JPH02224962A - Manufacture of optical element - Google Patents

Manufacture of optical element

Info

Publication number
JPH02224962A
JPH02224962A JP4116789A JP4116789A JPH02224962A JP H02224962 A JPH02224962 A JP H02224962A JP 4116789 A JP4116789 A JP 4116789A JP 4116789 A JP4116789 A JP 4116789A JP H02224962 A JPH02224962 A JP H02224962A
Authority
JP
Japan
Prior art keywords
forming
mold
glass material
die
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116789A
Other languages
Japanese (ja)
Inventor
Takeshi Kawamata
川俣 健
Shigeya Sugata
茂也 菅田
Jun Inahashi
潤 稲橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4116789A priority Critical patent/JPH02224962A/en
Publication of JPH02224962A publication Critical patent/JPH02224962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To obtain a lens of a high eccentric accuracy by fixing a glass material to a forming die without releasing from the forming die after forming, using the forming die as a sticking jig for polishing and executing polishing, in manufacturing the optical element of a lens, etc. CONSTITUTION:A forming die 5 is installed inside a forming chamber 4 and a glass material 7 is placed on a forming ace 5a. The glass material 7 is of a parallel plate and only the face 7a brought into contact with the forming face 5a of the forming die 5 is subjected to polishing and an opposite face 7b is just as a cutting face. After a heater 6 on the circumference of the die 5 is installed, the forming chamber 4 is subjected to pressure reducing by a vacuum pump and an inert gas is filled up. When the material 7 is held for specific time at its softening temperature by the heater 6, the material 7 is deformed. When it is subjected to natural cooling thereafter, an optical functional face is formed on the face 7a. When a pitch is coated on the outer periphery of the forming face 5a at about 100 deg.C of the temperature of the die 5, the material 7 and die 5 are sticked strongly. Grinding and polishing are executed on the face 7b of the material 7 thus sticked with the die 5 as the reference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス素材を加熱軟化して成形した後、一方
の面を研磨加工する光学素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing an optical element, in which a glass material is heated and softened, molded, and then one surface is polished.

〔従来の技術〕[Conventional technology]

一般に、ガラス素材を加熱軟化させ、これを一対の成形
用型間で加圧成形して光学素子を得る方法が知られてい
る(例えば、特公昭6132263号公報)。中でも、
例えば特願昭62306509号に提案されるように、
ガラス素材を加圧成形した後、一方の面を研磨加工によ
り仕上げる方法がある。これは、一方の成形用型を複数
に分割して形成し、各分割型にそれぞれ独立した成形圧
力および成形温度を設定して成形するために、得られた
光学素子の一方の面に段差が生じるので、その段差を研
磨して平滑にするものである。
Generally, a method is known in which an optical element is obtained by heating and softening a glass material and press-molding it between a pair of molds (for example, Japanese Patent Publication No. 6,132,263). Among them,
For example, as proposed in Japanese Patent Application No. 62306509,
There is a method of press-forming a glass material and then finishing one side by polishing. This is because one mold is divided into multiple parts, and molding is performed by setting independent molding pressure and molding temperature for each divided mold, so there is a step on one surface of the resulting optical element. Since this occurs, the step is polished to make it smooth.

このように、成形によって一方の面のみに光学機能面を
形成するとともに、他方の面を研磨加工してガラスレン
ズ等を製造する方法においては、従来、加圧成形後のガ
ラス素材を成形用型から取り出し、それを研磨用貼付治
具に貼り、研磨加工を行っていた。
In this way, in the method of manufacturing glass lenses etc. by forming an optically functional surface on only one surface by molding and polishing the other surface, conventionally, the glass material after pressure molding is placed in a mold for molding. He took it out, stuck it on a polishing jig, and polished it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の光学素子の製造方法では、レンズ形
状による制約を受けることなく、所望形状のレンズを容
易に得ることはできるものの、成形後のガラス素材を研
磨用貼付治具に貼る際に芯がずれてしまう可能性が高く
、偏芯精度の高いレンズを製作することが困難であった
However, in the conventional optical element manufacturing method described above, although it is possible to easily obtain a lens with a desired shape without being constrained by the lens shape, when attaching the glass material after molding to the polishing attachment jig, the core This makes it difficult to produce lenses with high eccentricity accuracy.

