JPS643022B2 - - Google Patents

Info

Publication number
JPS643022B2
JPS643022B2 JP13572082A JP13572082A JPS643022B2 JP S643022 B2 JPS643022 B2 JP S643022B2 JP 13572082 A JP13572082 A JP 13572082A JP 13572082 A JP13572082 A JP 13572082A JP S643022 B2 JPS643022 B2 JP S643022B2
Authority
JP
Japan
Prior art keywords
shadow mask
annealing
iron
yield point
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13572082A
Other languages
Japanese (ja)
Other versions
JPS5927433A (en
Inventor
Masaharu Kanto
Hidekazu Akyoshi
Yasuhisa Ootake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13572082A priority Critical patent/JPS5927433A/en
Priority to EP83107286A priority patent/EP0101919B1/en
Priority to DE8383107286T priority patent/DE3366460D1/en
Publication of JPS5927433A publication Critical patent/JPS5927433A/en
Priority to US06/818,269 priority patent/US4708680A/en
Publication of JPS643022B2 publication Critical patent/JPS643022B2/ja
Priority to HK1092/90A priority patent/HK109290A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術分野 本発明はカラー受像管用シヤドウマスクの製造
方法に関するものである。 発明の技術的背景と問題点 一般のカラー受像管は第1図に示すように、電
子銃(図示せず)から射出された赤、緑及び青に
対応する3本の電子ビーム1,2及び3がシヤド
ウマスク4の規則正しく配列された微細な開孔5
を介してパネル6の内面に被着された赤、緑及び
青に発光する蛍光体7,8及び9に正しく対応射
突発光させることによつてカラー映像を映出する
構成を有している。 このようなカラー受像管のシヤドウマスクは、
規則正しく配列される微細な開孔を正確に穿設す
ること、パネル内面と相似の曲面状に形状歪のな
いように成形すること及びパネル内面との間隔
(以下q値と称す)を所定の値に正しく保持する
こと等が要求される。このようなシヤドウマスク
の素材としては一般に高純度の鉄を主成分とす
る、例えば0.10mm乃至0.3mm程度の厚さのアルミ
キルド脱炭鋼が用いられている。これらは素材の
供給能力、コスト、加工性及び強度等から総合的
に決定されるものである。 ところがカラー受像管のシヤドウマスクは管内
組み込み迄の各工程で上記の条件を全て許容範囲
内に管理しても、尚いくつかの問題点を有してい
る。その内の一つにシヤドウマスクの温度上昇に
伴う加熱膨張の問題がある。即ちカラー受像管を
動作させた場合、シヤドウマスクの開孔を通過す
る電子ビームは全体の1/3以下であり、残りの電
子ビームはシヤドウマスクに射突し、シヤドウマ
スクは時として80℃にも達する程加熱される。こ
の結果シヤドウマスクは熱膨張を生じ正しいq値
からずれてしまう。いわゆるドーミング現象を生
じ色純度を劣化させる。従来一般に用いられてい
る鉄を主成分とする素材はその膨張係数が0〜
100℃で約12×10-6/degと相当大であるため、こ
のドーミング現象を生じ易く重要な問題となつて
いる。そこで従来からこのドーミング現象による
ピユリテイドリフト、即ち色純度の劣化を軽減す
るために種々の提案がなされているが、特に管の
動作初期及び局部的なドーミングに対しては有効
な手段は見出されていない。そこでシヤドウマス
クの素材自体に熱膨張係数の小さいもの、例えば
鉄−ニツケル系合金を用いる例が特公昭42−
25446号公報、特開昭50−58977号公報及び特開昭
50−68650号公報で提案されているが末だ実用条
件を満足するには到つていない。この原因の一つ
として鉄−ニツケル合金からなる金属板の加工の
困難さが挙げられる。即ちq値を許容範囲内とす
るためにはシヤドウマスクの曲面は高精度が要求
され、1000mmの曲率半径(R)に対し許容公差は
±5mmと非常に厳しいものである。しかし乍ら鉄
−ニツケル系合金は従来の鉄を主成分とするもの
に比べて焼鈍にかなりの弾性が残るためプレス等
による球面成形性が劣る欠点を有している。例え
ば第2図に示すように厚さ0.2mmの鉄−ニツケル
板を球面成形時に標準Rに対して局部的な凹みを
生じた場合、この凹み量(d)は20μm以下であれば
実質的に色純度の劣化は許容し得ることが確認さ
れている。そしてこの凹み量(d)とシヤドウマスク
素材の降伏点強度について、例えば14吋型のシヤ
ドウマスクの場合第3図に示すような特性を示
す。即ち凹み量を20μm以下とするためには降伏
点強度は20Kg/mm2以下に抑える必要がある。しか
し乍ら、鉄−ニツケル系合金を素材とするシヤド
ウマスクを従来のアルミキルド脱炭鋼を素材とす
るシヤドウマスクと同様に水素中のマスクアニー
ル炉で焼鈍した場合の降伏点強度は第4図に示す
ように、アルミキルド脱炭鋼の特性(a)に比べて
鉄.ニツケル系合金の特性(b)は非常に高い。即ち
900℃もの高温で焼鈍しても降伏点強度は尚29〜
30Kg/mm2までにしか低下しない。尚、第3図にお
いて、鉄−ニツケル系合金の降伏点強度は明確な
境界が得られないため、0.2%伸びた時の引張強
度を対応するものとして代用している。このよう
に鉄−ニツケル系合金を素材とするシヤドウマス
クは特に有効部周辺の変形と凹みが大きいため、
膨張素数が小さいことによるマスクの加熱膨張か
ら生ずる色純度の劣化は殆んど問題ないが、変形
による色純度劣化が大きな問題とされている。 発明の目的 本発明は鉄−ニツケル系合金を主成分とするシ
ヤドウマスクの曲面成形性を向上し、変形を防止
した高精度のシヤドウマスクの製造方法を得るこ
とを目的とする。 発明の概要 本発明は鉄−ニツケル系合金を主成分とする金
属板に多数の開孔を設け真空中(減圧を含む)で
焼鈍し、しかる後成形することによつて、降伏点
強度を低下させ変形のない高精度のシヤドウマス
クとし色純度の劣化を防止するものである。 発明の実施例 鉄−ニツケル系合金を主成分とするシヤドウマ
