is generated. However, it is difficult to manufacture a large number of glass lenses having the same optical surface with the same accuracy.
[0004]
On the other hand, the reheat press is a method of forming a glass element such as a glass lens by heating the glass material produced by cooling the molten glass once, transferring the shape of the mold to the glass material by pressing, There is an advantage that the process necessary for forming the curved surface is only one process of press forming. In addition, once a mold is manufactured, it is possible to manufacture a number of molded products according to the accuracy of the mold. In this case, the atmosphere around the mold is set to an inert atmosphere or a vacuum atmosphere to extend the life of the mold.
[0005]
[Problems to be solved by the invention]
In recent years, glass elements have attracted a great deal of attention in the optical communication field and the medical field. Among these, quartz glass elements are attracting attention for reasons such as low thermal expansion, low impurities, and good ultraviolet transmittance. For this reason, various glass elements such as a microlens array having a complicated shape and an extremely small size to a large size are required.
[0006]
As described above, in the reheat press, a glass material is placed between molds, and the molding chamber containing the mold and the glass material is made an inert gas atmosphere for the purpose of preventing the mold from being oxidized. The glass material is pressed with a mold, and then the molded product is cooled and taken out. However, in the case of a glass material having a molding temperature as high as about 1400 ° C. like quartz glass, the glass material is heated. Furthermore, since the temperature of the quartz glass tube constituting the molding chamber rises and crystallization of the quartz glass tube occurs, there is a problem that the lifetime of the quartz glass tube is short.
[0007]
Therefore, the present invention provides a glass element molding method that prevents the temperature of the quartz glass tube constituting the molding chamber from rising when the glass element is molded by reheat press, and prolongs the life of the quartz glass tube. is there.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present invention has the following configuration.
[0010]
(1) A step of placing a glass material between a pair of molds in a quartz glass tube constituting a molding chamber, heating the pair of molds and the glass material to press-mold the glass material, and a step of gradually cooling after molding And a step of flowing an inert gas along the inner wall of the quartz glass tube of the heating chamber without passing through the pair of molds only at the time of heating / forming and slow cooling.
[0012]
(2) A pair of molds arranged in a quartz glass tube constituting a molding chamber for press-molding a glass material, a heating source for heating the pair of molds and the glass material, and an inert gas from the pair of molds Glass with an inert gas supply path that flows along the inner wall of the quartz glass tube without passing through, and a control means that controls the inert gas to flow along this path only during heating, molding, and slow cooling Element molding equipment.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a series of heating and cooling in a glass element molding method in which a molding material is cut off from the atmosphere by an O-ring or the like, a glass material is placed between a pair of molds, and these are heated and press-molded. The quartz glass tube is cooled by flowing an inert gas along the inner wall of the quartz glass tube constituting the molding chamber at the time of heating, molding and slow cooling of the mold and the glass material. This is a method for preventing the crystallization (cristobalite) of the quartz glass tube to be formed, preventing white turbidity, and greatly extending the life of the quartz glass tube. Furthermore, since the mold can be directly cooled after the mold has cooled to some extent, the soaking property of the mold does not deteriorate and the cooling time can be shortened.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 shows an example of a molding device for the glass element 34. In this molding apparatus, a fixed shaft 2 extends downward from an upper part of a frame 1, and an upper mold assembly 4 is attached to a lower end thereof via a ceramic heat insulating cylinder 3 with a bolt (not shown) or the like. The upper die assembly 4 includes a metal or ceramic / carbon die plate 5, an upper die 6 made of ceramic or cemented carbide, and the upper die 6 attached to the die plate 5 to form a part of the die. It consists of a fixed die 7.
[0016]
Under the frame 1, a servo motor 8a is used as a drive source, and a drive device 8 such as a screw jack for converting the rotational motion of the servo motor 8a into a linear motion thrust is provided. The drive device 8 is connected via a load detection device 8b. A moving shaft 9 is attached. The moving shaft 9 moves up and down so that the speed, position and torque can be controlled by a program input to the control device 29, and extends upward facing the fixed shaft 2. A heat insulating cylinder 10 similar to the heat insulating cylinder 3 is attached to the upper end of the moving shaft 9. The lower mold assembly 11 includes a die plate 12, a lower mold 13, and a moving die 14.
[0017]
A bracket 15 that is moved up and down by a driving device (not shown) is movably coupled to the fixed shaft 2. A flanged transparent quartz glass tube 16 surrounding the periphery of the paired mold assemblies 4 and 11 is attached to the bracket 15. A quartz glass tube 16 and an outer cylinder 18 are attached to the bracket 15, and a lamp unit 19 is attached to the outer cylinder 18. The lamp unit 19 includes an infrared lamp 20, a reflection mirror 21 disposed behind the infrared lamp 20, and a water cooling pipe (not shown) for cooling the reflection mirror 21, and heats the mold assemblies 4 and 11. Yes.
[0018]
The upper end of the quartz glass tube 16 is in airtight contact with the bracket 15 and an O-ring fitted therein. Further, the lower end of the flanged transparent quartz tube 16 is in airtight contact with the O-ring of the intermediate plate 1a through which the moving shaft 9 passes, and forms a molding chamber 17 that is shielded from the atmosphere around the mold assemblies 4 and 11. It is supposed to be.
[0019]
The fixed shaft 2, the moving shaft 9 and the intermediate plate 1 a have an inert gas atmosphere in the molding chamber 17, and an inert gas supply path for cooling the mold assemblies 4 and 11 and an inner wall of the quartz glass tube. An inert gas supply path is provided, and these can be switched by a line switching valve 37 (see FIGS. 2 and 3).
[0020]
As shown in FIG. 2, the inert gas supply paths for cooling the mold assemblies 4 and 11 are paths 22a, 22b, 35, and 26 for flowing an inert gas into the mold assembly 4 on the fixed shaft 2 side. And a path 23a, 23b, 36, 26 for flowing an inert gas into the mold assembly 11 is formed on the moving shaft 9 side.
[0021]
As shown in FIG. 3, the inert gas supply path for cooling the inner wall of the quartz glass tube forms 24, 25, and 26, and passes the inner wall of the quartz glass tube without passing through the mold assemblies 4 and 11. It is designed to cool. A predetermined flow rate of the inert gas is supplied to these inert gas supply paths via a flow rate control meter (not shown). The inert gas supplied to the molding chamber 17 is exhausted from the gas discharge path 26. Reference numeral 28 denotes a thermocouple for detecting the temperature of the lower mold assembly 11, 29 denotes a control unit that receives signals from the thermocouple for detecting temperature and controls the infrared lamp 20, the driving device 8, and the line switching valve 37, 27 A vacuum exhaust port, 30 is a vacuum valve, 31 is a gas exhaust valve, 32 is a vacuum exhaust device, and 33 is a vacuum gauge.
[0022]
In this embodiment, the glass material 34 is heated together with the die assemblies 4 and 11 to a predetermined temperature, press-molded, and then slowly cooled and rapidly cooled. At that time, the controller 29 detects the time of heating / molding and the time of slow cooling, switches the switching valve 37, and the inert gas passes through the quartz glass tube inner wall without passing through the path shown in FIG. Path), and during rapid cooling, the switching valve 37 is switched so that the inert gas passes through the path shown in FIG. 2 (path through the mold assembly). Alternatively, in any case, the inert gas is allowed to pass through the path shown in FIG. 3 (the path passing through the inner wall of the quartz glass tube without passing through the mold assembly).
[0023]
Next, experimental examples of the present invention will be described.
[0024]
A comparison between the conventional glass element molding method and the glass element molding method according to the present invention was performed by molding with the apparatus shown in FIG.
[0025]
When quartz glass (ES: Nippon quartz glass), which is a glass material, is heated from a mold temperature of 200 ° C., molded at a heating temperature of 1400 ° C. and a press time of 120 sec, slowly cooled to 650 ° C., and rapidly cooled to 200 ° C., Although a temperature diagram as shown in FIG. 4 is drawn, a heating test was conducted so as to draw a temperature diagram corresponding to the temperature diagram.
[0026]
As shown in FIG. 2, the heating time A, the pressing time B, the slow cooling time C, and the rapid cooling time D are all used in the case where only the path through the die assembly is used (pattern 1: conventional example), and heating is performed. For time A, press time B, and slow cooling time C, as shown in FIG. 3, a route passing through the inner wall of the quartz glass tube without passing through the die assembly is used, and only the rapid cooling time D is shown in FIG. The test was performed 200 times each when the gas supply path passing through the assembly was used (Pattern 2: Example 1).
As a result, in the case of Pattern 1, clear turbidity was observed in the quartz glass tube, and as a result of analysis, it was confirmed that cristobalite was generated.
In contrast, in the case of Pattern 2, no change was observed in the quartz glass tube.
[0027]
Further, as shown in FIG. 3, an inert gas is supplied along the quartz glass tube at all times of pattern 1, pattern 2, and heating time A, pressing time B, slow cooling time C, and rapid cooling time D. The time when flowing (Pattern 3: Reference Example ) was compared. The results are shown below.
[0028]
[Table 1]
Figure 0003874637
[0029]
As a result, the test time was the earliest for pattern 1 and the latest for pattern 3. Furthermore, in the case of Pattern 3, the temperature difference between the upper and lower molds after cooling at 200 ° C. was as large as 30 ° C., and it was confirmed that the next molding would hinder the temperature control of the upper and lower molds.
[0030]
In the case of the pattern 2, it is 3 minutes slower than the pattern 1, but it can be seen that the total cost is reduced because the life of the quartz glass tube is increased.
[0031]
Furthermore, by controlling the flow rate, the mold temperature difference during cooling is also eliminated, so that the mold temperature difference can be eliminated during molding at 1400 ° C.
[0032]
【The invention's effect】
As described above, according to the method for molding a glass element of the present invention, even when a high melting point glass such as quartz glass is molded, crystallization of the quartz glass tube can be prevented, and the lifetime of the quartz glass tube can be reduced. Since the length can be increased, the manufacturing cost of the glass element can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an optical element molding apparatus according to the present invention.
FIG. 2 is a diagram showing an example of a glass forming method.
FIG. 3 is a diagram showing an example of a glass forming method.
FIG. 4 is a diagram showing a glass forming time.
[Explanation of symbols]
1 frame
1a Intermediate plate 2 Fixed shaft 3 Thermal insulation cylinder 4 Upper die assembly 5 Die plate 6 Upper die 7 Fixed die 8 Drive unit
8a Servo motor
8b Load detector 9 Moving shaft 10 Heat insulating cylinder 11 Lower mold assembly 12 Die plate 13 Lower mold 14 Moving die 15 Bracket 16 Quartz glass tube 17 Molding chamber 18 Outer cylinder 19 Lamp unit 20 Infrared lamp 21 Reflecting mirror
Route through 22a, 22b, 23a, 23b, 36 type assembly
24, 25, 26 Route through the quartz glass tube inner wall without passing through the mold assembly 26 Gas exhaust passage 27 Vacuum exhaust port 28 Temperature detection thermocouple 29 Control unit 30 Vacuum valve 31 Gas exhaust valve 32 Vacuum exhaust device 33 Vacuum Total 34 Glass material 35 Upper gas flow path 36 Lower gas flow path 37 Line switching valve

Claims (2)

成形室を構成する石英ガラス管内に一対の型間にガラス素材を配置し、これら一対の型及びガラス素材を加熱してガラス素材をプレス成形する工程と、成形後に徐冷する工程と、加熱・成形時及び徐冷時のみに、不活性ガスを前記一対の型を通すことなく加熱チャンバーの石英ガラス管の内壁に沿って流す工程とを備えたガラス素子の成形方法。A glass material is disposed between a pair of molds in a quartz glass tube constituting the molding chamber, a process of press-molding the glass material by heating the pair of molds and the glass material, a step of gradually cooling after the molding, And a step of flowing an inert gas along the inner wall of the quartz glass tube of the heating chamber without passing through the pair of molds only at the time of molding and slow cooling. 成形室を構成する石英ガラス管内に配置され、ガラス素材をプレス成形するための一対の型と、これら一対の型及びガラス素材を加熱する加熱源と、不活性ガスを前記一対の型を通すことなく石英ガラス管の内壁に沿って流す不活性ガス供給路と、加熱・成形時及び徐冷時のみに不活性ガスがこの経路に沿って流れるように制御する制御手段を備えたガラス素子の成形装置。A pair of molds arranged in a quartz glass tube constituting the molding chamber and press-molding the glass material, a heating source for heating the pair of molds and the glass material, and an inert gas passing through the pair of molds Glass element molding comprising an inert gas supply path that flows along the inner wall of the quartz glass tube, and a control means for controlling the inert gas to flow along this path only during heating, molding, and slow cooling apparatus.
JP2001291888A 2001-09-25 2001-09-25 Glass element molding method and molding apparatus Expired - Fee Related JP3874637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291888A JP3874637B2 (en) 2001-09-25 2001-09-25 Glass element molding method and molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291888A JP3874637B2 (en) 2001-09-25 2001-09-25 Glass element molding method and molding apparatus

Publications (2)

Publication Number Publication Date
JP2003095672A JP2003095672A (en) 2003-04-03
JP3874637B2 true JP3874637B2 (en) 2007-01-31

Family

ID=19113956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291888A Expired - Fee Related JP3874637B2 (en) 2001-09-25 2001-09-25 Glass element molding method and molding apparatus

Country Status (1)

Country Link
JP (1) JP3874637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109264978A (en) * 2017-07-18 2019-01-25 香港理工大学 Micro-embossing device and method applied to precision glass microscopic optical structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580677B2 (en) * 2004-04-26 2010-11-17 東芝機械株式会社 Glass forming equipment
JP2009242139A (en) * 2008-03-28 2009-10-22 Fujinon Corp Forming method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109264978A (en) * 2017-07-18 2019-01-25 香港理工大学 Micro-embossing device and method applied to precision glass microscopic optical structure

Also Published As

Publication number Publication date
JP2003095672A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP2003103331A (en) Manufacturing method for metallic part and manufacturing device therefor
US6928838B2 (en) Apparatus and method for forming silica glass elements
JP5083771B2 (en) Molding method and apparatus
JP3874637B2 (en) Glass element molding method and molding apparatus
KR100552609B1 (en) Press-forming method and machine for glass
JP3854113B2 (en) Method and apparatus for forming quartz glass element
JP3854112B2 (en) Glass element molding equipment
KR100530479B1 (en) Press forming machine for optical devices
KR100545672B1 (en) Optical element molding apparatus
KR100671378B1 (en) Press forming machine for glass
JP2003137568A (en) Apparatus for molding glass element
JP4203289B2 (en) Quartz glass element molding apparatus and molding method
JP3748802B2 (en) Glass element molding equipment
JP3845595B2 (en) Manufacturing method of microfluidic chip
JP2003137569A (en) Apparatus for molding glass element
JP3752651B2 (en) Method and apparatus for forming rod-shaped glass element
JP2003137570A (en) Method for molding optical element
JP4499230B2 (en) Optical element molding equipment
JP4358402B2 (en) Optical element molding equipment
JP2004083368A (en) Molding method of optical device
JP2001233624A (en) Optical element-molding machine
JP2015101515A (en) Method and apparatus for manufacturing a glass molding
JP2003292325A (en) Method for molding glass element
JP2001233626A (en) Optical element-molding machine
JP2003137562A (en) Apparatus for holding glass element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Ref document number: 3874637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees