JP2006096604A - Method and apparatus for molding optical device - Google Patents

Method and apparatus for molding optical device Download PDF

Info

Publication number
JP2006096604A
JP2006096604A JP2004284177A JP2004284177A JP2006096604A JP 2006096604 A JP2006096604 A JP 2006096604A JP 2004284177 A JP2004284177 A JP 2004284177A JP 2004284177 A JP2004284177 A JP 2004284177A JP 2006096604 A JP2006096604 A JP 2006096604A
Authority
JP
Japan
Prior art keywords
chamber
opening
optical element
molding
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004284177A
Other languages
Japanese (ja)
Other versions
JP4566673B2 (en
JP2006096604A5 (en
Inventor
Takeshi Nomura
剛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004284177A priority Critical patent/JP4566673B2/en
Publication of JP2006096604A publication Critical patent/JP2006096604A/en
Publication of JP2006096604A5 publication Critical patent/JP2006096604A5/ja
Application granted granted Critical
Publication of JP4566673B2 publication Critical patent/JP4566673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the oxidation of a mold by suppressing the flow-in of oxygen into a chamber in the taking in and out glass to a chamber without cooling the mold to a low temperature to keep the whole chamber to the high level low oxygen atmosphere. <P>SOLUTION: In the method of molding the optical device obtained by press-molding a glass base material heated to a temperature equal to or above the softening point using a pair of upper and lower molds arranged in the chamber in an inert gas atmosphere cut off from the outside atmosphere and cooling, the pressure of the inert gas in the chamber when the glass base material is carried into the chamber before the press-molding and the glass based material after cooled is carried out from the chamber is kept to be higher than the outside pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加熱されたガラス素材を一対の型間で成形するための光学素子の成形方法及びそのための成形装置に関するものである。   The present invention relates to an optical element molding method for molding a heated glass material between a pair of molds and a molding apparatus therefor.

上下一対の型とガラス素材を軟化転移以上に加熱して型でガラス素材を押圧し、冷やしてから成形された光学素子を取り出す、いわゆるガラスモールドの成形方法においては、型の成形面の状態がほぼそのままガラスに転写されるため、良好な光学面を有する光学素子を得るためには、型の表面状態も常に良好に保たなければならない。   In a so-called glass mold molding method in which a pair of upper and lower molds and a glass material are heated above the softening transition, the glass material is pressed with the mold, and the molded optical element is taken out after being cooled, the state of the molding surface of the mold is Since it is transferred to glass almost as it is, in order to obtain an optical element having a good optical surface, the surface state of the mold must always be kept good.

また、近年の光学素子の性能向上から、ますます表面状態、例えば表面粗さなどについて厳しい要求がなされてきている。   In addition, due to the recent improvement in performance of optical elements, strict demands have been made for surface conditions such as surface roughness.

しかしながらガラスの成形は低いものでも約400℃と高温下で行われるため、非酸化雰囲気中で行われるのが一般的であり、チャンバ内に型を設置してその内部を不活性ガスで満たしたり、あるいは真空状態にしてプレスが行われており、その際の酸素濃度の要求値もますます低いものが求められている。   However, glass molding is performed at a high temperature of about 400 ° C. even at a low temperature, so it is generally performed in a non-oxidizing atmosphere, and a mold is placed in the chamber to fill the interior with an inert gas. Alternatively, pressing is performed in a vacuum state, and the required value of the oxygen concentration at that time is increasingly required.

そこで、ガラスをチャンバ内に出し入れする際には、型が酸化しないように低温まで型を冷やしてからチャンバを開放するか、あるいはチャンバ本体と外部との間に入れ替え室を別途設け、チャンバ内の雰囲気が直接外部とは触れないようにしてチャンバ内への酸素の流入を防いでいた(下記特許文献1参照)。   Therefore, when the glass is taken into and out of the chamber, the mold is cooled to a low temperature so that the mold does not oxidize and then the chamber is opened, or a replacement chamber is provided between the chamber body and the outside, Inflow of oxygen into the chamber was prevented by preventing the atmosphere from directly touching the outside (see Patent Document 1 below).

ここで、入れ替え室を設けた場合のガラスの出し入れにおける動作について少し説明すると、ガラスをチャンバ内に入れる場合は、まず外部に通じた入れ替え室の扉を開いてガラスを入れ替え室に入れ、その扉を閉じた後、入れ替え室内を真空に引いてから不活性ガスを充填する。そして同じく不活性ガスが充填されたチャンバに通じる扉を開いてガラスをチャンバ内に移送する。そして、ガラスを取り出す場合はこれとは逆に、チャンバ内から入れ替え室にガラスを移送した後チャンバとの扉を閉じ、その後外部に通じる扉を開いてガラスを外部に取り出す。   Here, a brief explanation will be given of the operation in and out of the glass when the exchange chamber is provided. When the glass is put into the chamber, first the door of the exchange chamber leading to the outside is opened and the glass is put into the exchange chamber. After closing the chamber, the replacement chamber is evacuated and then filled with an inert gas. Then, the door leading to the chamber filled with the inert gas is opened to transfer the glass into the chamber. When the glass is taken out, on the contrary, after the glass is transferred from the chamber to the replacement chamber, the door to the chamber is closed, and then the door leading to the outside is opened to take out the glass to the outside.

このようにして、チャンバ内の雰囲気を外部から遮断していた。   In this way, the atmosphere in the chamber was shut off from the outside.

また、チャンバの開口部の大きさについていえば、型を出し入れするなどメンテナンス性を考慮したり、またガラスの出し入れの作業性などからも必要最小限の大きさということについては考慮されておらず、比較的大きめなものとなっていた。   In addition, regarding the size of the opening of the chamber, consideration is not given to the minimum required size from the standpoint of maintainability such as taking in and out the mold, and also from the workability of taking in and out the glass. It was relatively large.

さらにガラスをチャンバ内に出し入れする際にチャンバを開放する場合、通常は不活性ガスの供給を止めているため、開放とともにチャンバ内の圧力はすぐに外気と同等のレベルに落ち着いてしまっていた。   Further, when the chamber is opened when the glass is taken in and out, the supply of the inert gas is normally stopped, so that the pressure in the chamber immediately settled down to the same level as the outside air with the opening.

また、下記特許文献2には、型や胴型の外周に不活性ガスを供給し、その型の周りに不活性ガスのバリヤを形成して型付近の酸素濃度の値を低いレベルに抑える方法や、これらの型を不活性ガスで満たされたケーシング内に収納し、ケーシング内で型を移動させてケーシングの左右に設けたシャッターよりガラスの出し入れを行う方法も提示されている。
特開2003−342022号公報 特許第3103243号公報
Further, in Patent Document 2 below, a method of supplying an inert gas to the outer periphery of a mold or a barrel mold and forming an inert gas barrier around the mold to suppress the oxygen concentration value near the mold to a low level. Alternatively, a method is also proposed in which these molds are housed in a casing filled with an inert gas, and the molds are moved in the casing, and glass is inserted and removed from shutters provided on the left and right sides of the casing.
JP 2003-342022 A Japanese Patent No. 3103243

しかしながら、ガラスをチャンバ内に出し入れする際に型が酸化しないように低温まで型を冷やしてからチャンバを開放する方法では、型の冷却や昇温に時間がかかり、成形サイクルが大幅に伸びてしまうほか、加熱時のエネルギーや冷却時の不活性ガス吹き付け量の増大など、大幅なコストアップとなっていた。   However, in the method of opening the chamber after cooling the mold to a low temperature so that the mold does not oxidize when the glass is put in and out of the chamber, it takes time to cool the mold and raise the temperature, which greatly increases the molding cycle. In addition, the cost was significantly increased, such as increased energy during heating and increased amount of inert gas sprayed during cooling.

また、チャンバ本体と外部との間に入れ替え室を設けてチャンバ内へのガラスの出し入れを行う場合は、入れ替え室が必要となり、また外部と雰囲気を遮断する比較的高価な扉(ゲートバルブなど)が1つ余計に必要となるほか、入れ替え室内にはガラスの設置台が必要で、さらに入れ替え室からチャンバ内へのハンドリングも1つ余計に増えるなど装置として見た場合、大きくなるだけでなくやはり大幅なコストアップの要因となっていた。   In addition, when an exchange chamber is provided between the chamber body and the outside to place glass in and out of the chamber, an exchange chamber is required, and a relatively expensive door (such as a gate valve) that shuts off the atmosphere from the outside. However, it is not only necessary to install a glass installation table in the replacement chamber, but also increases the handling from the replacement chamber to the chamber. This was a significant cost increase factor.

さらに、入れ替え室がないチャンバで、チャンバの開口部が比較的大きく、チャンバ開放時に不活性ガスの供給がない場合、多量の外気がチャンバ内に流入してチャンバ内の酸素濃度が上がってしまい、成形を重ねる毎に型が酸化してしまうという不具合があった。   Furthermore, in a chamber without a replacement chamber, if the opening of the chamber is relatively large and no inert gas is supplied when the chamber is opened, a large amount of outside air flows into the chamber, increasing the oxygen concentration in the chamber, There was a problem that the mold was oxidized every time molding was repeated.

また、型の周りに不活性ガスのバリヤを形成する方法では、その周りに酸素濃度の高い雰囲気が存在しており、その境界も明確ではないため、気流の巻き込みや拡散等により型周辺にも酸素が存在するようになり、数ppmレベルでの酸素濃度に抑えることは難しかった。   In addition, in the method of forming an inert gas barrier around the mold, an atmosphere with a high oxygen concentration exists around the mold and the boundary is not clear. Oxygen began to exist, and it was difficult to reduce the oxygen concentration to a few ppm level.

また、これらの型を不活性ガスで満たされたケーシング内に収納する方法では、ケーシング内へのガラスの出し入れをする際には、やはりケーシング内の圧力はすぐに外気と同等のレベルに落ち着いついてしまい、少なからず酸素が混入して、ケーシング内は酸素濃度の高い箇所が部分的に存在することになり、それは拡散などにより、ケーシング全体に広がってしまう。さらに拡散する以外にも、ガラスを出し入れする箇所が、複数存在すると、取り出しの箇所が変わるたびにケーシング内の気流も変わってしまい、加えて型がケーシング内で移動する場合もそれにともなって気流が発生して、ケーシング内をかき回すことで型付近に酸素をもたらす結果的となってしまい、型周辺の低酸素雰囲気を高レベルに保つことは難しかった。   Moreover, in the method of storing these molds in a casing filled with an inert gas, when the glass is put in and out of the casing, the pressure in the casing immediately settles down to a level equivalent to the outside air. In other words, not a little oxygen is mixed, and a portion having a high oxygen concentration is partially present in the casing, which spreads throughout the casing due to diffusion or the like. In addition to further diffusion, if there are multiple places where glass is taken in and out, the airflow in the casing changes each time the place where the glass is taken out. Occurring and stirring the inside of the casing brings oxygen to the vicinity of the mold, and it has been difficult to maintain a low oxygen atmosphere around the mold at a high level.

そこで、本発明は、低温まで型を冷やすことなくチャンバ内へのガラスの出し入れを行う際に、チャンバ内の圧力が外部に比べて高くなるように保つことで、チャンバ内への酸素の流入を抑えて、チャンバ内全体を高レベルな低酸素雰囲気に保ち、型の酸化を防ぐための成形方法を提供することを目的とする。   Therefore, the present invention prevents oxygen from flowing into the chamber by keeping the pressure in the chamber higher than the outside when the glass is put in and out of the chamber without cooling the mold to a low temperature. An object of the present invention is to provide a molding method for keeping the whole chamber in a low oxygen atmosphere at a high level while preventing the oxidation of the mold.

また、本発明は、上記光学素子の成形方法を実施するための成形装置を提供することを目的とする。   Moreover, an object of this invention is to provide the shaping | molding apparatus for enforcing the said shaping | molding method of an optical element.

上記課題を解決するため、本発明の光学素子の成形方法に係る第1の発明は、外部との雰囲気を遮断した不活性ガス雰囲気のチャンバ内に配置された上下一対の型により、軟化点以上の温度に加熱されたガラス素材を、押圧成形し、冷却することにより得られる光学素子の成形方法において、前記チャンバの一定の箇所を開放して、押圧成形前の光学素子をチャンバ内に搬入する際、及び冷却後のガラス素材をチャンバから搬出する際の、チャンバ内の不活性ガスの圧力を、外部の圧力に比べて高くなるように保っておくことを特徴とする。   In order to solve the above-mentioned problems, the first invention relating to the method for molding an optical element of the present invention has a softening point or more due to a pair of upper and lower molds arranged in a chamber of an inert gas atmosphere in which the atmosphere from the outside is blocked. In a method of molding an optical element obtained by press-molding and cooling a glass material heated to a temperature of 1, a predetermined portion of the chamber is opened, and the optical element before press-molding is carried into the chamber At this time, the pressure of the inert gas in the chamber when the glass material after cooling is carried out of the chamber is kept higher than the external pressure.

これにより、型と出し入れする箇所の位置関係から不活性ガスのチャンバ内での流れを最適化することが可能になるとともに、その流れを保つことができ、チャンバの一定の箇所を開放しても外部よりチャンバ内の型への酸素の流入を抑えることができる。   This makes it possible to optimize the flow of the inert gas in the chamber from the positional relationship between the mold and the place to be taken in and out, and can maintain the flow, even if a certain part of the chamber is opened. Inflow of oxygen from the outside to the mold in the chamber can be suppressed.

同第2の発明は、チャンバの一部を開放する際には、チャンバ内に不活性ガスを供給し続けることを特徴とする。   The second invention is characterized in that when a part of the chamber is opened, an inert gas is continuously supplied into the chamber.

これにより、チャンバ内の圧力を外部より高めに保つとともに、その圧力差によりチャンバ内から開放部を通って外部への不活性ガスの流れが発生し、よりチャンバ内への酸素の流入を抑えることができる。   As a result, the pressure inside the chamber is kept higher than the outside, and a flow of inert gas from the inside of the chamber through the open portion is generated due to the pressure difference, thereby further suppressing the inflow of oxygen into the chamber. Can do.

同第3の発明は、チャンバの一部を開放する際には、前記上下一対の型の温度が250℃以上であることを特徴とする。   The third invention is characterized in that the temperature of the pair of upper and lower molds is 250 ° C. or higher when a part of the chamber is opened.

これにより、より酸化が進みやすい温度域にある型に対して、酸素の流入を抑えるため、より酸化防止の効果を得ることができる。   Thereby, since the inflow of oxygen is suppressed with respect to the mold in a temperature range where oxidation is more likely to proceed, an effect of preventing oxidation can be further obtained.

同第4の発明は、チャンバの一部を開放する際には、開放部近傍に設けたガス吸引口より吸引する不活性ガスの吸引量は、前記チャンバ内に供給される不活性ガスの供給量以下であることを特徴とする。   According to the fourth aspect of the present invention, when a part of the chamber is opened, the amount of the inert gas sucked from the gas suction port provided in the vicinity of the opening is determined by the supply of the inert gas supplied into the chamber. It is characterized by being below the amount.

これにより、チャンバ内の圧力を外部より高く保ったまま、開口部近傍の外気も吸引することになり、外気のチャンバ内への流れを防止することができるので、よりチャンバ内への酸素の流入を抑えることができる。   As a result, the outside air in the vicinity of the opening is sucked while the pressure in the chamber is kept higher than the outside, and the flow of outside air into the chamber can be prevented. Can be suppressed.

本発明の光学素子の成形装置に係る第5の発明は、上下一対の型間で、軟化点以上の温度に加熱されたガラス素材を押圧成形し、冷却した後に型から取り出して得られる光学素子を成形するための装置において、上下一対の型を一定の位置に囲んで外部との雰囲気を遮断するとともに、成形後の光学素子又はガラス素材を出し入れするための開閉可能な開口部を一箇所のみ設けたチャンバと、型の加熱・冷却手段と、ガラス素材を押圧するためのプレス手段と、該開口部を開放して成形後の光学素子及びガラス素材をそれぞれチャンバから出し入れする際に、チャンバ内の圧力が外部の圧力に比べて高くなるようにチャンバ内へ不活性ガスを供給するための供給手段とを有することを特徴とする。   5th invention which concerns on the shaping | molding apparatus of the optical element of this invention is an optical element obtained by press-molding the glass raw material heated to the temperature more than a softening point between a pair of upper and lower molds, and taking out from a type | mold after cooling. In an apparatus for molding a glass, a pair of upper and lower molds are enclosed in a fixed position to block the atmosphere from the outside, and an openable / closable opening for inserting and removing the optical element or glass material after molding is provided only at one place. When the chamber is provided, the mold heating / cooling means, the pressing means for pressing the glass material, and the molded optical element and the glass material are taken in and out of the chamber by opening the opening. Supply means for supplying an inert gas into the chamber such that the pressure of the gas is higher than the external pressure.

これにより、チャンバ内の圧力を外部より高めに保つとともに、その圧力差によりチャンバ内から開放部を通って外部への一定の不活性ガスの流れを発生させ、よりチャンバ内への酸素の流入を抑えるための成形装置とすることができる。   As a result, the pressure in the chamber is kept higher than the outside, and a certain inert gas flow is generated from the inside of the chamber through the open portion to the outside due to the pressure difference, thereby further inflowing oxygen into the chamber. It can be set as the shaping | molding apparatus for suppressing.

同第6の発明は、該開口部の大きさは、その開口面積がその開口面に対する型全体の投影面積以下であり、かつガラスの出し入れが可能な必要最小限の大きさであることを特徴とする。   The sixth invention is characterized in that the size of the opening is a necessary minimum size in which the opening area is equal to or smaller than the projected area of the entire mold with respect to the opening surface and the glass can be taken in and out. And

これにより、外気の流入口が絞られ、より酸素の流入量を抑えることができるとともに、チャンバ内の圧力を外部より高めに保つための不活性ガスの供給量も抑えることができる。   As a result, the outside air inlet is narrowed, and the amount of oxygen inflow can be further suppressed, and the supply amount of the inert gas for keeping the pressure in the chamber higher than the outside can also be suppressed.

同第7の発明は、開口部がチャンバ本体に連接して外部方向へ突出した筒状の導入部を有していることを特徴とする。   The seventh invention is characterized in that the opening has a cylindrical introduction portion that is connected to the chamber body and protrudes outward.

これにより、チャンバ内に供給された不活性ガスが開口部を通して外部に流出する際に外気をチャンバ内に巻き込んだりするのを防いだり、また外部からの拡散などにより進入してきた酸素がまだ導入部にあって、型に到達する前にガラスの出し入れが完了するようにするための装置とすることができる。   As a result, when the inert gas supplied into the chamber flows out to the outside through the opening, the outside air is prevented from being caught in the chamber, and oxygen that has entered due to diffusion from the outside is still not introduced into the chamber. Then, it can be set as the apparatus for making the taking in and out of glass complete before reaching a type | mold.

またそのとき、ガラスの出し入れが完了した時点で開口部を閉じ、導入部に残っている進入してきた酸素の混在する不活性ガスを吸引するなどして、それ以上の酸素の進入を防ぐことが好ましい。   Also, at that time, when the opening and closing of the glass is completed, the opening is closed, and the inactive gas mixed with the remaining oxygen remaining in the introduction portion is sucked to prevent further oxygen from entering. preferable.

同第8の発明は、筒状の導入部は、その突出した部分が筒の断面積の平方根以上の長さを有していることを特徴とする。   The eighth invention is characterized in that the protruding portion of the cylindrical introduction portion has a length equal to or longer than the square root of the cross-sectional area of the cylinder.

これにより、チャンバ内に供給される不活性ガスの流量が比較的少なくても導入部2内の不活性ガスが層流状態で流れて乱れることが少ないため、外気を巻き込みにくくなり、より酸素の侵入を防ぐことができる。   Thereby, even if the flow rate of the inert gas supplied into the chamber is relatively small, the inert gas in the introduction section 2 is less likely to flow and be disturbed in a laminar flow state. Intrusion can be prevented.

同第9の発明は、チャンバ内に供給される不活性ガスの供給量以下のガスの吸引を行うための吸引手段を該開口部近傍に、不活性ガスを供給するための該供給手段は、チャンバ内で該開口部とは反対側の位置に設けたことを特徴とする。   According to the ninth aspect of the present invention, the supply means for supplying an inert gas to the vicinity of the opening includes a suction means for sucking a gas equal to or less than the supply amount of the inert gas supplied into the chamber. It is characterized by being provided at a position opposite to the opening in the chamber.

これにより、チャンバ内の圧力を外部より高く保ったまま、不活性ガスの流れが型付近から開口部に向けて生じ、開口部近傍の外気も吸引することになり、外気のチャンバ内への流れを防止することができるので、よりチャンバ内への酸素の流入を抑えるための装置とすることができる。また、上記第7の発明ので説明した、導入部に残っている酸素の混在する不活性ガスを吸引する手段としても使用できる。   As a result, the flow of the inert gas is generated from the vicinity of the mold toward the opening while keeping the pressure in the chamber higher than the outside, and the outside air near the opening is also sucked. Therefore, it is possible to provide a device for further suppressing the inflow of oxygen into the chamber. Moreover, it can also be used as a means for sucking the inert gas mixed with oxygen remaining in the introduction part, as explained in the seventh invention.

同第10の発明は、チャンバ内に供給される不活性ガスの供給量以下のガスの吸引を行うための吸引手段を該開口部近傍に、不活性ガスを供給するための該供給手段は、該開口部で該吸引手段と対向する位置に設けたことを特徴とする。   In the tenth aspect of the present invention, the supply means for supplying the inert gas to the vicinity of the opening is provided with a suction means for sucking a gas equal to or less than the supply amount of the inert gas supplied into the chamber. The opening is provided at a position facing the suction means.

これにより、開口部近傍で窒素の供給と排気が行われるため、窒素の流れにより外気を遮断する作用が働き、流れ出てくる窒素の巻き込みなどによりチャンバ内に侵入しようとする外気を窒素とともに排気することができる。   As a result, nitrogen is supplied and exhausted in the vicinity of the opening, so that the action of blocking the outside air by the flow of nitrogen works, and the outside air that tries to enter the chamber by the entrainment of the flowing out nitrogen is exhausted together with nitrogen. be able to.

本発明によれば、チャンバ内へのガラスの出し入れを行う際に、チャンバ内の圧力が外部の圧力に比べて高くなるように保つことで、チャンバ内から外部への不活性ガスの流れを一定に維持できるため、不用意にチャンバ内に酸素が侵入して型付近にまで到達することもなく、例え型の酸化が進行しやすい温度域においてチャンバを開放したとしても、型が酸化することもなく、高品質な表面形状を有する光学素子の成形を継続して行うことができる。   According to the present invention, when the glass is put into and taken out of the chamber, the flow of the inert gas from the inside of the chamber to the outside is kept constant by keeping the pressure inside the chamber higher than the outside pressure. Therefore, even if the chamber is opened in a temperature range where oxidation of the mold tends to proceed, the mold may oxidize without inadvertently entering the chamber and reaching the vicinity of the mold. In addition, the optical element having a high-quality surface shape can be continuously formed.

よって、ガラスの入れ替え室や、チャンバ内でガラスを移動させるためのハンドリング機構をもたない装置であっても、型が酸化しないようにわざわざ低温まで冷やしてからガラスの出し入れを行う必要がないため、装置の大幅なコストダウンが可能になるばかりか、成形サイクルの短縮が可能となり、同時に、加熱に要するエネルギーや冷却時に型に吹きつける不活性ガスの量が大幅に減少し、製品のコストダウンも可能になるなど、その効果は大きい。   Therefore, even if it is a device that does not have a glass replacement chamber or a handling mechanism for moving the glass in the chamber, it is not necessary to cool it down to a low temperature so that the mold does not oxidize and then remove and insert the glass. Not only can the cost of the equipment be greatly reduced, but also the molding cycle can be shortened. At the same time, the energy required for heating and the amount of inert gas blown to the mold during cooling are greatly reduced, reducing the cost of the product. The effect is great.

以下、本発明の実施の形態について図面を参照して具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

図1は、本発明の第1の実施形態における、ガラスを出し入れする際のチャンバ開放時の状態を示す成形装置の縦断面図であり、同様に図2は、本発明の第1の実施形態における、プレス後の状態を示す成形装置の縦断面図である。また、図3、図4は、それぞれ本発明の第2、第3の実施形態における、チャンバ開放時の状態を示す成形装置の縦断面図である。   FIG. 1 is a longitudinal sectional view of a molding apparatus showing a state when a chamber is opened when glass is put in and out in the first embodiment of the present invention. Similarly, FIG. 2 shows the first embodiment of the present invention. It is a longitudinal cross-sectional view of the shaping | molding apparatus which shows the state after pressing in FIG. 3 and 4 are longitudinal sectional views of the molding apparatus showing the state when the chamber is opened in the second and third embodiments of the present invention, respectively.

(第1の実施形態)
図1において、チャンバ1は、外気との雰囲気を遮断するための密閉構造となっており、ガラスの出し入れを行うための開口部12が一箇所設置され、さらに筒状の導入部2が接続されて、その終端部にはやはり外気との雰囲気を遮断できる扉3が設置されている。
(First embodiment)
In FIG. 1, the chamber 1 has a sealed structure for shutting off the atmosphere from the outside air, and is provided with an opening 12 for taking in and out the glass, and further connected to a cylindrical introduction part 2. In addition, a door 3 that can also block the atmosphere from the outside air is installed at the terminal portion.

一方、チャンバ1の内部には胴型8が特定の箇所に固定されており、この胴型8の中心軸上には、この胴型8を上下に貫通した状態で、貫通穴が形成されている。これらの貫通穴のうち上側の貫通穴には、上型部材6が、嵌合した状態で上下方向に沿って摺動可能に挿入されている。   On the other hand, a body mold 8 is fixed at a specific location inside the chamber 1, and a through hole is formed on the center axis of the body mold 8 so as to penetrate the body mold 8 vertically. Yes. Of these through holes, the upper mold member 6 is inserted into the upper through hole so as to be slidable in the vertical direction in a fitted state.

そして上型部材6の下面には、ガラス素材29を押圧して、その表面に所望の光学機能面を転写するための成形面が形成されており、また、上型部材6の上方にはチャンバ1を貫通する構成で、プレス圧を伝える上軸4が接続され、さらにその上方には駆動源14が配置されている。   A molding surface is formed on the lower surface of the upper mold member 6 to press the glass material 29 and transfer a desired optical function surface to the surface of the upper mold member 6. 1 is connected to an upper shaft 4 for transmitting a press pressure, and a drive source 14 is disposed above the upper shaft 4.

なお、上軸4には不図示の位置検出手段や圧力検出手段16が設置されており、さらに、胴型8の上部には上型部材6を加熱するためのヒータ10及び不図示の温度センサが内設され、温調が行われる。   The upper shaft 4 is provided with a position detection means and a pressure detection means 16 (not shown). Further, a heater 10 for heating the upper mold member 6 and a temperature sensor (not shown) are provided above the body mold 8. Is installed for temperature control.

一方、胴型8の下側の貫通穴には、下型部材7が、嵌合した状態で上下方向に沿って摺動可能に挿入されている。   On the other hand, the lower mold member 7 is inserted into the lower through hole on the lower side of the trunk mold 8 so as to be slidable in the vertical direction in a fitted state.

そして下型部材7の上面には、ガラス素材の下面に所望の光学機能面を転写するための成形面が形成されており、また、下型部材7の下方で外チャンバ1の外部には、駆動源15が配置され、かつ外チャンバ1を貫通する構成で、駆動源15に接続した下軸5が設置されており、下軸5の上端は下型部材7の下面部と離接可能な状態となっている。   On the upper surface of the lower mold member 7, a molding surface for transferring a desired optical functional surface to the lower surface of the glass material is formed. Further, below the lower mold member 7, outside the outer chamber 1, A lower shaft 5 connected to the drive source 15 is installed in a configuration in which the drive source 15 is disposed and penetrates the outer chamber 1, and the upper end of the lower shaft 5 is detachable from the lower surface portion of the lower mold member 7. It is in a state.

また、下軸5には不図示の位置検出手段及び圧力検出手段17が設置されており、さらに、胴型8の下部には下型部材7を加熱するためのヒータ10及び不図示の温度センサが内設され、温調が行われる。   The lower shaft 5 is provided with position detection means and pressure detection means 17 (not shown). Further, a heater 10 for heating the lower mold member 7 and a temperature sensor (not shown) are provided below the body mold 8. Is installed for temperature control.

なお、チャンバ1の導入部2とは反対側の面にはNガス供給源21に連結された窒素ガス導入管が、また導入部2の扉付近には真空ポンプのような真空排気源22に連結された真空排気管が接続されており、それぞれ開閉弁U、V及び調整弁U、Vが用意され、さらに導入部2には排気管が接続されリーク弁Rも用意されている。 A nitrogen gas introduction pipe connected to an N 2 gas supply source 21 is provided on the surface opposite to the introduction portion 2 of the chamber 1, and a vacuum exhaust source 22 such as a vacuum pump is provided near the door of the introduction portion 2. Are connected to vacuum exhaust pipes connected to each other, and open / close valves U 1 and V 1 and regulating valves U 2 and V 2 are prepared, respectively, and an exhaust pipe is connected to the introduction section 2 and a leak valve R 1 is also prepared. Has been.

また、導入部2の扉付近の真空排気管は1つに限らず、例えば導入部2を囲うように複数本設けてもよい。   Further, the number of vacuum exhaust pipes near the door of the introduction part 2 is not limited to one, and for example, a plurality of vacuum exhaust pipes may be provided so as to surround the introduction part 2.

次に、上記のように構成された装置によりレンズを成形する手順について説明する。   Next, a procedure for molding a lens by the apparatus configured as described above will be described.

まず、図2のように上型部材6、下型部材7、及び胴型8をチャンバ1内にセットして、扉3を閉じたのち、真空排気管の開閉弁Vを開いて真空引きを行う。このとき調整弁Vは開放状態にして、最短の時間で所定の真空状態に到達するようにする。その後開閉弁Vを閉じて、窒素導入管の開閉弁Uを開いてチャンバ1内に窒素ガスを充填するが、このとき調整弁Uも開口量を大きめにして短時間で窒素が充填するようにする。そしてチャンバ1内が所定の圧力Pまで到達した時点で開閉弁Uを閉じて窒素の供給を停止する。 First, set the upper mold member 6, the lower mold member 7, and a body mold 8 in the chamber 1 as shown in FIG. 2, after closing the door 3, vacuum by opening the on-off valve V 1 of the evacuation pipe I do. Regulating valve V 2 at this time is in the open state, so as to reach a predetermined vacuum state in the shortest time. Then by closing the on-off valve V 1, it is filled with nitrogen gas into the chamber 1 by opening the closing valve U 1 nitrogen inlet tube, nitrogen fills the adjustment valve U 2 also opening amount at this time in a short period of time in the large To do. Then the chamber 1 is to stop the supply of nitrogen by closing the on-off valve U 1 at the time of reaching the predetermined pressure P 1.

なお、チャンバ1内の到達圧力は少なくともチャンバ1の外部(大気)の圧力Pよりは高めに設定しておき、例えチャンバ1に極僅かな漏れがあったとしても酸素の侵入を抑えるようにして、窒素供給停止直後の酸素濃度の極めて低い状態を維持できるようにしておく。 Note that to suppress oxygen penetration even reached the pressure in the chamber 1 is than the pressure P 2 of at least the chamber of the external (atmospheric) may be set to be high, there is a very slight leak in the chamber 1 even Thus, it is possible to maintain an extremely low oxygen concentration immediately after the nitrogen supply is stopped.

次に、上型部材6を胴型8に対して上方にスライドさせ下型部材7から逃がした状態でヒータ10をONにして型の加熱を開始し、上型部材6及び下型部材7が所定の温度(例えば成形されるガラスのガラス転移点Tgに相当する温度よりやや低い温度)になった時に、窒素導入管の開閉弁Uを開いてチャンバ1内に窒素を供給してから扉3を開くが、このとき調整弁Uは少なくともこの状態で一時的にチャンバ1内の圧力がチャンバ1の外部の圧力Pよりも低くならないように流量を調整しておく。 Next, in a state where the upper mold member 6 is slid upward with respect to the body mold 8 and escaped from the lower mold member 7, the heater 10 is turned on to start heating the mold, and the upper mold member 6 and the lower mold member 7 when it is (slightly lower temperature than the temperature corresponding to the glass transition point Tg of e.g. glass to be molded) a predetermined temperature, the door from the supplying nitrogen into the chamber 1 by opening the closing valve U 1 nitrogen inlet tube In this state, the flow rate of the regulating valve U 2 is adjusted so that the pressure in the chamber 1 does not temporarily become lower than the pressure P 2 outside the chamber 1 at least in this state.

これにより、図1に示すように、チャンバ1の導入部2とは反対側の面にある窒素ガス導入管より窒素が導入され、チャンバ内にある型周辺を流れて開口部12から導入部2を通って外部に流れ出るという窒素の一定の流れが発生し、外部からチャンバ1内に酸素が侵入してくるのを抑えることができる。   As a result, as shown in FIG. 1, nitrogen is introduced from the nitrogen gas introduction pipe on the surface opposite to the introduction part 2 of the chamber 1, flows around the mold in the chamber, and enters the introduction part 2 from the opening 12. A constant flow of nitrogen is generated that flows out through the chamber, and oxygen can be prevented from entering the chamber 1 from the outside.

また、開口部12の面積は、チャンバ内へのガラスの出し入れが可能なレベルまで小さくしておき、この場合胴型8に空けられたガラスの出し入れを行うための開口部とほぼ同じ大きさにするとともに、導入部2の長さを開口部12の面積に比べて比較的長く取っておく(例えば開口部12の面積の平方根以上の長さとする)ことでチャンバ1内に供給される窒素の流量が比較的少なくても導入部2内の窒素が層流状態で流れて乱れることが少ないため、外気を巻き込みにくくなり、より酸素の侵入を防ぐことができる。   In addition, the area of the opening 12 is reduced to a level at which the glass can be taken in and out of the chamber, and in this case, the opening 12 is almost the same size as the opening for taking in and out the glass vacated in the body mold 8. At the same time, the length of the introduction part 2 is set to be relatively long compared to the area of the opening 12 (for example, a length equal to or larger than the square root of the area of the opening 12). Even if the flow rate is relatively small, the nitrogen in the introduction section 2 is less likely to flow and be disturbed in a laminar flow state, so that it becomes difficult to involve outside air and oxygen can be prevented from entering.

この状態でチャンバ1の外部よりガラス素材29を不図示の供給手段により胴型8の開口部を通して下型7の成形面上に載置するが、この場合もガラス素材29及び不図示の供給手段は窒素の流れに逆らって進むため、このときガラス素材29及び不図示の供給手段に付着していた酸素が取り除かれ、外部へと排出される。   In this state, the glass material 29 is placed on the molding surface of the lower die 7 from the outside of the chamber 1 through the opening of the body mold 8 by a supply means (not shown). In this case as well, the glass material 29 and the supply means (not shown) are used. Since it proceeds against the flow of nitrogen, oxygen attached to the glass material 29 and the supply means (not shown) is removed and discharged to the outside.

そしてガラス素材29が供給され、不図示の供給手段がチャンバ1の外部へ取り出されると、直ちに扉3が閉められる。   When the glass material 29 is supplied and a supply means (not shown) is taken out of the chamber 1, the door 3 is immediately closed.

このとき導入部2の部分を比較的長く取ってあるため、型周りの酸素濃度は極低く抑えられているが、ガラス素材29を供給する際の若干の外気の巻き込みや拡散による酸素の侵入により、導入部2の部分の酸素濃度が幾分上がっている場合もあり、そのままにしておくとチャンバ1内全体に酸素が拡散してしまう。   At this time, since the introduction portion 2 is relatively long, the oxygen concentration around the mold is suppressed to a very low level. In some cases, the oxygen concentration in the introduction portion 2 is somewhat increased, and if left as it is, oxygen diffuses throughout the chamber 1.

そこで扉3が閉じた後に真空排気管の開閉弁Vを開き、窒素供給管の開閉弁Uも開いたままにしておくことで導入部2付近にある酸素は流れてくる窒素とともに型とは反対の方向に吸引され、型周辺の酸素濃度を上げることがなく酸素を排出することができる。 So open the on-off valve V 1 of the vacuum exhaust pipe after the door 3 is closed, and the mold together with the nitrogen to which oxygen is flowing in the vicinity inlet portion 2 by left open even off valve U 1 nitrogen supply pipe Is sucked in the opposite direction, and oxygen can be discharged without increasing the oxygen concentration around the mold.

なお、このとき窒素と真空の調整弁U、Vを調整することにより窒素の供給量より真空排気量を少なめにすることで、チャンバ1の内部の圧力Pが外部の圧力Pより低くならないようにしている。 At this time, by adjusting the nitrogen and vacuum control valves U 2 and V 2 , the vacuum exhaust amount is made smaller than the supply amount of nitrogen, so that the pressure P 1 inside the chamber 1 is higher than the external pressure P 2 . I try not to lower it.

また、このときの窒素の供給量と真空排気量は任意に決められるが、窒素の供給が多すぎてチャンバ1の内部の圧力Pが所定圧以上になった場合は、導入部2に設けられた排気管にあるリーク弁Rが開いて圧力を逃がすようにしてあり、このときも導入部2付近にある酸素は型の方向へ流れることなく、外部に排出されることになる。 Further, the supply amount of nitrogen and the evacuation amount at this time are arbitrarily determined, but when the supply of nitrogen is excessive and the pressure P 1 inside the chamber 1 becomes a predetermined pressure or more, it is provided in the introduction unit 2. was Yes as the leak valve R 1 in the exhaust pipe relieve pressure open, oxygen does not flow through the mold in a direction in the vicinity the introduction part 2 at this time, it is discharged to the outside.

そして、所定の時間が経過した後に真空排気管の開閉弁Vを閉じ、チャンバ1の内部の圧力Pが所定の圧力に達した時点で開閉弁Uが閉じられて窒素の供給を停止する。 Then, closing the on-off valve V 1 of the vacuum exhaust pipe after a predetermined time has elapsed, the pressure P 1 inside the chamber 1 is opened and closed valve U 1 is closed at the time of reaching a predetermined pressure stops the supply of the nitrogen To do.

以上でガラス素材29のチャンバ1内への供給動作が完了するが、この時点でチャンバ内全域にて、高レベルに酸素濃度の低い状態が保たれている。   Thus, the operation of supplying the glass material 29 into the chamber 1 is completed, but at this time, the oxygen concentration is kept at a high level throughout the entire chamber.

一方、ガラス素材29が供給されるとさらに型の昇温が行われて、それとともにガラス素材29も加熱されるが、このとき胴型8の開口部より不図示の加熱部材を挿入して、ガラス素材29の加熱を行ってもよい。   On the other hand, when the glass material 29 is supplied, the temperature of the mold is further increased, and the glass material 29 is also heated at the same time. At this time, a heating member (not shown) is inserted through the opening of the body mold 8, The glass material 29 may be heated.

そして、上型部材6,下型部材7及びガラス素材29が所定のプレス温度に到達すると、直ちに上型部材6側の駆動源14を押し出し動作させて、ガラス素材の押圧成形を行う。そして上型部材6のフランジ部下面が胴型8の上面に当接することにより、上型部材6でのガラス素材の変形動作が終了する。   When the upper mold member 6, the lower mold member 7 and the glass material 29 reach a predetermined pressing temperature, the driving source 14 on the upper mold member 6 side is immediately pushed out to perform the press molding of the glass material. Then, when the lower surface of the flange portion of the upper mold member 6 comes into contact with the upper surface of the body mold 8, the deformation operation of the glass material in the upper mold member 6 is completed.

その後冷却工程へ移り、図示しない窒素導入管による型への窒素ガスの吹き付けなどによって冷却が促進されるが、型が所望の温度まで冷却されたとき、成形品29の面形状が崩れないように、下型部材7側の駆動源15を押し出し動作させ、下型部材7により成形品29の下方から圧力を印加する。そしてこの状態で冷却を続け、さらに所定の温度まで到達したときに、下型部材7側の駆動源15を引き込み動作させて、下型部材7による圧力を解除する。   Thereafter, the process proceeds to a cooling step, where cooling is promoted by blowing nitrogen gas to the mold by means of a nitrogen introduction pipe (not shown), but when the mold is cooled to a desired temperature, the surface shape of the molded product 29 is not collapsed. Then, the drive source 15 on the lower mold member 7 side is pushed out, and pressure is applied from below the molded product 29 by the lower mold member 7. Then, cooling is continued in this state, and when the temperature reaches a predetermined temperature, the driving source 15 on the lower mold member 7 side is pulled to release the pressure from the lower mold member 7.

その後も冷却を行い、所定の温度、すなわち型からガラスを引き剥がしたりガラスを搬送したりしても容易にガラス表面が変形しない温度であるガラス転移点以下まで到達すると、型への窒素ガスの吹き付けによる冷却を停止し、上型部材6側の駆動源14を引き込み動作させて上型部材6を上方に移動させ、型開きを行う。   After cooling, when the temperature reaches below a predetermined temperature, that is, a temperature at which the glass surface is not easily deformed even if the glass is peeled off or conveyed, the nitrogen gas to the mold The cooling by spraying is stopped, the driving source 14 on the upper mold member 6 side is pulled in, the upper mold member 6 is moved upward, and the mold is opened.

なお、ガラス転移点の温度は硝材により異なり、現状のガラスモールドでは300℃を下回るものから700℃を上回るものまであり、それぞれに対して型開き温度が適宜決められるが、できるだけ高い温度のほうが成形サイクルが短くて済むため、本実施形態ではガラス転移点以下を目処に型開きを行っている。   The temperature of the glass transition point varies depending on the glass material, and in the current glass mold, there is a temperature range from below 300 ° C. to above 700 ° C. The mold opening temperature is appropriately determined for each, but the highest possible temperature is the molding. Since the cycle can be shortened, in this embodiment, the mold is opened with the glass transition point or less as a target.

型開きが終了するとチャンバ1の扉3が開けられるが、このときもガラス素材29のチャンバ1内への供給時と同様に、チャンバ1内の圧力がチャンバ1の外部の圧力Pよりも低くならないように窒素導入管の開閉弁Uを開いてチャンバ1内に窒素を供給しておく。 When the mold opening is completed, the door 3 of the chamber 1 is opened. At this time, the pressure in the chamber 1 is lower than the pressure P 2 outside the chamber 1 as in the supply of the glass material 29 into the chamber 1. In order to prevent this, the opening / closing valve U 1 of the nitrogen introduction pipe is opened to supply nitrogen into the chamber 1.

そして扉3より導入部2を通ってチャンバ1内へ不図示の排出手段が投入され、下型部材7上にある成形品29が胴型8の開口部より取り出されて、チャンバ1の外部へと排出される。   Then, a discharge means (not shown) is introduced into the chamber 1 from the door 3 through the introduction portion 2, and the molded product 29 on the lower mold member 7 is taken out from the opening of the barrel mold 8 and is moved out of the chamber 1. And discharged.

その後、新たなガラス素材29がチャンバ1内に供給され、以後、成形が繰返し行われる。   Thereafter, a new glass material 29 is supplied into the chamber 1 and thereafter molding is repeated.

ここで、カメラに使用されるレンズを例に詳細な成形条件の説明を行うことにする。   Here, detailed molding conditions will be described by taking a lens used for a camera as an example.

ガラスは、重クラウンガラス(屈折率1.58,アッベ数59.4,転移点506℃)で、外径φ12mmの両凸レンズを成形する。   The glass is heavy crown glass (refractive index 1.58, Abbe number 59.4, transition point 506 ° C.), and a biconvex lens having an outer diameter of φ12 mm is formed.

型材は母材として超硬、あるいはセラミックスを使用し、その成形面にはダイヤモンドライクカーボンなどの炭素系皮膜や、白金などの貴金属系皮膜を施したものを使用した。   The mold material used was cemented carbide or ceramics as a base material, and the molding surface was provided with a carbon-based film such as diamond-like carbon or a noble metal-based film such as platinum.

また、チャンバ1は本体の径がφ250mmで高さが250mm、その開口部12の幅が30mmで高さ20mmの長方形を成し(ガラスの出し入れを行うための胴型の開口部も同寸法である)、導入部の長さが40mmのものを使用した。   The chamber 1 has a rectangular shape with a main body diameter of 250 mm, a height of 250 mm, a width of the opening 12 of 30 mm, and a height of 20 mm (the opening of the body for taking in and out the glass has the same dimensions). There was a 40 mm long introduction part.

まず、このチャンバ1内を上述の工程により真空引きの後に窒素を導入して、ゲージ圧で内圧0.02MPa(メガパスカル)、酸素濃度を1ppm以下の状態にしておく。その後ヒータ10で型の加熱が開始されるが、このとき窒素も加熱されるため、チャンバ1内の圧力が上昇するが、リーク弁Rの作用によりほぼ0.02MPa(メガパスカル)の状態に保たれる。 First, after evacuating the chamber 1 by the above-described process, nitrogen is introduced, and the gauge pressure is set to an internal pressure of 0.02 MPa (megapascal) and an oxygen concentration of 1 ppm or less. After that, heating of the mold is started by the heater 10, but since nitrogen is also heated at this time, the pressure in the chamber 1 is increased, but the state of about 0.02 MPa (megapascal) is caused by the action of the leak valve R 1. Kept.

そして、上型部材6及び下型部材7の温度が480℃(1014.3ポアズ相当)になった時点で、窒素導入管の開閉弁Uを開いてチャンバ1内に毎分10リットルの窒素を供給開始するとともに扉3を開き、ガラス素材29が不図示の供給手段により型内に供給され、その後、不図示の供給手段がチャンバ1の外部へ取り出されると、直ちに扉3が閉められる。 When the temperature of the upper mold member 6 and the lower mold member 7 reaches 480 ° C. (equivalent to 101.43 poise), the opening / closing valve U 1 of the nitrogen introduction pipe is opened and 10 liters of nitrogen is supplied into the chamber 1 per minute. When the supply is started, the door 3 is opened, and the glass material 29 is supplied into the mold by a supply means (not shown). Thereafter, when the supply means (not shown) is taken out of the chamber 1, the door 3 is immediately closed.

次に、真空排気管の開閉弁Vが開き毎分5リットルの排気量で排気を数秒行った後、開閉弁Vを閉じて、窒素導入管の開閉弁Uも閉じて窒素の供給が停止される。このときもチャンバ1内の圧力が上昇するが、やはりリーク弁Rの作用によりほぼ0.02MPa(メガパスカル)の状態に保たれる。 Then, after several seconds the exhaust in the exhaust amount of the opening and closing valve V 1 is opened every content of 5 liters of a vacuum exhaust pipe, closes the on-off valve V 1, shutoff valve U 1 nitrogen inlet tube also closed supply nitrogen Is stopped. The pressure also in the chamber 1 at this time is increased, it is kept approximately 0.02 MPa (megapascals) also by the action of the leak valve R 1.

なお、このときの窒素の供給量は一定でなく、例えば扉3を開いた直後は多めでその後は減らすなど、状況に応じて変化させてもよい。   The supply amount of nitrogen at this time is not constant, and may be changed according to the situation, for example, a large amount immediately after opening the door 3 and a decrease thereafter.

以上でガラス素材29のチャンバ1内への供給動作が完了するが、チャンバ1内の酸素濃度については、扉3を開けてから閉じるまで約10秒であったが、この間、型付近での酸素濃度の変化はほとんど無く、導入部では数ppmの酸素濃度の上昇がみられたものの、扉3を閉じて排気を行った後には1ppm以下の状態に戻っていた。   Thus, the operation of supplying the glass material 29 into the chamber 1 is completed. The oxygen concentration in the chamber 1 was about 10 seconds from opening the door 3 to closing it. There was almost no change in concentration, and although an oxygen concentration increase of several ppm was observed in the introduction part, after the door 3 was closed and exhausted, the state returned to 1 ppm or less.

その後、型とガラス素材29の加熱が行われ、上型部材6及び下型部材7の温度が580℃(109.0 ポアズ相当)になり、なおかつガラス素材の温度も580℃(109.0ポアズ相当)になった時点で、上型部材6側の駆動源14を2900N(ニュートン)の力で40sec間動作させ、上型部材6の押し込み動作を終了する。なおその後も胴型8に突き当てた状態の上型部材6の圧力はそのまま保持しておく。 Thereafter, the mold and the glass material 29 are heated, and the temperature of the upper mold member 6 and the lower mold member 7 becomes 580 ° C. (equivalent to 10 9.0 poise), and the temperature of the glass material is also 580 ° C. (equivalent to 10 9.0 poise). Then, the drive source 14 on the upper mold member 6 side is operated for 40 sec with a force of 2900 N (Newton), and the pushing operation of the upper mold member 6 is completed. After that, the pressure of the upper mold member 6 in contact with the body mold 8 is maintained as it is.

その後、冷却を開始し、まず560℃(109.8ポアズ相当)になった時点で下型部材7により成形品29に2000N(ニュートン)の力を加え、このまま冷却を続けて、490℃(1013.5ポアズ相当)になった時点で下型部材7の圧力を解除した。そしてさらに480℃(1014.3ポアズ相当)まで冷却した後、冷却を終了して上型部材6を上昇させ、型開きを行った。 Thereafter, cooling was started, and when the temperature reached 560 ° C. (equivalent to 10 9.8 poise), a force of 2000 N (Newton) was applied to the molded product 29 by the lower mold member 7, and the cooling was continued as it was, and 490 ° C. (10 13.5 The pressure of the lower mold member 7 was released at the point of time corresponding to Poise. Then, after further cooling to 480 ° C. (equivalent to 101.43 poise), the cooling was finished, the upper mold member 6 was raised, and the mold was opened.

そして、ガラス素材29のチャンバ1内への供給時と同様に、チャンバ1内への窒素の供給を開始するとともに扉3を開き、まず下型7の成形面上にある成形品29を不図示の供給手段によりチャンバ1の外へ取り出したのち、新たなガラス素材29をチャンバ1内へ供給して、以後、同様に繰返し成形を行った。   Then, in the same manner as when the glass material 29 is supplied into the chamber 1, the supply of nitrogen into the chamber 1 is started and the door 3 is opened. First, the molded product 29 on the molding surface of the lower mold 7 is not shown. Then, a new glass material 29 was supplied into the chamber 1 and then repeatedly formed in the same manner.

このとき、1000ショットの成形を行ったが、型が酸化して成形面の表面状態が劣化することもなく(RMS表面粗さで数ナノメートルを保持したまま)、良好な成形品を得ることができた。   At this time, 1000 shots were molded, but the mold was not oxidized and the surface state of the molding surface was not deteriorated (while maintaining a few nanometers in RMS surface roughness), and a good molded product was obtained. I was able to.

(第2の実施形態)
図3により第2の実施形態の説明を行うが、成形装置の構成は第1の実施形態と同様のため、その説明は省略する。また、ガラスを加熱し、押圧してから冷却するまでの工程も同様であり、ここではガラスのチャンバ1への出し入れの工程のみの説明を行う。
(Second Embodiment)
Although the second embodiment will be described with reference to FIG. 3, the configuration of the molding apparatus is the same as that of the first embodiment, and thus the description thereof is omitted. Further, the process from heating the glass to pressing it to cooling it is the same, and only the process of putting the glass in and out of the chamber 1 will be described here.

まず、成形されたガラスを取り出すところからであるが、冷却工程が終了すると上型部材6を上方に移動させて型開きを行い、窒素導入管の開閉弁Uを開いてチャンバ1内に窒素を供給し、さらに真空排気管の開閉弁Vを開いてから扉3を開くが、このとき窒素と真空の調整弁U、Vを調整することにより窒素の供給量より真空排気量を少なめにすることで、チャンバ1の内部の圧力Pが外部の圧力Pより低くならないようにしている。 First, although from where to retrieve the molded glass, nitrogen upper mold member 6 performs mold opening is moved upward to open the closing valve U 1 nitrogen inlet tube into the chamber 1 when the cooling process is completed supplies, further opening the door 3 to open the closing valve V 1 of the evacuation pipe, but the evacuation amount than the supply amount of nitrogen by adjusting the regulating valve U 2, V 2 of nitrogen and vacuum this time By making it small, the pressure P 1 inside the chamber 1 is prevented from becoming lower than the external pressure P 2 .

この状態で、不図示の排出手段により成形品29が取り出されるとともに、不図示の供給手段により新たなガラス素材29がチャンバ1内に供給されると扉3が閉じられ、所定の時間が経過した後に、真空排気管の開閉弁Vが閉じられて窒素導入管の開閉弁Uも閉じられ、窒素の供給を停止してガラスのチャンバ1への出し入れの工程を終了する。 In this state, the molded product 29 is taken out by a discharge means (not shown), and when a new glass material 29 is supplied into the chamber 1 by a supply means (not shown), the door 3 is closed and a predetermined time has elapsed. later, it closed off valve V 1 of the evacuation pipe on-off valve U 1 nitrogen inlet tube also closed, the supply of nitrogen was stopped to end the process of loading and unloading of the chamber 1 of the glass.

つまり、この場合、扉3を開けている間も真空排気管からの排気を行っている点が実施形態1と異なる。これにより、開放された扉3付近の外気が、流れ出てくる窒素の巻き込みなどによりチャンバ1内に侵入する前に、チャンバ1内からの窒素とともに排気管に吸引され、チャンバ1内の酸素濃度の上昇を抑えることができる。また、窒素の供給量より真空排気量を少なめにしていることで、チャンバ1内の圧力が外部よりも低下することもなく、これによっても外気の侵入を防いでいる。   That is, in this case, the point that the exhaust from the vacuum exhaust pipe is performed while the door 3 is opened is different from the first embodiment. As a result, the outside air near the opened door 3 is sucked into the exhaust pipe together with nitrogen from the chamber 1 before entering the chamber 1 due to the entrainment of flowing nitrogen or the like, and the oxygen concentration in the chamber 1 is reduced. The rise can be suppressed. Moreover, since the amount of vacuum exhaust is made smaller than the supply amount of nitrogen, the pressure in the chamber 1 does not decrease from the outside, and this also prevents the entry of outside air.

(第3の実施形態)
図4により第2の実施形態の説明を行うが、窒素導入管が導入部2の扉3付近で、かつ真空排気管と対向する位置に設けられており、成形されたガラスを取り出す際の、扉3を開く前に、やはり窒素導入管の開閉弁Uを開いてチャンバ1内に窒素を供給し、さらに真空排気管の開閉弁Vを開いて吸引を行い、この状態でガラスの出し入れが行われる。
(Third embodiment)
Although the second embodiment will be described with reference to FIG. 4, the nitrogen introduction pipe is provided in the vicinity of the door 3 of the introduction section 2 and at a position facing the vacuum exhaust pipe, and when the molded glass is taken out, before opening the door 3, also opens the closing valve U 1 nitrogen inlet tube of nitrogen is supplied to the chamber 1 performs suction further open the opening and closing valve V 1 of the evacuation pipe, and out of the glass in this state Is done.

このときも窒素と真空の調整弁U、Vを調整することにより窒素の供給量より真空排気量を少なめにすることで、チャンバ1の内部の圧力Pが外部の圧力Pより低くならないようにしている。 At this time, the pressure P 1 inside the chamber 1 is lower than the external pressure P 2 by adjusting the nitrogen and vacuum regulating valves U 2 and V 2 to make the vacuum exhaust amount smaller than the nitrogen supply amount. I try not to be.

窒素の供給と排気の動作は図3での説明と同様であるので省略するが、この場合、扉3付近で窒素の供給と排気が行われるため、窒素の流れにより外気を遮断する作用が働き、また扉付近で吸引することで、流れ出てくる窒素の巻き込みなどによりチャンバ1内に侵入しようとする外気を窒素とともに排気することができ、さらに窒素の供給量より真空排気量を少なめにすることで、チャンバ1内の圧力が外部に比べて低下するのを防ぐことができ、結果としてチャンバ1内の酸素濃度の上昇を抑えることができる。   The operation of supplying and exhausting nitrogen is omitted because it is the same as that described in FIG. 3, but in this case, nitrogen is supplied and exhausted in the vicinity of the door 3, so that the action of blocking outside air by the flow of nitrogen works. In addition, by sucking in the vicinity of the door, the outside air trying to enter the chamber 1 due to the entrainment of nitrogen flowing out can be exhausted together with the nitrogen, and the vacuum exhaust amount is made smaller than the supply amount of nitrogen. Therefore, it is possible to prevent the pressure in the chamber 1 from being lowered compared to the outside, and as a result, it is possible to suppress an increase in the oxygen concentration in the chamber 1.

(他の実施形態)
以上、第1〜3の実施形態について説明したが、他に次のような実施形態も可能である。
(Other embodiments)
Although the first to third embodiments have been described above, the following embodiments are also possible.

上記各実施形態ではガラスの出し入れを行い、扉3を閉めた後にも窒素の供給を続け、同時に真空排気を行っているが、この方法に限定せず、扉3を閉めても真空排気は行わずに窒素の供給のみを所定時間続けるようにしてもよい。この場合もチャンバ1内の圧力が所定の圧力以上になると、導入部2に設けられた排気管にあるリーク弁Rが開いて圧力を逃がすようにしてあるため、導入部2に侵入した酸素が窒素とともに外部へと排出される。このとき一時的に窒素の供給量を上がることで短時間で酸素の排出を行うこともできる。もちろん導入部2に侵入した酸素が許容量以下であれば、扉3を閉めるとともに窒素の供給を止めてもよい。 In each of the above embodiments, the glass is put in and out, and the supply of nitrogen is continued after the door 3 is closed. At the same time, the vacuum is exhausted. However, the present invention is not limited to this, and the vacuum exhaust is performed even when the door 3 is closed. Instead, only the supply of nitrogen may be continued for a predetermined time. When the pressure in this case the chamber 1 becomes equal to or higher than a predetermined pressure, since the leak valve R 1 in the exhaust pipe provided in the inlet portion 2 are so as to release the pressure by opening and enters the inlet section 2 oxygen Is discharged with nitrogen. At this time, oxygen can be discharged in a short time by temporarily increasing the supply amount of nitrogen. Of course, if the oxygen that has entered the introduction section 2 is less than the allowable amount, the door 3 may be closed and the supply of nitrogen may be stopped.

また、導入部2の形状は筒状で具体例ではその断面を長方形としているが、扉開放時の窒素の流れを考えるとその断面は円形状の方がより望ましいが、ガラスの供給治具などとの関係から最小の断面積となるようにすることが望ましい。もちろん窒素の流れは断面の形状のみから決まるわけではないので、極力流れの淀みや巻き込みが発生しないに、突起形状や窪みなどを少なくするような形状が望ましい。   In addition, the shape of the introduction part 2 is cylindrical and the cross section is rectangular in the specific example, but considering the flow of nitrogen when the door is opened, the cross section is more preferably circular, but a glass supply jig, etc. Therefore, it is desirable to have a minimum cross-sectional area. Of course, since the flow of nitrogen is not determined only by the shape of the cross section, it is desirable to have a shape that reduces the protrusion shape and the depression, etc., without causing stagnation or entrainment of the flow as much as possible.

さらに、窒素の供給量や吸引の排気量も、チャンバの大きさや開口部の大きさによって適宜設定されるものであるが、チャンバの大きさに比べ、開口部を小さくする方が、より窒素の供給量を小さくでき、有利となる。よって、型を取り出すための比較的大きな扉は別途設けるものとして、本実施形態のようにガラスの出し入れ専用の比較的小さな扉を設けることが望ましい。   Furthermore, the supply amount of nitrogen and the exhaust amount of suction are also set as appropriate depending on the size of the chamber and the size of the opening. However, the smaller the opening is, the more nitrogen is reduced compared to the size of the chamber. The supply amount can be reduced, which is advantageous. Therefore, it is desirable to provide a relatively small door dedicated to taking in and out of glass as in this embodiment, assuming that a relatively large door for taking out the mold is provided separately.

逆にチャンバが十分に大きい場合や窒素を十分に供給できる場合などは、導入部2をなくしてチャンバ1の開口部12に直接扉を設置してもよい。   Conversely, when the chamber is sufficiently large or when nitrogen can be sufficiently supplied, the door 2 may be installed directly on the opening 12 of the chamber 1 without the introduction portion 2.

また、各実施形態では不活性ガスとして窒素の例をあげているが、もちろんこれに限定されるものではない。   Moreover, in each embodiment, although the example of nitrogen is given as an inert gas, of course, it is not limited to this.

さらに、480℃で型を開いてガラスの出し入れを行っているが、これについてもすでに述べたように、硝材によって取り出し温度は異なるが、型を構成する材料においては通常200℃を超えるあたりから酸化が進みやすくなるため、250℃以上であれば、十分に本件の効果を得ることができる。   Furthermore, the mold is opened and removed at 480 ° C, and as described above, the extraction temperature differs depending on the glass material, but the material constituting the mold is usually oxidized from around 200 ° C. Therefore, if the temperature is 250 ° C. or higher, the effect of the present case can be sufficiently obtained.

また、第1,2の実施形態では、扉を開放する際に、チャンバ内の圧力を外部に比べて高く保つために窒素をチャンバ内の扉の反対側から供給しているが、外気が侵入しづらいようにチャンバの形や窒素を供給する方向などを工夫すれば、この限りではない。さらにチャンバ内の圧力を外部に比べて高く保つ方法として、窒素を供給する以外には、あらかじめチャンバ内の圧力を十分に上げておき、かつチャンバの容積に比べて十分小さな導入部を設けて、出し入れを一定の時間内で済ます方法や、一時的に仕切りなどを移動してチャンバ内の容積を減らしたり、またチャンバ内の雰囲気温度を上げたりしてもよい。   In the first and second embodiments, when opening the door, nitrogen is supplied from the opposite side of the door in the chamber in order to keep the pressure in the chamber higher than the outside, but the outside air enters. If the shape of the chamber and the direction of supplying nitrogen are devised to make it difficult, this is not the case. Furthermore, as a method of keeping the pressure in the chamber high compared to the outside, in addition to supplying nitrogen, the pressure in the chamber is sufficiently raised in advance, and an introduction portion that is sufficiently small compared to the volume of the chamber is provided, A method in which loading and unloading is completed within a certain period of time, a partition or the like may be moved temporarily to reduce the volume in the chamber, or the atmospheric temperature in the chamber may be increased.

本発明の第1の実施形態における、ガラスを出し入れする際のチャンバ開放時の状態を示す成形装置の縦断面図The longitudinal cross-sectional view of the shaping | molding apparatus which shows the state at the time of the chamber opening at the time of putting in / out glass in the 1st Embodiment of this invention. 本発明の第1の実施形態における、プレス後の状態を示す成形装置の縦断面図The longitudinal cross-sectional view of the shaping | molding apparatus which shows the state after the press in the 1st Embodiment of this invention 本発明の第2の実施形態における、ガラスを出し入れする際のチャンバ開放時の状態を示す成形装置の縦断面図The longitudinal cross-sectional view of the shaping | molding apparatus which shows the state at the time of the chamber opening at the time of putting in / out glass in the 2nd Embodiment of this invention. 本発明の第3の実施形態における、ガラスを出し入れする際のチャンバ開放時の状態を示す成形装置の縦断面図The longitudinal cross-sectional view of the shaping | molding apparatus which shows the state at the time of the chamber opening at the time of putting in / out glass in the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…チャンバ
2…導入部
3…扉
4…上軸
5…下軸
6…上型部材
7…下型部材
8…胴型
10…ヒータ
12…開口部
14,15…駆動手段
16,17…圧力検出手段
29…成形品(ガラス素材)
,V…開閉弁
…リーク弁
,V…調整弁
,P…圧力
21…Nガス供給源
22…真空排気源
DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Introduction part 3 ... Door 4 ... Upper shaft 5 ... Lower shaft 6 ... Upper mold member 7 ... Lower mold member 8 ... Body mold 10 ... Heater 12 ... Opening part 14, 15 ... Driving means 16, 17 ... Pressure Detection means 29 ... Molded product (glass material)
U 1 , V 1 ... open / close valve R 1 ... leak valve U 2 , V 2 ... regulating valve P 1 , P 2 ... pressure 21 ... N 2 gas supply source 22 ... vacuum exhaust source

Claims (10)

外部との雰囲気を遮断した不活性ガス雰囲気のチャンバ内に配置された上下一対の型により、軟化点以上の温度に加熱されたガラス素材を、押圧成形し、冷却することにより得られる光学素子の成形方法において、前記チャンバの一定の箇所を開放して、押圧成形前の光学素子をチャンバ内に搬入する際、及び冷却後のガラス素材をチャンバから搬出する際の、チャンバ内の不活性ガスの圧力を、外部の圧力に比べて高くなるように保っておくことを特徴とする光学素子の成形方法。   An optical element obtained by pressing and cooling a glass material heated to a temperature equal to or higher than a softening point by a pair of upper and lower molds arranged in an inert gas atmosphere chamber that blocks the atmosphere from the outside. In the molding method, when certain portions of the chamber are opened and the optical element before press molding is carried into the chamber, and the glass material after cooling is carried out of the chamber, the inert gas in the chamber A method for molding an optical element, characterized in that the pressure is kept higher than the external pressure. 前記チャンバの一部を開放する際には、チャンバ内に不活性ガスを供給し続けることを特徴とする請求項1に記載の光学素子の成形方法。   The method for molding an optical element according to claim 1, wherein when the chamber is partially opened, an inert gas is continuously supplied into the chamber. 前記チャンバの一部を開放する際には、前記上下一対の型の温度が250℃以上であることを特徴とする請求項1又は2に記載の光学素子の成形方法。   3. The method for molding an optical element according to claim 1, wherein when opening a part of the chamber, the temperature of the pair of upper and lower molds is 250 ° C. or more. 前記チャンバの一部を開放する際には、開放部近傍に設けたガス吸引口より吸引する不活性ガスの吸引量は、前記チャンバ内に供給される不活性ガスの供給量以下であることを特徴とする請求項2に記載の光学素子の成形方法。   When opening a part of the chamber, the suction amount of the inert gas sucked from the gas suction port provided in the vicinity of the opening portion is less than the supply amount of the inert gas supplied into the chamber. The method for molding an optical element according to claim 2, wherein: 上下一対の型間で、軟化点以上の温度に加熱されたガラス素材を押圧成形し、冷却した後に型から取り出して得られる光学素子を成形するための装置において、上下一対の型を一定の位置に囲んで外部との雰囲気を遮断するとともに、成形後の光学素子又はガラス素材を出し入れするための開閉可能な開口部を一箇所のみ設けたチャンバと、型の加熱・冷却手段と、ガラス素材を押圧するためのプレス手段と、該開口部を開放して成形後の光学素子及びガラス素材をそれぞれチャンバから出し入れする際に、チャンバ内の圧力が外部の圧力に比べて高くなるようにチャンバ内へ不活性ガスを供給するための供給手段とを有することを特徴とする光学素子の成形装置。   In an apparatus for molding an optical element obtained by pressing a glass material heated to a temperature equal to or higher than the softening point between a pair of upper and lower molds, and cooling and removing the mold from the mold, the pair of upper and lower molds are positioned at a certain position. A chamber provided with an opening that can be opened and closed for taking in and out the molded optical element or glass material, a heating / cooling means for the mold, and a glass material. Press means for pressing, and when the optical element and the glass material after molding are opened and removed from the chamber by opening the opening, the pressure in the chamber is made higher than the external pressure. An optical element molding apparatus comprising: a supply means for supplying an inert gas. 該開口部の大きさは、その開口面積がその開口面に対する型全体の投影面積以下であり、かつガラスの出し入れが可能な必要最小限の大きさであることを特徴とする請求項5に記載の光学素子の成形装置。   6. The size of the opening is the minimum necessary size that allows the opening area to be equal to or less than the projected area of the entire mold with respect to the opening surface and allows the glass to be taken in and out. Optical element molding apparatus. 該開口部は、チャンバ本体に連接して外部方向へ突出した筒状の導入部を有していることを特徴とする請求項5又は6に記載の光学素子の成形装置。   The optical element molding apparatus according to claim 5, wherein the opening includes a cylindrical introduction portion that is connected to the chamber body and protrudes outward. 該導入部は、その突出した部分が筒の断面積の平方根以上の長さを有していることを特徴とする請求項7に記載の光学素子の成形装置。   The optical element molding apparatus according to claim 7, wherein the projecting portion of the introduction portion has a length equal to or greater than a square root of a cross-sectional area of the cylinder. チャンバ内に供給される不活性ガスの供給量以下のガスの吸引を行うための吸引手段を該開口部近傍に、不活性ガスを供給するための該供給手段は、チャンバ内で該開口部とは反対側の位置に設けたことを特徴とする請求項5に記載の光学素子の成形装置。   A suction means for sucking a gas equal to or less than a supply amount of an inert gas supplied into the chamber is provided in the vicinity of the opening, and the supply means for supplying the inert gas includes the opening in the chamber. The optical element molding apparatus according to claim 5, wherein is provided at a position on the opposite side. チャンバ内に供給される不活性ガスの供給量以下のガスの吸引を行うための吸引手段を該開口部近傍に、不活性ガスを供給するための該供給手段は、該開口部で該吸引手段と対向する位置に設けたことを特徴とする請求項5に記載の光学素子の成形装置。   The suction means for sucking the gas below the supply amount of the inert gas supplied into the chamber is in the vicinity of the opening, and the supply means for supplying the inert gas is the suction means at the opening. The optical element molding apparatus according to claim 5, wherein the optical element molding apparatus is provided at a position opposite to the optical element.
JP2004284177A 2004-09-29 2004-09-29 Optical element molding method and apparatus Expired - Fee Related JP4566673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284177A JP4566673B2 (en) 2004-09-29 2004-09-29 Optical element molding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284177A JP4566673B2 (en) 2004-09-29 2004-09-29 Optical element molding method and apparatus

Publications (3)

Publication Number Publication Date
JP2006096604A true JP2006096604A (en) 2006-04-13
JP2006096604A5 JP2006096604A5 (en) 2007-11-15
JP4566673B2 JP4566673B2 (en) 2010-10-20

Family

ID=36236767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284177A Expired - Fee Related JP4566673B2 (en) 2004-09-29 2004-09-29 Optical element molding method and apparatus

Country Status (1)

Country Link
JP (1) JP4566673B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313930B2 (en) * 2002-12-04 2008-01-01 Fuji Electric Device Technology Co., Ltd Method and apparatus for manufacturing glass substrate for storage medium
JP2009227524A (en) * 2008-03-24 2009-10-08 Olympus Corp Manufacturing apparatus of optical device
CN111902374A (en) * 2018-03-30 2020-11-06 奥林巴斯株式会社 Method for molding optical element and mold for molding optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256542A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Method and device for producing optical glass element
JPH02225325A (en) * 1989-02-28 1990-09-07 Olympus Optical Co Ltd Apparatus for forming optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256542A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Method and device for producing optical glass element
JPH02225325A (en) * 1989-02-28 1990-09-07 Olympus Optical Co Ltd Apparatus for forming optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313930B2 (en) * 2002-12-04 2008-01-01 Fuji Electric Device Technology Co., Ltd Method and apparatus for manufacturing glass substrate for storage medium
JP2009227524A (en) * 2008-03-24 2009-10-08 Olympus Corp Manufacturing apparatus of optical device
CN111902374A (en) * 2018-03-30 2020-11-06 奥林巴斯株式会社 Method for molding optical element and mold for molding optical element
CN111902374B (en) * 2018-03-30 2022-09-09 奥林巴斯株式会社 Method for molding optical element and mold for molding optical element

Also Published As

Publication number Publication date
JP4566673B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
TWI643282B (en) Substrate processing apparatus, manufacturing method of semiconductor device, and program
US6991684B2 (en) Heat-treating apparatus and heat-treating method
JP4566673B2 (en) Optical element molding method and apparatus
CN108117249B (en) Chamber mechanism for reducing oxygen concentration in mold
CN108428616B (en) Substrate processing method and apparatus
US7134298B2 (en) Method of press-forming glass
JP2569943B2 (en) Casting equipment
US7790098B2 (en) Molten metal holding furnace
US20060219167A1 (en) Apparatus and method of vacuum metallic sintering for a semiconductor
CN108428615B (en) Substrate processing method and apparatus
JP3134489B2 (en) Glass forming equipment
JP5492540B2 (en) Heat treatment furnace
JP2006096604A5 (en)
JP6916758B2 (en) Optical element molding method and optical element molding mold
US20080110206A1 (en) Optical element molding method and apparatus
CN108428624B (en) Substrate processing method
JP6885132B2 (en) EFEM and EFEM gas replacement method
JP2006143512A (en) Apparatus for molding optical element
JP4173963B2 (en) Metal melting equipment
JP5374236B2 (en) Optical element manufacturing method and manufacturing apparatus
JP2007281436A (en) Low-pressure processing device
JP3962323B2 (en) Gas purge mechanism for preventing film adhesion and processing apparatus equipped with this mechanism
CN116230484A (en) Processing apparatus and wafer processing method
JP2003342027A (en) Method and apparatus for molding optical element
JPH06182528A (en) Refractory nozzle having seal structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4566673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees