JPH0222496B2 - - Google Patents

Info

Publication number
JPH0222496B2
JPH0222496B2 JP22043885A JP22043885A JPH0222496B2 JP H0222496 B2 JPH0222496 B2 JP H0222496B2 JP 22043885 A JP22043885 A JP 22043885A JP 22043885 A JP22043885 A JP 22043885A JP H0222496 B2 JPH0222496 B2 JP H0222496B2
Authority
JP
Japan
Prior art keywords
shadow mask
iron
metal plate
yield point
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22043885A
Other languages
Japanese (ja)
Other versions
JPS6282626A (en
Inventor
Takayuki Sato
Yoshimichi Hori
Tatsuya Adachi
Masanori Igaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22043885A priority Critical patent/JPS6282626A/en
Publication of JPS6282626A publication Critical patent/JPS6282626A/en
Publication of JPH0222496B2 publication Critical patent/JPH0222496B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、カラー受像管用シヤドウマスクの製
造方法に関する。 〔発明の技術的背景と問題点〕 一般のカラー受像管は第3図に示すように、電
子銃(図示せず)から射出された赤、緑及び青に
対応する3本の電子ビーム1,2及び3が、シヤ
ドウマスク4の規則正しく配列された微細な開孔
5…を介してパネル6の内面に被着された赤、緑
及び青に発光する螢光体7,8及び9に正しく対
応射突発光させることによつてカラー映像を映出
する構成を有している。このようなカラー受像管
のシヤドウマスクは、規則正しく配列される微細
な開孔を正確に穿設すること、パネル内面と相似
の曲面状に、形状歪のないように、成形すること
及びパネル内面との間隔(以下、q値と称す。)
を所定の値に正しく保持すること等が要求され
る。このようなシヤドウマスクの素材としては、
一般に、高鈍度の鉄を主成分とする、例えば0.10
mm乃至0.3mm程度の厚さのアルミキルド脱炭鋼が
用いられている。これは、素材の供給能力、コス
ト、加工性及び強度等から総合的に決定されるも
のである。 ところが、カラー受像管のシヤドウマスクは、
管内組み込み迄の各工程で、上記の条件を全て許
容範囲内に管理しても、尚いくつかの問題点を有
している。その内の一つにシヤドウマスクの温度
上昇に伴う加熱膨張の問題がある。すなわち、カ
ラー受像管を動作させた場合、シヤドウマスクの
開孔を通過する電子ビームは全体の1/3以下であ
り、残りの電子ビームはシヤドウマスクに射突
し、シヤドウマスクは時として80℃にも達する程
加熱される。この結果、シヤドウマスクは、熱膨
張を生じ正しいq値からずれてしまう。いわゆる
「ドーミング現象」を生じ色鈍度を劣化させる。
従来、一般に用いられている鉄を主成分とする素
材はその膨張係数が0〜100℃で約12×10-6/deg
と相当大であるため、このドーミング現象を生じ
易く重要な問題となつている。そこで、従来から
このドーミング現象によるピユリテイ・ドリフ
ト、即ち色純度の劣化を軽減するために種々の提
案がなされているが、特に管の動作初期及び局部
的なドーミングに対しては有効な手段は見出され
ていない。そこで、シヤドウマスクの素材自体に
熱膨張係数の小さいもの、例えば鉄−ニツケル系
合金を用いる例が、特公昭42−25446号公報、特
開昭50−58977号公報及び特開昭50−68650号公報
で提案されているが、未だ実用条件を満足するに
は到つていない。この原因の一つとして、鉄−ニ
ツケル合金からなる金属板の加工の困難さが挙げ
られる。すなわち、q値を許容範囲内とするため
には、シヤドウマスクの曲面は、高精度が要求さ
れ、1000mmの曲率半径(R)に対し許容公差は、
±5mmと非常に厳しいものである。しかしなが
ら、鉄−ニツケル系合金は、従来の鉄を主成分と
するものに比べて焼鈍にかなりの弾性が残るた
め、プレス等による球面成形性が劣る欠点を有し
ている。たとえば、第4図に示すように厚さ0.2
mmの鉄−ニツケル板を球面成形時に標準Rに対し
て局部的な凹みを生じた場合、この凹み量dは、
20μm以下であれば実質的に色純度の劣化は許容
し得ることが確認されている。そして、この凹み
量(d)とシヤドウマスク素材の降伏点強度につい
て、例えば14吋型のシヤドウマスクの場合第5図
に示すような特性を示す。すなわち、凹み量を
20μm以下とするためには降伏点強度は20Kg/mm2
以下に抑える必要がある。しかしながら、鉄−ニ
ツケル系合金を素材とするシヤドウマスクを従来
のアルミキルド脱炭鋼を素材とするシヤドウマス
クと同様に水素中のマスクアニール炉で焼鈍した
場合の降伏点強度は、第6図に示すように、アル
ミキルド脱炭鋼の特性aに比べて鉄−ニツケル系
合金の特性(b)は非常に高い。すなわち、900℃も
の高温で焼鈍しても、降伏点強度は、なお29〜30
Kg/mm2までにしか低下しない。ここで、第5図に
おいて、鉄−ニツケル系合金の降伏点強度は明確
な境界が得られないため、0.2%伸びた時の引張
強度を対応するものとして代用している。これと
同じことは、真空中又は大気中にて焼鈍したシヤ
ドウマスクについてもいえる。このように、鉄−
ニツケル系合金を素材とするシヤドウマスクは、
特に有効部周辺の変形と凹みが大きいため、膨張
係数が小さいことによりマスクの加熱膨張から生
ずる色純度の劣化はほとんど問題ないが、変形に
よる色純度劣化が大きな問題とされている。 〔発明の目的〕 本発明は、鉄−ニツケル系合金を主成分とする
シヤドウマスクの曲面成形性を向上させ、変形を
防止して高精度化が可能なシヤドウマスクの製造
方法を得ることを目的とする。 〔発明の概要〕 本発明は、鉄−ニツケル系合金を主成分とする
金属板に多数の開孔を穿設した後酸化性雰囲気に
て焼鈍し、しかる後、温間プレス成形することに
よつて、降伏点強度を低下させ変形のない高精度
のシヤドウマスクとし、色純度の劣化を防止する
ものである。 〔発明の実施例〕 鉄−ニツケル系合金を主成分とするシヤドウマ
スク用素材としてアンバー合金を用いた実施例に
ついて以下説明する。 第1表に実施例として用いたアンバー合金と従
来のアルミキルド脱炭鋼の重量組成比を示す。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a shadow mask for a color picture tube. [Technical Background and Problems of the Invention] As shown in Fig. 3, a general color picture tube emits three electron beams 1, corresponding to red, green, and blue, emitted from an electron gun (not shown). 2 and 3 correctly correspond to the phosphors 7, 8, and 9 that emit red, green, and blue light applied to the inner surface of the panel 6 through the regularly arranged fine apertures 5 of the shadow mask 4. It has a structure that projects color images by emitting sudden light. The shadow mask for such a color picture tube is made by precisely drilling regularly arranged fine holes, molding it into a curved shape similar to the inner surface of the panel without any shape distortion, and making sure that the shadow mask matches the inner surface of the panel. Interval (hereinafter referred to as q value)
It is required to maintain the value correctly at a predetermined value. The materials for this kind of shadow mask are:
Generally, the main component is iron with a high degree of dullness, e.g. 0.10
Aluminum killed decarburized steel with a thickness of about mm to 0.3 mm is used. This is determined comprehensively from the material supply capacity, cost, workability, strength, etc. However, the shadow mask of a color picture tube is
Even if all of the above conditions are managed within the permissible range in each step up to incorporation into pipes, there are still some problems. One of these problems is the problem of thermal expansion caused by the rise in temperature of the shadow mask. In other words, when a color picture tube is operated, less than 1/3 of the electron beams pass through the apertures in the shadow mask, and the remaining electron beams impinge on the shadow mask, which can sometimes reach temperatures as high as 80 degrees Celsius. It will be heated to about 100 ml. As a result, the shadow mask undergoes thermal expansion and deviates from the correct q value. This causes the so-called "doming phenomenon" and deteriorates color dullness.
Conventionally, commonly used materials whose main component is iron have an expansion coefficient of approximately 12×10 -6 /deg at 0 to 100°C.
Because of its considerable size, this doming phenomenon is likely to occur and has become an important problem. Therefore, various proposals have been made to reduce the purity drift, that is, the deterioration of color purity caused by this doming phenomenon, but no effective measures have been found, especially for the early stages of tube operation and localized doming. Not served. Therefore, examples of using a material with a small coefficient of thermal expansion, such as an iron-nickel alloy, as the material of the shadow mask are disclosed in Japanese Patent Publication No. 42-25446, Japanese Patent Application Laid-open No. 58977-1982, and Japanese Patent Application Laid-open No. 68650-1989. However, it has not yet reached the point where it satisfies practical conditions. One of the reasons for this is the difficulty in processing metal plates made of iron-nickel alloy. In other words, in order to keep the q value within the allowable range, the curved surface of the shadow mask must have high precision, and the allowable tolerance for a radius of curvature (R) of 1000 mm is:
±5mm is extremely strict. However, since iron-nickel alloys retain considerable elasticity after annealing compared to conventional alloys whose main component is iron, they have the disadvantage of poor spherical formability by pressing or the like. For example, as shown in Figure 4, the thickness is 0.2
If a local dent is created with respect to the standard radius during spherical forming of a mm iron-nickel plate, the amount of dent d is
It has been confirmed that if the thickness is 20 μm or less, deterioration in color purity is substantially tolerable. Regarding the amount of depression (d) and the yield point strength of the shadow mask material, for example, a 14-inch shadow mask exhibits the characteristics as shown in FIG. In other words, the amount of depression
In order to make it 20μm or less, the yield point strength is 20Kg/mm 2
It is necessary to keep it below. However, when a shadow mask made of an iron-nickel alloy is annealed in a mask annealing furnace in hydrogen in the same way as a conventional shadow mask made of aluminum-killed decarburized steel, the yield point strength is as shown in Figure 6. , characteristic (b) of the iron-nickel alloy is much higher than characteristic (a) of aluminum killed decarburized steel. In other words, even after annealing at a high temperature of 900℃, the yield point strength is still 29 to 30.
It only decreases to Kg/ mm2 . Here, in FIG. 5, since a clear boundary cannot be obtained for the yield point strength of the iron-nickel alloy, the tensile strength at 0.2% elongation is substituted as the corresponding value. The same can be said of shadow masks annealed in vacuum or in the air. In this way, iron-
The shadow mask is made of nickel-based alloy.
In particular, since the deformation and depression around the effective area are large, the deterioration of color purity caused by thermal expansion of the mask is almost no problem due to the small expansion coefficient, but the deterioration of color purity due to deformation is considered to be a major problem. [Object of the Invention] The purpose of the present invention is to improve the curved surface formability of a shadow mask whose main component is an iron-nickel alloy, and to obtain a method for manufacturing a shadow mask that can prevent deformation and achieve high precision. . [Summary of the Invention] The present invention is a metal plate mainly composed of an iron-nickel alloy, which is made by punching a large number of holes, annealing it in an oxidizing atmosphere, and then performing warm press forming. Therefore, the yield point strength is lowered to provide a highly accurate shadow mask without deformation, thereby preventing deterioration of color purity. [Embodiments of the Invention] Examples in which an amber alloy is used as a material for a shadow mask whose main component is an iron-nickel alloy will be described below. Table 1 shows the weight composition ratio of the amber alloy used as an example and the conventional aluminum killed decarburized steel.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、鉄−ニツケル系
合金を主成分とするシヤドウマスクの曲面成形性
を向上し変形を防止した高精度の曲面品位とする
ことができ、色純度の問題のないカラー受像管を
得ることができる。
As described above, according to the present invention, it is possible to improve the curved surface formability of a shadow mask containing iron-nickel alloy as a main component, to prevent deformation, and to obtain a highly accurate curved surface quality, and to avoid color purity problems. A picture tube can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引張り試験温度と降伏点強度との関係
を示す特性図、第2図は温間プレス温度とシヤド
ウマスクの凹み量との関係を示す特性図、第3図
はカラー受像管の動作を説明するための模式図、
第4図はシヤドウマスクの変形を説明するための
要部の概略図、第5図はシヤドウマスク素材の変
形量と降伏点強度との関係を示す特性図、第6図
及び第7図はシヤドウマスクの焼鈍温度と降伏点
強度との関係を示す特性図である。 4……シヤドウマスク、5……開孔。
Figure 1 is a characteristic diagram showing the relationship between tensile test temperature and yield point strength, Figure 2 is a characteristic diagram showing the relationship between warm press temperature and the amount of dent in the shadow mask, and Figure 3 is a characteristic diagram showing the operation of the color picture tube. Schematic diagram for explanation,
Figure 4 is a schematic diagram of the main parts to explain the deformation of the shadow mask, Figure 5 is a characteristic diagram showing the relationship between the amount of deformation of the shadow mask material and the yield point strength, and Figures 6 and 7 are annealing of the shadow mask. FIG. 3 is a characteristic diagram showing the relationship between temperature and yield point strength. 4...Shadow mask, 5...Open hole.

Claims (1)

【特許請求の範囲】 1 鉄及びニツケルを主成分とする薄板状金属板
に多数の開孔を穿設する工程と、前記多数の開孔
の穿設された金属板を酸化性雰囲気にて焼鈍し上
記金属板に酸化被膜を形成する工程と、前記焼鈍
された金属板を温間プレス加工によりシヤドウマ
スクに成形する工程とを備えたことを特徴とする
シヤドウマスクの製造方法。 2 温間プレス加工温度を120℃以上とすること
を特徴とする特許請求の範囲第1項記載のシヤド
ウマスクの製造方法。
[Claims] 1. A process of drilling a large number of holes in a thin metal plate mainly composed of iron and nickel, and annealing the metal plate with the large number of holes in an oxidizing atmosphere. A method for producing a shadow mask, comprising the steps of: forming an oxide film on the metal plate; and forming the annealed metal plate into a shadow mask by warm pressing. 2. The method for manufacturing a shadow mask according to claim 1, characterized in that the warm pressing temperature is 120° C. or higher.
JP22043885A 1985-10-04 1985-10-04 Manufacture of shadowmask Granted JPS6282626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22043885A JPS6282626A (en) 1985-10-04 1985-10-04 Manufacture of shadowmask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22043885A JPS6282626A (en) 1985-10-04 1985-10-04 Manufacture of shadowmask

Publications (2)

Publication Number Publication Date
JPS6282626A JPS6282626A (en) 1987-04-16
JPH0222496B2 true JPH0222496B2 (en) 1990-05-18

Family

ID=16751110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22043885A Granted JPS6282626A (en) 1985-10-04 1985-10-04 Manufacture of shadowmask

Country Status (1)

Country Link
JP (1) JPS6282626A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769089A (en) * 1987-08-25 1988-09-06 Allegheny Ludlum Corporation Method of annealing an aperture shadow mask for a color cathode ray tube

Also Published As

Publication number Publication date
JPS6282626A (en) 1987-04-16

Similar Documents

Publication Publication Date Title
JPH0549727B2 (en)
JP2007231423A (en) Process for manufacturing shadow mask made of iron/nickel alloy
US4427396A (en) Method of manufacturing a color selection electrode for a color display tube
US4708680A (en) Color picture tube and method for manufacturing the same
JPH0222495B2 (en)
JPH0222496B2 (en)
JPS5927435A (en) Color picture tube
JPS60128253A (en) Manufacture of iron-nickel alloy for shadow mask which inhibits streaking during etching
JP2711110B2 (en) Perforated shadow mask for color cathode ray tube and method of annealing the same
JPH0945257A (en) Shadow mask and its preparation
US6489711B2 (en) Shadow mask for color picture tube made of iron-base material having particular grain size number
JPH04120251A (en) Shadow mask material and its production
JPS643022B2 (en)
JPH0326898B2 (en)
JPH0687398B2 (en) Method for manufacturing shed mask
JPS5927434A (en) Color picture tube
US6373177B1 (en) Shadow mask for cathode ray tube and method of manufacturing same
JPS62170127A (en) Assembly of shadow mask
JPH1017998A (en) Ferrum-nickel alloy stock for electron gun parts, excellent in blankability, and its production, and worked parts
US6247988B1 (en) Shadow mask for cathode ray tube and method of manufacturing same
JP2804137B2 (en) Materials and processes for manufacturing CRT tension masks
US6252343B1 (en) Shadow mask for cathode ray tube and method of manufacturing same
JPS61201733A (en) Manufacture of shadow mask
JPH0676645B2 (en) Material for pipe parts and manufacturing method thereof
JPH0727760B2 (en) Color picture tube