本発明は、かかる従来の問題点に鑑みてなされたもので
、特に偏芯精度の高い光学素子を得ることができる光学
素子の製造方法を提供することを目的とする。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method for manufacturing an optical element that can obtain an optical element with particularly high eccentricity accuracy.

(課題を解決するための手段〕 上記目的を達成するために、本発明は、ガラス素材を加
熱軟化して成形して一方の面を光学機能面とした後、他
方の面を研磨加工により仕上げる光学素子の製造方法に
おいて、第1図に示すように、前記成形後にガラス素材
1を成形用型2から離型することなく接着剤3等により
成形用型に固着し、その後前記成形用型2を研磨用貼付
治具として用い、前記他方の面を研磨加工することとし
た。
(Means for Solving the Problems) In order to achieve the above object, the present invention heats and softens a glass material to form it to make one surface an optically functional surface, and then finishes the other surface by polishing. In the method for manufacturing an optical element, as shown in FIG. 1, after the molding, the glass material 1 is fixed to the mold 2 with an adhesive 3 or the like without being released from the mold 2, and then was used as a polishing attachment jig to polish the other surface.

〔作 用〕[For production]

このような本発明の製造方法によれば、成形により得ら
れた光学機能面と研磨用貼付治具とは全く偏芯が無く接
着されているため、他方の面を研磨加工により仕上げて
も、極めて偏芯精度の高い光学素子を得ることができる
According to the manufacturing method of the present invention, the optical functional surface obtained by molding and the polishing attachment jig are bonded without any eccentricity, so even if the other surface is finished by polishing, An optical element with extremely high eccentricity accuracy can be obtained.

〔実施例〕〔Example〕

(第1実施例) 第2図は、本実施例で用いた成形装置を示すもので、成
形室4内には、研磨用貼付治具(研磨用貼付皿)を兼用
する成形用型5が配置されている。
(First Example) FIG. 2 shows the molding apparatus used in this example. Inside the molding chamber 4, there is a mold 5 that also serves as a polishing attachment jig (polishing attachment plate). It is located.

成形用型5は、ステンレス鋼またはセラミックス等によ
り成形されているとともに、その成形面5aは、非球面
形状等に形成されかつ表面粗さが0.06μm(R,−
X)以下に鏡面加工され、窒化クロムまたは窒化チタン
等の被膜により被覆されている。また、成形用型5の周
囲には、成形用型5を囲繞するように筒状のヒータ6が
配置されている。ヒータ6は、成形用型5および成形用
型5上に載置されたガラス素材7を加熱するためのもの
である。
The mold 5 is molded from stainless steel or ceramics, and its molding surface 5a is formed into an aspherical shape and has a surface roughness of 0.06 μm (R, -
X) The following is mirror-finished and covered with a film of chromium nitride or titanium nitride. Furthermore, a cylindrical heater 6 is arranged around the mold 5 so as to surround the mold 5. The heater 6 is for heating the mold 5 and the glass material 7 placed on the mold 5.

このような構成の成形装置°により、次のようにして光
学素子を製造した。
Using the molding apparatus configured as described above, an optical element was manufactured in the following manner.

まず、成形用型5を成形室4内に設置し、その成形面5
a上にガラス素材7を載置した。このガラス素材7は、
平行平板であり、成形用型5の成形面5aと接する面7
aのみが研磨加工されており、反対面7bは切断面のま
まである。そして、ガラス素材7を載せた成形用型5の
周囲をおおうようにしてヒータ6を設置した後、成形室
4を密閉し、真空ポンプ(図示省略)にてI X 10
−’Torr程度まで減圧し、その後不活性ガスを充満
させた。このときのガス圧は、5 X 10−’Tor
r程度である。次に、ヒータ6によりガラス素材7が軟
化する温度に所定時間保持した。これにより、ガラス素
材7は自重により変形した。その後、自然冷却したが、
この冷却過程において、ガラス素材7の温度が転移点よ
り十分低くなった後に、成形室4を開放するとともに、
ヒータ6を取り除いた。
First, the mold 5 for molding is installed in the molding chamber 4, and its molding surface 5
A glass material 7 was placed on top a. This glass material 7 is
A surface 7 that is a parallel flat plate and is in contact with the molding surface 5a of the mold 5
Only the surface a is polished, and the opposite surface 7b remains as a cut surface. Then, after installing a heater 6 so as to cover the mold 5 on which the glass material 7 is placed, the molding chamber 4 is sealed, and a vacuum pump (not shown) is used to heat the mold with an I.times.10
The pressure was reduced to about -' Torr, and then it was filled with inert gas. The gas pressure at this time is 5 x 10-'Tor
It is about r. Next, the glass material 7 was maintained at a temperature for a predetermined period of time using a heater 6 to soften it. As a result, the glass material 7 was deformed due to its own weight. After that, it was naturally cooled,
In this cooling process, after the temperature of the glass material 7 becomes sufficiently lower than the transition point, the molding chamber 4 is opened, and
Heater 6 was removed.

ここまでの過程で、ガラス素材7の一方の面7aに成形
用型5の成形面5aを反転した光学機能面が形成された
In the process up to this point, an optically functional surface that is an inversion of the molding surface 5a of the mold 5 was formed on one surface 7a of the glass material 7.

しかる後、成形用型5の温度が100°C前後になった
時に、第3図のように成形用型5の成形面5aの外周部
にピッチ8を塗った。ここに、前記冷却過程において、
ガラス素材7と成形用型5とで線膨張係数が異なるため
に、両者の間にわずかな隙間がある。成形用型5の成形
面5aの外周部に塗られたピッチ8は、その隙間にしみ
込んでいき、ガラス素材7と、成形用型5とを強固に接
着する。このようにした接着されたガラス素材7の光学
機能面が形成されていない面7bに、成形用型5を基準
として研削研磨加工を施した。
Thereafter, when the temperature of the mold 5 reached around 100°C, Pitch 8 was applied to the outer periphery of the molding surface 5a of the mold 5 as shown in FIG. Here, in the cooling process,
Since the glass material 7 and the molding die 5 have different coefficients of linear expansion, there is a slight gap between them. The pitch 8 applied to the outer periphery of the molding surface 5a of the mold 5 penetrates into the gap and firmly adheres the glass material 7 and the mold 5. The surface 7b of the bonded glass material 7 on which the optically functional surface is not formed was subjected to grinding and polishing using the mold 5 as a reference.

この工程で最も注意すべきことは、本発明の主目的であ
る偏芯精度についてである。CG加工(粗研削加工)の
際に、CG機のワーク軸への成形用型5を固定する方法
を第4図に示す。すなわち、研磨用貼付治具を兼ねた成
形用型5のシャンク部5bおよびフランジ部5Cを、C
G機のワーク軸9に当接させて位置決めをした。シャン
ク部5bによりシフト方向のずれが、フランジ部5Cに
よりチルト方向のずれが矯正される。この状態で、CG
機のワーク軸9の吸引孔10からエアで成形用型5を吸
引することにより、成形用型5が00機のワーク軸9に
固定されるため、極めて高い偏芯精度で加工することが
できる。
The thing to be most careful about in this step is eccentricity accuracy, which is the main objective of the present invention. FIG. 4 shows a method of fixing the mold 5 to the work shaft of the CG machine during CG processing (rough grinding). That is, the shank portion 5b and flange portion 5C of the molding die 5, which also serves as a polishing attachment jig, are
The position was determined by bringing it into contact with the work shaft 9 of the G machine. The shank portion 5b corrects deviations in the shift direction, and the flange portion 5C corrects deviations in the tilt direction. In this state, CG
By suctioning the mold 5 with air from the suction hole 10 of the work shaft 9 of the machine, the mold 5 is fixed to the work shaft 9 of the 00 machine, so processing can be performed with extremely high eccentricity accuracy. .

CG加工後の精研削および研磨工程においても、上記と
全く同様の方法により、成形用型5のシャンク部5bお
よびフランジ部5cを当接させて固定し、加工すること
によって、極めて高い偏芯精度で加工することができた
In the fine grinding and polishing process after CG processing, the shank portion 5b and flange portion 5c of the molding die 5 are brought into contact and fixed in the same manner as described above, and processed with extremely high eccentricity accuracy. I was able to process it with

本実施例においては、成形の際の偏芯は全く問題になら
ないため、両面を一度の成形にて仕上げる加工法と比較
し、成形機の偏芯精度等の点からコスト上非常に有利と
なる。
In this example, since eccentricity during molding is not a problem at all, compared to a processing method in which both sides are finished by one molding, it is very advantageous in terms of the eccentricity accuracy of the molding machine, etc. .

また、ガラス素材7として低コストの平行平板を用いる
ことからもコスト上存利となる。
Furthermore, since a low-cost parallel flat plate is used as the glass material 7, it is advantageous in terms of cost.

(第2実施例) 第5図は、本実施例で用いた成形装置を示すもので、成
形室ll内には、上下一対の成形用型12.13がそれ
ぞれ上型取付台14および下型取付台15に取り付けら
れている。成形用上型12は、前記第1実施例で使用し
た成形用型5と同様のものであり、成形用下型13は、
光学機能面を有してお、らず、単に押圧型としてのみ機
能する点が異なる。また、図示は省略したが、成形室1
1は、成形用上型12を上下動させる駆動機構および各
成形用型12.13を加熱する機構を具備している。
(Second Embodiment) FIG. 5 shows the molding apparatus used in this example, in which a pair of upper and lower molding molds 12 and 13 are installed in the molding chamber 11, an upper mold mount 14 and a lower mold mount, respectively. It is attached to a mounting base 15. The upper mold 12 is similar to the mold 5 used in the first embodiment, and the lower mold 13 is
The difference is that it does not have an optical functional surface and functions only as a pressing mold. Although not shown, the molding chamber 1
1 is equipped with a drive mechanism that moves the upper mold 12 up and down and a mechanism that heats each mold 12 and 13.

このような構成の成形装置により、次のようにして光学
素子を製造した。
Using the molding apparatus having such a configuration, an optical element was manufactured in the following manner.

まず、成形用下型13の上にガラス素材7を載置した。First, the glass material 7 was placed on the lower mold 13 for molding.

このガラス素材7は、第1実施例にて使用したものと同
様のものである。その後、再成形用型12.13をガラ
ス素材7が軟化する温度にまで加熱させた後、成形用上
型12を下降させ、ガラス素材7を加圧した。この状態
で所定時間保持した後、再成形用型12.13の温度を
下降させた。ここまでの操作により、ガラス素材7の上
面に、成形用上型12の形状が転写された。
This glass material 7 is the same as that used in the first embodiment. Thereafter, the remolding molds 12 and 13 were heated to a temperature at which the glass material 7 softened, and then the upper molding mold 12 was lowered to pressurize the glass material 7. After maintaining this state for a predetermined time, the temperature of the remolding molds 12 and 13 was lowered. Through the operations up to this point, the shape of the upper mold 12 was transferred to the upper surface of the glass material 7.

再成形用型12.13が十分に冷却された後、ガラス素
材7を成形上型12で押したまま、成形用上型12の成
形面12aの外周部に瞬間接着剤を塗布した。その後、
ガラス素材7と成形用上型12とが十分接着された後に
成形用上型12の押圧力を取り去った。
After the remolding molds 12 and 13 were sufficiently cooled, an instant adhesive was applied to the outer periphery of the molding surface 12a of the molding upper mold 12 while pressing the glass material 7 with the molding upper mold 12. after that,
After the glass material 7 and the upper mold 12 were sufficiently bonded, the pressing force of the upper mold 12 was removed.

こうして接着されたガラス素材7の光学機能面が形成さ
れていない面に、成形用上型12を基準として研削研磨
加工を施した。この場合、成形用上型12には、第1実
施例のようなフランジが付いていないので、その固定方
法は、第6図に示すようにした。すなわち、成形用上型
12の円柱部12bおよび底部2cを00機のワーク軸
16に当接させて位置決めをした。円柱部2bによりシ
フト方向のずれが、底部12cによりチルト方向のずれ
が矯正される。ワーク軸16には、磁石17が取り付け
てあり、この磁石17により、成形用上型12が固定さ
れる。このような状態で粗研削、精研削および研磨加工
を行い、極めて高い偏芯精度で加工することができた。
Grinding and polishing was performed on the surface of the glass material 7 bonded in this manner, on which the optically functional surface was not formed, using the upper mold 12 as a reference. In this case, since the upper mold 12 did not have a flange as in the first embodiment, the method of fixing it was as shown in FIG. That is, the cylindrical portion 12b and bottom portion 2c of the upper mold 12 were brought into contact with the work shaft 16 of the 00 machine for positioning. The columnar portion 2b corrects deviations in the shift direction, and the bottom portion 12c corrects deviations in the tilt direction. A magnet 17 is attached to the work shaft 16, and the upper mold 12 for molding is fixed by this magnet 17. Rough grinding, fine grinding, and polishing were performed under these conditions, and we were able to perform processing with extremely high eccentricity accuracy.

本実施例においては、成形の際に再成形用型12.13
によりガラス素材7を押圧するため、ガラス素材7の上
面に成形用上型12の形状が極めて容易に転写される。
In this example, during molding, the re-molding mold 12.13
Since the glass material 7 is pressed by the glass material 7, the shape of the molding upper die 12 is extremely easily transferred to the upper surface of the glass material 7.

また、ガラス素材7と成形用上型12とを接着する際、
再成形用型1213によりガラス素材7を押圧している
ために、ガラス素材7と成形用上型12とがずれてしま
うことがない。また、成形用上型12はフランジが無く
、形状が単純なため、型のコストを低くおさえることが
できるという利点がある。
Moreover, when bonding the glass material 7 and the upper mold 12,
Since the glass material 7 is pressed by the re-molding die 1213, the glass material 7 and the upper mold 12 do not become misaligned. Further, since the upper mold 12 has no flange and has a simple shape, it has the advantage that the cost of the mold can be kept low.

なお、上記実施例においては、研削加工時の成形用型の
ワーク軸への固定方法として、嵌合と磁石とを利用して
いるが、その代わりに、通常金属加工で用いられるコレ
ットチャックを利用しても良い。
Note that in the above embodiment, fitting and magnets are used as a method of fixing the mold to the work shaft during grinding, but instead, a collet chuck, which is normally used in metal processing, is used. You may do so.

(発明の効果〕 以上のように、本発明の光学素子の製造方法によれば、
成形後にガラス素材を成形用型から離型することなく成
形用型に固着し、その後その成形用型を研磨用貼付治具
として用いて研磨加工するととしたので、極めて偏芯精
度の高い光学素子を得ることができる。
(Effects of the Invention) As described above, according to the method for manufacturing an optical element of the present invention,
After molding, the glass material is fixed to the mold without being released from the mold, and then the mold is used as a polishing jig for polishing, making it possible to create an optical element with extremely high eccentricity accuracy. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学素子の製造方法においてガラス素
材を成形用型に固着した状態を示す縦断面図、第2図か
ら第4図までは本発明の第1実施例を示すもので、第2
図は成形装置を示す縦断面図、第3図はガラス素材を成
形用型に固着した状態を示す正面図、第4図は成形用型
をCC@のワーク軸に取り付けた状態を示す縦断面図、
第5図および第6図は本発明の第2実施例を示すもので
、第5図は成形装置を示す縦断面図、第6図は成形用上
型をCG機のワーク軸に取り付けた状態を示す縦断面図
である。 1.7・・・ガラス素材 2.5.12.13・・・成形用型
FIG. 1 is a longitudinal cross-sectional view showing a state in which a glass material is fixed to a mold in the method for manufacturing an optical element of the present invention, and FIGS. 2 to 4 show a first embodiment of the present invention. Second
The figure is a longitudinal cross-sectional view showing the molding device, Fig. 3 is a front view showing the state in which the glass material is fixed to the mold, and Fig. 4 is the longitudinal cross-section showing the state in which the mold is attached to the work shaft of CC@. figure,
Figures 5 and 6 show a second embodiment of the present invention, with Figure 5 being a longitudinal sectional view showing the molding device, and Figure 6 showing the upper mold for molding attached to the work shaft of the CG machine. FIG. 1.7... Glass material 2.5.12.13... Molding mold

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス素材を加熱軟化して成形して一方の面を光
学機能面とした後、他方の面を研磨加工により仕上げる
光学素子の製造方法において、前記成形後にガラス素材
を成形用型から離型することなく成形用型に固着し、そ
の後前記成形用型を研磨用貼付治具として用い、前記他
方の面を研磨加工することを特徴とする光学素子の製造
方法。
(1) In a method for manufacturing an optical element in which a glass material is heated and softened and molded to make one surface an optically functional surface, and the other surface is finished by polishing, the glass material is separated from the mold after the molding. A method for manufacturing an optical element, characterized in that the optical element is fixed to a mold without being molded, and then the other surface is polished using the mold as a polishing attachment jig.
JP4116789A 1989-02-21 1989-02-21 Manufacture of optical element Pending JPH02224962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116789A JPH02224962A (en) 1989-02-21 1989-02-21 Manufacture of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116789A JPH02224962A (en) 1989-02-21 1989-02-21 Manufacture of optical element

Publications (1)

Publication Number Publication Date
JPH02224962A true JPH02224962A (en) 1990-09-06

Family

ID=12600870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116789A Pending JPH02224962A (en) 1989-02-21 1989-02-21 Manufacture of optical element

Country Status (1)

Country Link
JP (1) JPH02224962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578725B2 (en) 2000-02-22 2009-08-25 Hoya Corporation Lens layout block device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578725B2 (en) 2000-02-22 2009-08-25 Hoya Corporation Lens layout block device

Similar Documents

Publication Publication Date Title
US4895585A (en) Method of manufacturing lens elements
JPH0142900B2 (en)
US3922327A (en) Method of manufacture of optical elements
US3819349A (en) Method and apparatus for producing watch crystals
JPH02224962A (en) Manufacture of optical element
JP2793433B2 (en) Method and apparatus for manufacturing optical element with holder
JPH0680429A (en) Glass optical element molder
JPH01126232A (en) Formation of optical element
JP2005305875A (en) Mold, method for manufacturing composite optical element, and composite optical element
JPH11130448A (en) Optical element and its production and mold for forming optical element used for the same
JP2621956B2 (en) Optical element molding method
JP2501230B2 (en) Mold for molding lens
JPH02102136A (en) Mold for molding optical element and production thereof
JP3203402B2 (en) Optical element molding die, method of manufacturing the same, and optical element molding method
JPS61114822A (en) Manufacture of optical item
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JP4481531B2 (en) Optical element
JP3299785B2 (en) Manufacturing method of optical glass lens
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPS6325233A (en) Compression molding of optical element
JP3128928B2 (en) Lens molding die and lens molding method
JP2000039594A (en) Production of glass die for progressive multifocal lens and machining device therefor
JP4671725B2 (en) Manufacturing method of mold for molding
JPH0552481B2 (en)