JPH02224744A - X-ray photographing device - Google Patents

X-ray photographing device

Info

Publication number
JPH02224744A
JPH02224744A JP1049372A JP4937289A JPH02224744A JP H02224744 A JPH02224744 A JP H02224744A JP 1049372 A JP1049372 A JP 1049372A JP 4937289 A JP4937289 A JP 4937289A JP H02224744 A JPH02224744 A JP H02224744A
Authority
JP
Japan
Prior art keywords
image
ray
sor
contrast
monochromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1049372A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
芝田 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1049372A priority Critical patent/JPH02224744A/en
Publication of JPH02224744A publication Critical patent/JPH02224744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To erase image other than contrast medium completely and enhance the contrast on an image by converting a penetration image created by two monochromatic X-ray beams having different wavelengths, which have penetrated an object to be photographed, into an image signal, and by forming a differential image between penetration images. CONSTITUTION:An electron beam bent by a deflecting electric magnet 83 generates a synchrotron radiative light, which is emitted in the tangential direction to permit taking-out from an SOR takeout port 85. A high frequency accelerative cavity 86 is provided at part of the straight portion of an ultra-high vacuum vessel 82, and high frequency electric power is injected from outside. Rotary discs 12, 14 rotate synchronously under control by a timing control device 7, and a reflex X-ray beam at silicon crystal 11 and a reflex X-ray beam at silicon crystal 13 are generated one after another. The penetration image due to these two X-ray beams is converted by an image converting part 3 into TV image signals. These two TV image signals are sent to an image processing part 4, and upon logarithmic conversion by logarithmic converting circuits 41, 42, such image processings as subtraction, contrast emphasis, etc., are made by an image processing circuit 43.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、血管造影などに好適なX線撮影装置に関す
る。
The present invention relates to an X-ray imaging apparatus suitable for angiography and the like.

【従来の技術】[Conventional technology]

X線造影撮影を行なう場合、造影剤により吸収されるエ
ネルギーのX線とより吸収されないエネルギーのX線と
によりそれぞれ透過像を得て、これらの像の間で差分を
得れば、造影剤の像、つまり通常は血管像のみを抽出で
きる。 そこで、従来より、このようないわゆるX線エネルギー
サブトラクションは、連続スペクトルのX線を用い、た
とえば管電圧を切り換えて撮影を行なったり、あるいは
フィルタでセンサを挟んでサンドイッチ構造にした露光
板を用いて撮影することによって行なっている。
When performing X-ray contrast imaging, transmission images are obtained using X-rays with energy that is absorbed by the contrast agent and X-rays with energy that is less absorbed, and by obtaining the difference between these images, it is possible to determine the difference between the images. images, usually only blood vessel images. Therefore, conventionally, such so-called X-ray energy subtraction has been carried out using continuous spectrum X-rays, for example, by switching the tube voltage to perform imaging, or by using an exposure plate with a sandwich structure in which the sensor is sandwiched between filters. This is done by taking pictures.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来では単色X線を用いていないので、
画像のコントラストが低いとが、軟部組織が完全には消
去できないなどの問題があった。 この発明は、造影剤以外の像を完全に消去し、画像のコ
ントラストを高め、診断能の高いX線エネルギーサブト
ラクション像を得ることができる、X線撮影装置を提供
することを目的とする。
However, since monochromatic X-rays are not used conventionally,
There were problems such as the low contrast of the image and the inability to completely erase soft tissues. SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray imaging apparatus that can completely erase images other than a contrast agent, increase the contrast of the image, and obtain an X-ray energy subtraction image with high diagnostic ability.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明によるX線撮影装置
においては、SOR発生手段と、該SOR発生手段より
取り出されたSORをそれぞれ入射角度を変えて結晶格
子に入射して波長の異なる2つの単色X線ビームを作り
、これらを被写体の同一部位に同一方向から順次照射す
る手段と、上記被写体を透過した2つの波長の異なる単
色X線ビームによりそれぞれ作られる透過像を画像信号
に変換する手段と、該画像信号間での演算により上記2
つの単色X線ビームによる透過像間の差分像を作る手段
とが備えられる。
In order to achieve the above object, the X-ray imaging apparatus according to the present invention includes an SOR generating means and the SOR extracted from the SOR generating means being incident on a crystal lattice at different incident angles to generate two monochromatic lights having different wavelengths. A means for creating an X-ray beam and sequentially irradiating the same part of the subject from the same direction; and a means for converting transmitted images created by the two monochromatic X-ray beams of different wavelengths transmitted through the subject into image signals. , the above 2 is achieved by calculation between the image signals.
and means for creating a differential image between images transmitted by the two monochromatic X-ray beams.

【作  用】[For production]

SORは、シンクロトロン放射光(Synchrotr
onOrbital Radiation、略して5O
R)のことで、電波領域からX線・ガンマ線領域にわた
る切れ目のない滑らかな波長スペクトルを持った白色光
である。このSORを結晶格子に入射すると、反射X線
としてブラッグの条件を満たす波長の単色X線が得られ
る。そのため、入射角度を変えることにより異なる波長
の単色X線ビームが得られる。 この波長の異なる2つの単色X線ビームを、被写体の同
一部位に同一方向から順次照射する。すると、エネルギ
ーの異なるX線による2つの透過像が得られることにな
る。この2つの透過像は画像信号に変換され、この画像
信号間で演算を行なうことにより、上記2つの透過像間
での差分像を得ることができる。 2つの単色X線ビームの波長が造影剤のに吸収端の上下
となるようにすれば、2つの透過像の間で造影剤による
減弱が大きく異なるので、これらの差分像では造影剤の
コントラストが非常に高くなり、且つ他の画像はほとん
ど消去される。 2つの単色X線ビームによる透過像は非常に短い露出時
間でそれぞれ得られるため、被写体の動きによるぼけが
なくなる。短い時間間隔で露出して高速連続撮影するこ
とにより、時間的に動く被写体を表わす、動態的なサブ
トラクション像を得ることができる。
SOR is synchrotron radiation (SOR).
onOrbital Radiation, abbreviated as 5O
R), which is white light with an unbroken and smooth wavelength spectrum ranging from the radio wave region to the X-ray and gamma ray regions. When this SOR is incident on a crystal lattice, monochromatic X-rays with a wavelength that satisfies Bragg's conditions are obtained as reflected X-rays. Therefore, monochromatic X-ray beams of different wavelengths can be obtained by changing the incident angle. These two monochromatic X-ray beams with different wavelengths are sequentially irradiated onto the same part of the subject from the same direction. Then, two transmitted images of X-rays with different energies are obtained. These two transmitted images are converted into image signals, and by performing calculations between these image signals, a difference image between the two transmitted images can be obtained. If the wavelengths of the two monochromatic X-ray beams are set above and below the absorption edge of the contrast medium, the attenuation caused by the contrast medium will be greatly different between the two transmission images, so the contrast of the contrast medium will be reduced in these difference images. becomes very high and other images are almost erased. Since the transmitted images of the two monochromatic X-ray beams are obtained with very short exposure times, there is no blur caused by the movement of the subject. By performing high-speed continuous shooting with exposure at short time intervals, it is possible to obtain a dynamic subtraction image that represents a temporally moving subject.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する。第1図において、X線発生部1ではSOR光
源8から取り出された2つのSORがそれぞれ入射角度
θ1、θ2でシリコン結晶11.13に入射される。入
射角度が異なるため、ブラッグの条件から異なる波長λ
A、λBの単色X線ビームがそれぞれ得られる。これら
2つの単色X線ビームは、鉛製の回転シャッター15に
より不要なものが照射されないようにして被写体2に照
射される。 ここで、SOR光源8は、第2図に示すように基本的に
は電子入射器81と、リング状に1周する超高真空容器
82よりなる電子蓄積リングから構成される。この超高
真空容器82のリングに沿って偏向電磁石83と収束電
磁石84とが複数個配置される。偏向電磁石83は電子
の軌道を曲げてリング状の電子ビーム軌道を形成する。 この偏向電磁石83により曲げられる電子ビームはシン
クロトロン放射光を発生し、これが接線方向に出射され
るので、SOR取り出しポート85より取り出される。 収束電磁石84は偏向電磁石83間の直線部に配置され
、電子ビームが超高真空容器82の中を周回する際、電
子ビームの発散を抑えて安定に電子ビームを周回させる
ためのレンズとして機能する。超高真空容器82の直線
部の一部には高周波加速空胴86が設けられ、外部より
高周波電力が注入される。 また、シリコン結晶11.13は第3図に示すようにそ
れぞれ回転円板12.14に取り付けられており、反射
X線が同一方向・同一経路のX線ビームとなるようにさ
れる。そして、回転円板14はシリコン結晶11からの
反射X線ビームを妨げないような形状となっており、こ
れら回転円板12.14がタイミング制御装置7の制御
のもとに同期回転することによって、シリコン結晶11
での反射X線ビームと、シリコン結晶13での反射X線
ビームとが順次発生させられ、これらは同一方向で且つ
同一経路を通るものとなる。 これら2つのX線ビームによる透過像はイメージ変換部
3においてTV映像信号に変換される。 すなわち、X線透過像はX線イメージインテンシファイ
ア31により光学像に変換され、その出力光学像はハー
フミラ−32によって2つのTV右カメラ3.34に振
り分けられる。このTV右カメラ3.34はたとえば3
0フレ一ム/秒のノンインターレース走査方式のもので
、それぞれ光学シャッター35.36を備えている。こ
の光学シャッター35.36及び回転シャッター15の
開閉動作及びシリコン結晶11.13を保持する回転円
板12.14の回転動作は、TV走査に応じたものとな
るようタイミング制御装置7により制御される。第4図
Aに示すようなTV同期信号の期間に、回転シャッター
15が第4図Bに示すように2同量いて(たとえば2.
 rasec開いた後2 m5ec閉じ、その後2m5
ec開く)λAとλBのX線ビームを通し、それぞれの
開いた期間に光学シャッター35.36が交互に開き、
λAのX線ビームによる透過像がTV右カメラ3で、λ
BのX線ビームによる透過像がTVカメラ34で、それ
ぞれTV映像信号に変換される。これらTV右カメラ3
.34から第4図Cのように映像信号が発生する。 これら2つのTV映像信号は画像処理部4に送られて、
まず対数変換回路41.42により対数変換された後、
画像処理回路43でサブトラクション処理や、コントラ
スト強調などの画像処理がなされる。こうして得られる
サブトラクション像は画像表示装置5によって表示され
る。 これら2つの単色X線ビームの波長λA、λBは第5図
に示すように、造影剤であるヨードのに吸収端波長(3
3,17keV>の上下とされる。 この波長λA、λBはつぎのようにして設定する。 まず、ブラッグの条件は、 2 d hnk sinθ=nλ(n=0.1.2 、
・)(hnk) H面指数 dhnk;シリコン結晶の格子面間隔 θ  ;入射角 λ  ;反射X線波長 で表わされる。この実施例ではシリコン結晶の(111
)面を使用するものとすると、 n^A=2 d 111 sinθ1 nλB−2dtttsinθ2 となる、そこで、θ1、θ2を調整することにより波長
λA、λBを所望のものとすることができる。 つぎに波長λA、λBの単色X線による画像の画素値を
Pa、Pbとすると、 p a =1 og [N ex p t −u A 
Oxo−u A 1 ・” 11 ]p b= 10g
[N exp’−uBO′xo−uBl ・xl ) 
]N;造影剤のないときのX線量子数 uAo ;波長λAのX線に対するヨードの質量減刑係
数 uAl ;波長λAのXllに対する軟部組繊の質量減
刑係数 uBo ;波長λBのX線に対するヨードの質量減刑係
数 uBl ;波長λBのX線に対する軟部組織の質量減刑
係数 XO;ヨードの厚さ Xl;軟部組織の厚さ であるから、 uBl−P a −uAl−P b = (uAl−uBo−uAo−uBl) xo+ (
uBl−uAl) 1ogNz (uAl−uBo−u
Ao・uBl) x。 となり、画像処理部4において重み付は差分法による2
つの映像信号間の差引演算を行なうことにより、xlの
項の消去ができ、ヨード厚xoにのみ依存する画像を得
ることができる。
Next, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, in the X-ray generating section 1, two SOR lights taken out from the SOR light source 8 are incident on a silicon crystal 11 and 13 at incident angles θ1 and θ2, respectively. Since the incident angle is different, the wavelength λ is different from Bragg's condition.
Monochromatic X-ray beams A and λB are obtained, respectively. These two monochromatic X-ray beams are irradiated onto the subject 2 using a rotary shutter 15 made of lead so that unnecessary objects are not irradiated. Here, as shown in FIG. 2, the SOR light source 8 basically consists of an electron injector 81 and an electron storage ring consisting of an ultra-high vacuum container 82 that goes around once in a ring shape. A plurality of bending electromagnets 83 and focusing electromagnets 84 are arranged along the ring of this ultra-high vacuum container 82. The bending electromagnet 83 bends the electron trajectory to form a ring-shaped electron beam trajectory. The electron beam bent by the deflection electromagnet 83 generates synchrotron radiation, which is emitted in the tangential direction and is therefore extracted from the SOR extraction port 85. The converging electromagnet 84 is arranged in a straight line between the deflecting electromagnets 83, and functions as a lens to suppress the divergence of the electron beam and stably circulate the electron beam when the electron beam circulates inside the ultra-high vacuum container 82. . A high frequency acceleration cavity 86 is provided in a part of the straight portion of the ultra-high vacuum vessel 82, and high frequency power is injected from the outside. Further, as shown in FIG. 3, the silicon crystals 11 and 13 are respectively attached to rotating disks 12 and 14, so that the reflected X-rays become X-ray beams in the same direction and along the same path. The rotating disk 14 has a shape that does not interfere with the reflected X-ray beam from the silicon crystal 11, and these rotating disks 12 and 14 rotate synchronously under the control of the timing control device 7. , silicon crystal 11
An X-ray beam reflected by the silicon crystal 13 and an X-ray beam reflected by the silicon crystal 13 are sequentially generated, and these beams travel in the same direction and along the same path. The images transmitted by these two X-ray beams are converted into TV video signals in the image conversion section 3. That is, the X-ray transmitted image is converted into an optical image by the X-ray image intensifier 31, and the output optical image is distributed to the two TV right cameras 3.34 by the half mirror 32. For example, this TV right camera 3.34 is 3.
They are non-interlaced scanning systems with a rate of 0 frames per second, and are each equipped with 35 and 36 optical shutters. The opening/closing operations of the optical shutters 35, 36 and the rotary shutter 15, as well as the rotating operations of the rotating disk 12, 14 holding the silicon crystal 11, 13, are controlled by the timing control device 7 so as to correspond to the TV scanning. . During the period of the TV synchronization signal as shown in FIG. 4A, two rotating shutters 15 are provided in the same amount as shown in FIG. 4B (for example, 2.
rasec open, then 2 m5ec close, then 2m5
ec open) The optical shutters 35, 36 are opened alternately during each open period to pass the X-ray beams λA and λB;
The image transmitted by the X-ray beam of λA is transmitted by the TV right camera 3.
The transmitted images by the B X-ray beam are converted into TV video signals by the TV camera 34, respectively. These TV right camera 3
.. A video signal is generated from 34 as shown in FIG. 4C. These two TV video signals are sent to the image processing section 4,
First, after being logarithmically transformed by logarithmic transformation circuits 41 and 42,
An image processing circuit 43 performs image processing such as subtraction processing and contrast enhancement. The subtraction image thus obtained is displayed by the image display device 5. As shown in Figure 5, the wavelengths λA and λB of these two monochromatic X-ray beams are the absorption edge wavelength (3
3.17 keV>. The wavelengths λA and λB are set as follows. First, Bragg's condition is 2 d hnk sinθ=nλ (n=0.1.2,
.) (hnk) H-plane index dhnk; lattice spacing θ of silicon crystal; incident angle λ; expressed by reflected X-ray wavelength. In this example, silicon crystal (111
) plane is used, n^A=2 d 111 sin θ1 nλB-2dtttsin θ2 Therefore, by adjusting θ1 and θ2, the wavelengths λA and λB can be set to desired values. Next, if the pixel values of images created by monochromatic X-rays with wavelengths λA and λB are Pa and Pb, pa = 1 og [N ex p t −u A
Oxo-u A 1 ・” 11 ] p b = 10g
[N exp'-uBO'xo-uBl ・xl )
]N; X-ray quantum number uAo when there is no contrast agent; mass reduction coefficient uAl of iodine for X-rays with wavelength λA; mass reduction coefficient uBo of soft tissue for Xll of wavelength λA; Mass reduction coefficient uBl; mass reduction coefficient XO of soft tissue for X-rays with wavelength λB; iodine thickness Xl; thickness of soft tissue, so uBl-P a -uAl-P b = (uAl-uBo-uAo -uBl) xo+ (
uBl-uAl) 1ogNz (uAl-uBo-u
Ao・uBl) x. The image processing unit 4 weights 2 by the difference method.
By performing a subtraction operation between the two video signals, the term xl can be eliminated, and an image that depends only on the iodine thickness xo can be obtained.

【発明の効果】【Effect of the invention】

この発明のX線撮影装置によれば、差分像のコントラス
トを高め、造影剤以外の像を完全に消去し、診断能の高
いX線エネルギーサブトラクション像を得ることができ
る。しかも非常に短時間の露出でサブトラクション像を
得ることができるため、被写体の動きによるぼけも防ぐ
ことができ、高速の連続撮影も行える。そのなめ、とく
に心臓血管造影に最適である。
According to the X-ray imaging apparatus of the present invention, it is possible to increase the contrast of the differential image, completely erase images other than the contrast agent, and obtain an X-ray energy subtraction image with high diagnostic ability. Moreover, since subtraction images can be obtained with very short exposures, blurring caused by subject movement can be prevented, and high-speed continuous shooting can be performed. This makes it especially suitable for cardiovascular angiography.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を表わすブロック図、第2
図はSOR光源を表わす模式図、第3図は2つのシリコ
ン結晶の位置関係を表わすための模式的な斜視図、第4
図A、B、Cは動作説明のためのタイムチャート、第5
図はフォトンエネルギーに対する質量減刑係数を表わす
グラフである。 1・・・X線発生部、11.13・・・シリコン結晶、
12.14・・・回転円板、15・・・回転シャッター
、2・・・被写体、3・・・イメージ変換部、31・・
・X線イメージインテンシファイア、32・・・ハーフ
ミラ−33,34・・・TV右カメラ35.36・・・
光学シャッター、4・・・画像処理部、41,42・・
・対数変換回路、43・・・画像処理回路、5・・・画
像表示装置、7・・・タイミング制御装置、8・・・S
OR光源、81・・電子入射器、82・・・超高真空容
器、83・・・偏向電磁石、84・・・収束電磁石、8
5・・・SOR取り出しボート、86・・・高周波加速
空胴。
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG.
The figure is a schematic diagram showing the SOR light source, Figure 3 is a schematic perspective view showing the positional relationship of two silicon crystals, and Figure 4 is a schematic diagram showing the positional relationship of two silicon crystals.
Figures A, B, and C are time charts for explaining the operation.
The figure is a graph showing the mass reduction coefficient versus photon energy. 1... X-ray generation part, 11.13... Silicon crystal,
12.14...Rotating disk, 15...Rotating shutter, 2...Subject, 3...Image converter, 31...
・X-ray image intensifier, 32...Half mirror 33, 34...TV right camera 35.36...
Optical shutter, 4... Image processing section, 41, 42...
- Logarithmic conversion circuit, 43... Image processing circuit, 5... Image display device, 7... Timing control device, 8... S
OR light source, 81... Electron injector, 82... Ultra-high vacuum container, 83... Bending electromagnet, 84... Focusing electromagnet, 8
5...SOR extraction boat, 86...High frequency acceleration cavity.

Claims (1)

【特許請求の範囲】[Claims] (1)SOR発生手段と、該SOR発生手段より取り出
されたSORをそれぞれ入射角度を変えて結晶格子に入
射して波長の異なる2つの単色X線ビームを作り、これ
らを被写体の同一部位に同一方向から順次照射する手段
と、上記被写体を透過した2つの波長の異なる単色X線
ビームによりそれぞれ作られる透過像を画像信号に変換
する手段と、該画像信号間での演算により上記2つの単
色X線ビームによる透過像間の差分像を作る手段とを具
備することを特徴とするX線撮影装置。
(1) The SOR generation means and the SOR extracted from the SOR generation means are incident on the crystal lattice at different incident angles to create two monochromatic X-ray beams with different wavelengths, and these are applied to the same part of the subject at the same time. means for sequentially irradiating from the direction; means for converting transmitted images created by the two monochromatic X-ray beams having different wavelengths transmitted through the subject into image signals; 1. An X-ray imaging apparatus comprising: means for creating a differential image between images transmitted by a ray beam.
JP1049372A 1989-02-28 1989-02-28 X-ray photographing device Pending JPH02224744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049372A JPH02224744A (en) 1989-02-28 1989-02-28 X-ray photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049372A JPH02224744A (en) 1989-02-28 1989-02-28 X-ray photographing device

Publications (1)

Publication Number Publication Date
JPH02224744A true JPH02224744A (en) 1990-09-06

Family

ID=12829200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049372A Pending JPH02224744A (en) 1989-02-28 1989-02-28 X-ray photographing device

Country Status (1)

Country Link
JP (1) JPH02224744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328145A (en) * 2003-04-22 2004-11-18 Canon Inc Radiographic imaging unit
WO2014041675A1 (en) * 2012-09-14 2014-03-20 株式会社日立製作所 X-ray imaging device and x-ray imaging method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328145A (en) * 2003-04-22 2004-11-18 Canon Inc Radiographic imaging unit
WO2014041675A1 (en) * 2012-09-14 2014-03-20 株式会社日立製作所 X-ray imaging device and x-ray imaging method
JPWO2014041675A1 (en) * 2012-09-14 2016-08-12 株式会社日立製作所 X-ray imaging apparatus and X-ray imaging method

Similar Documents

Publication Publication Date Title
US4945552A (en) Imaging system for obtaining X-ray energy subtraction images
US3848130A (en) Selective material x-ray imaging system
JPS58118733A (en) Radiography apparatus
US6304632B1 (en) Method and apparatus for radiography having an antiscatter grid
US4058833A (en) Radiation imaging apparatus and method
JPH04141156A (en) Computerized tomograph
JPH03289277A (en) Method and apparatus for generating energy subtraction picture
JPS5836327B2 (en) X-ray imaging device
JPH02224744A (en) X-ray photographing device
JPH06237927A (en) Radiographic device
JPH01190337A (en) X-ray energy difference imaging apparatus
JPH05346500A (en) Wavelength change-over device for synchrotron radiation
JPH03285475A (en) Energy subtraction picture generating method
CA1070439A (en) X-ray examining device
JPH02278470A (en) Method and device for energy subtraction for radiograph
JP3280939B2 (en) Medical synchrotron radiation X-ray imaging device
JPH0767866A (en) X-ray diagnostic device
JPS642724Y2 (en)
JPH02228687A (en) X-ray holography device
JPH11234566A (en) Angiography system
JPH02273873A (en) Method and device for energy subtraction of radiograph
JPS5869532A (en) X-ray photography apparatus
JP2631032B2 (en) Radiation image energy subtraction method and apparatus
JPH04207675A (en) Energy difference image photographing device
JP2772667B2 (en) Radiation dose adjusting device in radiation imaging device