スク用素材としてアンバー合金を用いた実施例に
ついて以下説明する。第1表に実施例として用い
たアンバー合金と従来のアルミキルド脱炭鋼の重
量組成比を示す。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of manufacturing a shadow mask for a color picture tube. Technical Background and Problems of the Invention As shown in FIG. 1, a general color picture tube has three electron beams 1, 2 corresponding to red, green, and blue emitted from an electron gun (not shown). 3 is a regularly arranged fine aperture 5 of a shadow mask 4
The structure is such that a color image is projected by causing the phosphors 7, 8, and 9 that emit red, green, and blue light, which are attached to the inner surface of the panel 6, to emit light in a corresponding manner. . This type of color picture tube shadow mask is
It is necessary to accurately drill regularly arranged fine holes, to form a curved surface similar to the inner surface of the panel without any shape distortion, and to maintain the distance from the inner surface of the panel (hereinafter referred to as the q value) to a predetermined value. It is required to hold it correctly. As a material for such a shadow mask, generally used is aluminized decarburized steel having a thickness of about 0.10 mm to 0.3 mm, which mainly contains high-purity iron. These are comprehensively determined based on material supply capacity, cost, workability, strength, etc. However, the shadow mask for a color picture tube still has several problems even if all of the above conditions are controlled within the permissible range in each step up to the installation into the tube. One of these problems is the problem of thermal expansion caused by the rise in temperature of the shadow mask. In other words, when a color picture tube is operated, less than 1/3 of the electron beams pass through the apertures in the shadow mask, and the remaining electron beams impinge on the shadow mask, which can sometimes reach temperatures as high as 80 degrees Celsius. heated. As a result, the shadow mask undergoes thermal expansion and deviates from the correct q value. This causes a so-called doming phenomenon and deteriorates color purity. The expansion coefficient of conventionally commonly used materials whose main component is iron is 0~
Since it is quite large at about 12×10 -6 /deg at 100°C, this doming phenomenon is likely to occur and has become an important problem. Therefore, various proposals have been made in the past to reduce the purity drift, that is, the deterioration of color purity caused by this doming phenomenon, but no effective measures have been found, especially for the initial stage of tube operation and localized doming. Not served. Therefore, an example of using a material with a small coefficient of thermal expansion, such as an iron-nickel alloy, for the material itself of the shadow mask was published in 1973.
25446, JP-A-50-58977, and JP-A-Sho.
Although it has been proposed in Publication No. 50-68650, it has not yet reached the point where it satisfies practical conditions. One of the reasons for this is the difficulty in processing metal plates made of iron-nickel alloy. That is, in order to keep the q value within the allowable range, the curved surface of the shadow mask is required to have high precision, and the allowable tolerance is extremely strict, ±5 mm for a radius of curvature (R) of 1000 mm. However, iron-nickel alloys have the disadvantage of being inferior in formability into a spherical shape by pressing or the like because they retain considerable elasticity after annealing compared to conventional alloys whose main component is iron. For example, as shown in Figure 2, when a 0.2 mm thick iron-nickel plate is formed into a spherical surface, a local dent is created with respect to the standard radius.If the amount of dent (d) is 20 μm or less, it is essentially It has been determined that the degradation of color purity is acceptable. Regarding the amount of depression (d) and the yield point strength of the shadow mask material, for example, a 14-inch shadow mask exhibits the characteristics as shown in FIG. That is, in order to make the amount of depression 20 μm or less, the yield point strength needs to be suppressed to 20 Kg/mm 2 or less. However, when a shadow mask made of an iron-nickel alloy is annealed in a mask annealing furnace in hydrogen in the same way as a conventional shadow mask made of aluminium-killed decarburized steel, the yield point strength is as shown in Figure 4. Compared to the characteristics (a) of aluminum killed decarburized steel, iron. Properties (b) of nickel-based alloys are very high. That is,
Even after annealing at a high temperature of 900℃, the yield point strength is still 29 ~
It only decreases to 30Kg/ mm2 . In FIG. 3, since a clear boundary cannot be obtained for the yield point strength of the iron-nickel alloy, the tensile strength at 0.2% elongation is used instead. In this way, shadow masks made of iron-nickel alloys have large deformations and dents, especially around the effective part, so
Deterioration of color purity caused by thermal expansion of the mask due to a small expansion prime number is almost no problem, but deterioration of color purity due to deformation is considered to be a major problem. OBJECTS OF THE INVENTION An object of the present invention is to improve the curved surface formability of a shadow mask whose main component is an iron-nickel alloy, and to provide a method for manufacturing a shadow mask with high precision in which deformation is prevented. Summary of the invention The present invention reduces the yield point strength by forming a large number of holes in a metal plate mainly composed of an iron-nickel alloy, annealing it in a vacuum (including reduced pressure), and then forming it. This is a highly accurate shadow mask that does not cause deformation and prevents deterioration of color purity. Embodiments of the Invention An embodiment in which an amber alloy is used as a material for a shadow mask whose main component is an iron-nickel alloy will be described below. Table 1 shows the weight composition ratio of the amber alloy used as an example and the conventional aluminum killed decarburized steel.

【表】 上記組成の36Niアンバー合金を素材とするシ
ヤドウマスクについて、まず従来の水素雰囲気中
でのマスクアニール炉の焼鈍工程の温度を上げた
時の降伏点強度を第5図に示す。図から明らかな
ように、1200℃もの高温度で焼鈍しても降伏点強
度は24Kg/mm2までしか低下しない。従つて降伏点
強度を成形性に問題のない20Kg/mm2以下とするに
は第5図から外挿して焼鈍温度を1500℃〜1700℃
とする必要がある。しかし乍らこのアンバー合金
の融点は1440℃〜1455℃であるので、単純に温度
のみを上げる方法は実行不可能である。 第6図乃至第8図は上記焼鈍温度が夫々1000
℃、1100℃及び1200℃とした時の試料の結晶組織
構造を示す顕微鏡写真である。尚、第6図乃至第
8図において、aは断面を、bは表面の結晶組織
構造を夫々示す。 第6図乃至第8図から明らかなように焼鈍温度
の上昇に伴い結晶粒の成長も進んでいることが判
る。しかし乍ら断面の結晶粒は大きく成長してい
るのに対し、表面の結晶粒は殆んど成長していな
い。 即ち、この表面結晶粒の成長不足は降伏点強度
と関連があり、この結晶成長の偏倚は合金板厚さ
方向の特に温度近傍とその内側間の不純物の微妙
な偏析と考えられる。 そこで本実施例において、焼鈍雰囲気を大気排
気による真空中での焼鈍を実施した。真空度
10-3Torrで夫々1000℃、1100℃及び1200℃で10
分間焼鈍した場合の結晶組織構造を示す顕微鏡写
真を第9図乃至第11図に夫々示す。薄板厚は
0.2mmである。尚、第9図乃至第11図において、
aは断面を、bは表面の結晶組織構造を夫々示
す。第9図乃至第11図から明らかなようにこの
焼鈍により断面のみならず表面の結晶粒もよく成
長した。第12図は上記真空中での焼鈍を実施し
たシヤドウマスクの降伏点強度を示すもので、成
形性に問題のない降伏点強度20Kg/mm2は1000℃以
上の焼鈍によつて得られる。 ここで表面の結晶粒の成長を阻害していると考
えられる表面(厚さの1/20以下の層)の不純物に
ついて分析した結果を第2表に示す。
[Table] Figure 5 shows the yield point strength of a shadow mask made of 36Ni amber alloy with the above composition when the temperature of the annealing process in a conventional mask annealing furnace in a hydrogen atmosphere is raised. As is clear from the figure, even when annealed at temperatures as high as 1200°C, the yield point strength decreases only to 24 kg/mm 2 . Therefore, in order to set the yield point strength to 20Kg/mm2 or less without any problems with formability, extrapolate from Figure 5 and set the annealing temperature to 1500℃ to 1700℃.
It is necessary to do so. However, since the melting point of this amber alloy is 1440°C to 1455°C, it is not possible to simply increase the temperature. In Figures 6 to 8, the annealing temperature is 1000, respectively.
3 is a micrograph showing the crystal structure of a sample at temperatures of 1100°C, 1100°C, and 1200°C. In FIGS. 6 to 8, a indicates a cross section, and b indicates a surface crystal structure, respectively. As is clear from FIGS. 6 to 8, it can be seen that the growth of crystal grains progresses as the annealing temperature increases. However, while the crystal grains in the cross section have grown significantly, the crystal grains on the surface have hardly grown. That is, this insufficient growth of surface crystal grains is related to the yield point strength, and this deviation in crystal growth is thought to be due to subtle segregation of impurities in the thickness direction of the alloy plate, particularly between the vicinity of the temperature and the inside thereof. Therefore, in this example, annealing was performed in a vacuum by exhausting the annealing atmosphere to the atmosphere. Degree of vacuum
10 at 1000℃, 1100℃ and 1200℃ respectively at 10 -3 Torr
Microscopic photographs showing the crystal structure when annealed for 1 minute are shown in FIGS. 9 to 11, respectively. The thin plate thickness is
It is 0.2mm. In addition, in FIGS. 9 to 11,
A shows a cross section, and b shows a surface crystal structure. As is clear from FIGS. 9 to 11, the annealing resulted in good growth of crystal grains not only in the cross section but also on the surface. FIG. 12 shows the yield point strength of the shadow mask annealed in vacuum as described above. A yield point strength of 20 Kg/mm 2 without any problem in formability can be obtained by annealing at 1000° C. or higher. Table 2 shows the results of an analysis of impurities on the surface (layer less than 1/20th of the thickness) that are thought to inhibit the growth of crystal grains on the surface.

【表】 第2表から明らかなように真空中焼鈍後の鉄−
ニツケル以外の不純物は概ね減少しており、特に
マンガン(Mn)は約1/10に燐(P)及び硫黄
(S)は検出不能なレベルにまで低下している。 これは真空中で焼鈍することにより、蒸気圧の
高いMn、P、及びS等が結晶粒界より蒸発して
結晶粒の成長を容易にしたため、また大気中での
焼鈍で生じがちな之等不純物の酸化物等が表面層
内に形成されにくいためと考えられる。 以上の真空中の焼鈍により得られたアンバー合
金を素材とし降伏点強度20Kg/mm2以下のシヤドウ
マスクを所定の曲面状に成形した場合、曲面品位
に全く問題のないものが得られた。このようにし
て得られたシヤドウマスクを組み込んだカラー受
像管は、アンバー合金の熱膨張率が0〜100℃で
1〜2×10-6/degと非常に小さいためシヤドウ
マスクの熱膨張による色純度の劣化は問題なく、
又シヤドウマスクの機械的変形による色純度の劣
化も全く問題のないものが得られた。 以上の実施例では10-3Torrの真空中で焼鈍し
た例について説明したが、真空度は10−1Torr以
下であれば同様の効果を奏することが確認され
た。この真空度では残存ガスは酸化、還元、また
不活性ガスのいずれでもよい。これ以上圧力をを
上げると不純物の蒸発が充分に行なわれなくなり
効果は薄くなる。またこの焼鈍工程はシヤドウマ
スクの多数の開孔を穿設する前に行なつてもよ
い。また本発明に適用されるシヤドウマスク素材
は36Niアンバー合金に限られるものではなく、
41Ni合金他鉄−ニツケル系合金を主成分とする
ものであれば同様に適用し得ることは言うまでも
ない。 発明の効果 以上のように本発明によれば、鉄−ニツケル系
合金を主成分とするシヤドウマスクの曲面成形性
を向上し変形を防止した高精度の曲面品位とする
ことができ、色純度の問題のないカラー受像管を
得ることができる。
[Table] As is clear from Table 2, iron after annealing in vacuum -
Impurities other than nickel have generally decreased, and in particular, manganese (Mn) has decreased to about 1/10, and phosphorus (P) and sulfur (S) have decreased to undetectable levels. This is because by annealing in vacuum, Mn, P, S, etc. with high vapor pressure evaporate from the grain boundaries and facilitate the growth of crystal grains. This is thought to be because impurity oxides and the like are difficult to form in the surface layer. When a shadow mask with a yield point strength of 20 Kg/mm 2 or less was formed into a predetermined curved shape using the amber alloy obtained by annealing in a vacuum as described above, a mask with no problem in the quality of the curved surface was obtained. The color picture tube incorporating the shadow mask obtained in this way has a very low thermal expansion coefficient of 1 to 2 × 10 -6 /deg at 0 to 100°C, so the color purity is affected by the thermal expansion of the shadow mask. There is no problem with deterioration.
Furthermore, a product was obtained in which there was no problem of deterioration of color purity due to mechanical deformation of the shadow mask. In the above examples, an example was described in which annealing was performed in a vacuum of 10 -3 Torr, but it was confirmed that similar effects can be achieved if the degree of vacuum is 10 -1 Torr or less. At this degree of vacuum, the residual gas may be oxidizing, reducing, or inert gas. If the pressure is increased more than this, impurities will not be evaporated sufficiently and the effect will be weakened. This annealing step may also be performed before drilling the multiple holes in the shadow mask. Furthermore, the shadow mask material applied to the present invention is not limited to 36Ni amber alloy,
Needless to say, any material whose main component is an iron-nickel alloy other than the 41Ni alloy can be similarly applied. Effects of the Invention As described above, according to the present invention, it is possible to improve the curved surface formability of a shadow mask mainly composed of an iron-nickel alloy, prevent deformation, and provide a highly accurate curved surface quality. It is possible to obtain a color picture tube without.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカラー受像管の動作を説明するための
模式図、第2図はシヤドウマスクの変形を説明す
るための要部の概略図、第3図はシヤドウマスク
素材の変形量と降伏点強度との関係を示す特性
図、第4図及び第5図はシヤドウマスクの焼鈍温
度と降伏点強度との関係を示す特性図、第6図乃
至第8図及び第9図乃至第11図は従来及び本発
明の実施例の夫々焼鈍温度によるシヤドウマスク
素材の金属結晶組織構造を顕微鏡写真により表わ
した図で第6図乃至第11図のaは断面をbは表
面を夫々示す図、第12図は本発明の実施例の焼
鈍温度と降伏点強度との関係を示す特性図であ
る。 4……シヤドウマスク、5……開孔。
Figure 1 is a schematic diagram to explain the operation of a color picture tube, Figure 2 is a schematic diagram of the main parts to explain the deformation of a shadow mask, and Figure 3 is a diagram showing the relationship between the amount of deformation of the shadow mask material and the yield point strength. FIGS. 4 and 5 are characteristic diagrams showing the relationship between the annealing temperature and yield point strength of the shadow mask. FIGS. 6 to 8 and 9 to 11 are characteristic diagrams for the conventional and present invention. FIGS. 6 to 11 are diagrams showing the metal crystal structure of the shadow mask material according to the annealing temperature according to the respective examples. In FIGS. 6 to 11, a shows the cross section and b shows the surface, respectively. FIG. FIG. 3 is a characteristic diagram showing the relationship between annealing temperature and yield point strength in Examples. 4...Shadow mask, 5...Open hole.

Claims (1)

【特許請求の範囲】 1 鉄及びニツケルを主成分とする薄板状金属板
に多数の開孔を設ける工程と、前記多数の開孔を
有する金属板を焼鈍する工程と、前記焼鈍された
金属板を成形する工程とを少くとも備えたシヤド
ウマスクの製造方法において、前記焼鈍を真空中
で行なうことを特徴とするシヤドウマスクの製造
方法。 2 前記焼鈍が10-1Torr以下の圧力の真空中で
行なわれることを特徴とする特許請求の範囲第1
項記載のシヤドウマスクの製造方法。 3 前記焼鈍が1000℃以上の温度で行なわれるこ
とを特徴とする特許請求の範囲第2項記載のシヤ
ドウマスクの製造方法。
[Claims] 1. A step of providing a large number of holes in a thin metal plate mainly composed of iron and nickel, annealing the metal plate having the large number of holes, and the annealed metal plate. 1. A method for manufacturing a shadow mask comprising at least a step of molding a shadow mask, wherein the annealing is performed in a vacuum. 2. Claim 1, wherein the annealing is performed in a vacuum at a pressure of 10 -1 Torr or less
2. Method for manufacturing a shadow mask as described in Section 1. 3. The method of manufacturing a shadow mask according to claim 2, wherein the annealing is performed at a temperature of 1000° C. or higher.
JP13572082A 1982-08-05 1982-08-05 Manufacture of shadow mask Granted JPS5927433A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13572082A JPS5927433A (en) 1982-08-05 1982-08-05 Manufacture of shadow mask
EP83107286A EP0101919B1 (en) 1982-08-05 1983-07-25 Color picture tube and method for manufacturing the same
DE8383107286T DE3366460D1 (en) 1982-08-05 1983-07-25 Color picture tube and method for manufacturing the same
US06/818,269 US4708680A (en) 1982-08-05 1986-01-13 Color picture tube and method for manufacturing the same
HK1092/90A HK109290A (en) 1982-08-05 1990-12-27 Color picture tube and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13572082A JPS5927433A (en) 1982-08-05 1982-08-05 Manufacture of shadow mask

Publications (2)

Publication Number Publication Date
JPS5927433A JPS5927433A (en) 1984-02-13
JPS643022B2 true JPS643022B2 (en) 1989-01-19

Family

ID=15158300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13572082A Granted JPS5927433A (en) 1982-08-05 1982-08-05 Manufacture of shadow mask

Country Status (1)

Country Link
JP (1) JPS5927433A (en)

Also Published As

Publication number Publication date
JPS5927433A (en) 1984-02-13

Similar Documents

Publication Publication Date Title
JP2007231423A (en) Process for manufacturing shadow mask made of iron/nickel alloy
US4536226A (en) Method of manufacturing a shadow mask for a color cathode ray tube
US4427396A (en) Method of manufacturing a color selection electrode for a color display tube
US4708680A (en) Color picture tube and method for manufacturing the same
JPS5927435A (en) Color picture tube
JP3987888B2 (en) Steel plate for heat shrink band, method for producing the same, heat shrink band and cathode ray tube device equipped with the same
JPS643022B2 (en)
JPS6231925A (en) Color cathode-ray tube
JPH0222495B2 (en)
US5965974A (en) Cathode ray tube with heat-shrink band having high stress of yielding point and method of fabricating the same
JPH10214578A (en) Heat shrink band
JPH0222496B2 (en)
JPS5927434A (en) Color picture tube
US6373177B1 (en) Shadow mask for cathode ray tube and method of manufacturing same
JPH05311357A (en) Shadow-mask material
JPH0687398B2 (en) Method for manufacturing shed mask
JPH0676645B2 (en) Material for pipe parts and manufacturing method thereof
JPH07166298A (en) Tube interior parts
JPS61218050A (en) Material for the parts of color television picture tube and their manufacture
US6247988B1 (en) Shadow mask for cathode ray tube and method of manufacturing same
JPS6148523A (en) Manufacture of shadow mask
US6252343B1 (en) Shadow mask for cathode ray tube and method of manufacturing same
JPH07268558A (en) Austenitic fe-ni alloy original sheet for shadow mask and its production
JPH0555566B2 (en)
JPH11269554A (en) Manufacture of iron-nickel alloy for electron gun parts