JP2772667B2 - Radiation dose adjusting device in radiation imaging device - Google Patents

Radiation dose adjusting device in radiation imaging device

Info

Publication number
JP2772667B2
JP2772667B2 JP1078385A JP7838589A JP2772667B2 JP 2772667 B2 JP2772667 B2 JP 2772667B2 JP 1078385 A JP1078385 A JP 1078385A JP 7838589 A JP7838589 A JP 7838589A JP 2772667 B2 JP2772667 B2 JP 2772667B2
Authority
JP
Japan
Prior art keywords
radiation
slit
amount
longitudinal direction
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1078385A
Other languages
Japanese (ja)
Other versions
JPH02257942A (en
Inventor
文生 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1078385A priority Critical patent/JP2772667B2/en
Publication of JPH02257942A publication Critical patent/JPH02257942A/en
Application granted granted Critical
Publication of JP2772667B2 publication Critical patent/JP2772667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、放射線(一般にX線)撮像装置に関し、特
に被写体各部への放射線照射量を調整して露出補償する
技術に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation (generally, X-ray) imaging apparatus, and more particularly, to a technique for adjusting exposure to various portions of a subject to compensate for exposure.

〈従来の技術〉 放射線撮像装置は、一般にX線管が用いられる放射線
源と、被照射物体を通過した前記放射線源からの放射線
量を検出して撮像記録する例えば放射線に感応するフィ
ルム,輝尽性蛍光体等の撮像記録手段とから構成され
る。
<Prior Art> A radiation imaging apparatus generally includes a radiation source using an X-ray tube, a radiation-sensitive film that detects and records an amount of radiation from the radiation source that has passed through an object to be irradiated, and a radiation-sensitive film. And imaging means such as a luminescent phosphor.

ところで、例えば医療用に用いられるX線検査装置に
おける胸部撮影では、撮影部分における厚さや放射線吸
収性の違いによって解剖学的厚みに大きな変動を示すこ
とが問題である。
Meanwhile, for example, in chest imaging using an X-ray examination apparatus used for medical purposes, there is a problem that anatomical thickness shows a large variation due to a difference in thickness or radiation absorbability in an imaging part.

即ち、厚みの大きい領域は露出不足となって薄くなり
過ぎ、厚みの薄い部分は露出過多となって濃すぎてラチ
チュードが低下する。
That is, a region with a large thickness is underexposed and becomes too thin, and a region with a small thickness is overexposed and becomes too dark to reduce the latitude.

このため、放射線源の前方にスリットを設けてこのス
リットをその長手方向に分割される領域毎に開口面積を
可変に制御すべく放射線遮断材料(例えば鉛)からなる
絞り部材を出入させ、開口部分を通過して得られる放射
線ビームを長手方向と直角方向に移動する走査を行って
被写体に照射しつつ被写体の背後に設けられた撮像面に
て撮像記録する一方、撮像面における各部の放射線量を
検出するディテクタを設け、該ディテクタからの検出信
号に基づいて適切な露光量を得るように前記絞り部材に
よる絞り量を制御して放射線照射量を調整する構成とし
たものがある(特開昭62−129034号公報等参照)。
For this reason, a slit is provided in front of the radiation source, and an aperture member made of a radiation shielding material (for example, lead) is moved in and out so as to variably control the opening area of each of the slits divided in the longitudinal direction. While scanning the radiation beam obtained by passing the radiation beam in the direction perpendicular to the longitudinal direction and irradiating the subject with an image, recording and recording the radiation dose of each part on the imaging surface while capturing and recording on the imaging surface provided behind the subject. There is a configuration in which a detector for detection is provided, and a radiation amount is adjusted by controlling a diaphragm amount by the diaphragm member so as to obtain an appropriate exposure amount based on a detection signal from the detector (Japanese Patent Laid-Open No. Sho 62-62). No. 129034).

〈発明が解決しようとする課題〉 しかしながら、かかる従来の放射線照射量調整装置
は、長手方向に分割された領域毎の照射量を照射面積を
変えて調整する構成であるため、要求される照射量を対
応部分に正確に一致させて照射することが難しく偽画像
となったり、隣接する領域の放射線の散乱の影響を受け
易いという撮像精度上の問題があった。
<Problem to be Solved by the Invention> However, such a conventional radiation dose adjusting device is configured to adjust the dose in each of the regions divided in the longitudinal direction by changing the irradiation area, so that the required dose is required. It is difficult to irradiate the image in such a manner that the image is accurately matched with the corresponding portion, resulting in a false image, and there is a problem in imaging accuracy that the image is easily affected by the scattering of radiation in the adjacent region.

本発明は、このような従来の問題点に鑑みなされたも
ので、微小の照射面積を持つ放射線ビームを形成し、そ
の走査速度を可変に制御する構成として上記問題点を解
決し、撮像精度を高めた放射線撮像装置における放射線
照射量調整装置を提供することを目的とする。
The present invention has been made in view of such a conventional problem, and solves the above problem by forming a radiation beam having a small irradiation area and variably controlling a scanning speed thereof, thereby improving imaging accuracy. It is an object of the present invention to provide a radiation irradiation amount adjusting device in a radiation imaging apparatus having an increased radiation irradiation amount.

〈課題を解決するための手段〉 このため本発明は、放射線源と被写体との間に、長手
方向の一部に放射線を透過させる微小スリットを有した
複数のスリット部材を、長手方向と直角な方向に並べて
配設すると共に、各スリット部材のスリットを夫々スリ
ット部材の長手方向に速度可変に移動させることにより
スリットを透過する放射線を走査する走査手段を備えて
構成した。
<Means for Solving the Problems> For this reason, the present invention provides a plurality of slit members having fine slits that transmit radiation in a part of the longitudinal direction between the radiation source and the subject, Scanning means for scanning radiation transmitted through the slit by moving the slit of each slit member at a variable speed in the longitudinal direction of the slit member.

〈作用〉 被写体の各部における放射線透過量等の検出信号に基
づいて走査手段が各スリット部材のスリットの移動速度
を制御する。これにより、各スリットを透過して得られ
る放射線ビームの走査速度が独立して制御され、該速度
に応じて対応部位の放射線照射量が調整される。
<Operation> The scanning unit controls the moving speed of the slit of each slit member based on a detection signal such as the amount of radiation transmitted through each part of the subject. Thereby, the scanning speed of the radiation beam obtained through each slit is independently controlled, and the radiation dose of the corresponding portion is adjusted according to the speed.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Hereinafter, an example of the present invention will be described with reference to the drawings.

第1の実施例の構成を示す第1図及び第2図におい
て、放射線源(一般にはX線管)1と被写体3との間に
本発明に係る放射線照射量調整機能を有するモジュレー
タ2が配設される。
1 and 2 showing the configuration of the first embodiment, a modulator 2 having a radiation dose adjusting function according to the present invention is arranged between a radiation source (generally, an X-ray tube) 1 and a subject 3. Is established.

前記モジュレータ2は、鉛,タングステン,タンタル
等の放射線遮断材料からなる板材の中央部に撮像面に対
応する方形の開口21aを形成した窓部材21と、その後方
に上下方向に複数本隙間無く並べて配設されるスリット
部材22と、これら各スリット部材22を、夫々速度可変に
長手方向(水平方向)に移動させるドライブユニット23
とを備えて構成される。
The modulator 2 includes a window member 21 having a rectangular opening 21a corresponding to an imaging surface formed in the center of a plate made of a radiation shielding material such as lead, tungsten, tantalum, and the like. A slit member 22 provided, and a drive unit 23 for moving each of these slit members 22 in the longitudinal direction (horizontal direction) at a variable speed.
And is provided.

前記スリット部材22は、第2図に示すように放射線透
過材料からなるPET(ポリエチレンテレフタレート)テ
ープ22aの一面に長手方向の一部を残して放射線遮断材
料である鉛(又はタングステンW,モリブデンMo)で形成
されたPbテープ22bを積層して形成される。尚、PETテー
プ22a及びPbテープ22bの隣接する側面の一方を凸,他方
を凹に形成して長手方向移動自由に係合させている。前
記Pbテープ22bが積層されない部分が放射線を透過する
微小スリット22cとなる。
As shown in FIG. 2, the slit member 22 is made of lead (or tungsten W, molybdenum Mo) which is a radiation shielding material except for a part in the longitudinal direction on one surface of a PET (polyethylene terephthalate) tape 22a made of a radiation transmitting material. It is formed by laminating the Pb tapes 22b formed by the above. It should be noted that one of the adjacent side surfaces of the PET tape 22a and the Pb tape 22b is formed to be convex and the other is formed to be engaged in the longitudinal movement freely. The portion where the Pb tape 22b is not laminated is a minute slit 22c that transmits radiation.

そして、各スリット部材22の長手方向の一端に前記ド
ライブユニット23の可動端を連結する。該ドライブユニ
ット23は例えばリニヤソレノイド等で構成され、前記微
小スリット22cが前記窓部材21の開口21aを横断できるス
トローク量を有する。
Then, the movable end of the drive unit 23 is connected to one longitudinal end of each slit member 22. The drive unit 23 is composed of, for example, a linear solenoid, and has a stroke amount that allows the minute slit 22c to cross the opening 21a of the window member 21.

前記モジュレータ2の後方に被写体3が位置し、その
背後にはブッキーグリッド4,面ディテクタ5,スクリーン
/フィルム等の撮像面6が配設されている。ブッキーグ
リッド4は、面ディテクタ5へ放射線ビームを直角に当
てるため設けられる。面ディテクタ5は、各スリット22
cを通過したペンシルビームPBの撮像面4における放射
線量を検出することによって被写体3各部の放射線透過
量を検出する。前記各ドライブユニット23は面ディテク
タ5からの検出信号に応じて制御回路7からの制御信号
により可動端の移動速度を制御される。
A subject 3 is located behind the modulator 2, and a bucky grid 4, a plane detector 5, and an imaging surface 6 such as a screen / film are disposed behind the subject 3. The bucky grid 4 is provided for directing a radiation beam to the surface detector 5 at a right angle. The surface detector 5 has each slit 22
By detecting the radiation dose on the imaging surface 4 of the pencil beam PB that has passed through c, the radiation transmission amount of each part of the subject 3 is detected. The moving speed of the movable end of each drive unit 23 is controlled by a control signal from the control circuit 7 in accordance with a detection signal from the surface detector 5.

そして、撮像面6にて前記スリット22cを通過して得
られるペンシルビームPBの移動速度によって各部位毎に
照射時間を変えた撮像・記録がなされる。尚、スクリー
ン/フィルムの場合、放射線が蛍光体層(蛍光スクリー
ン)に照射されて可視光に変換され、この可変光が銀塩
感光材料を塗布したフィルムに感光される。但し、撮像
面6は、これに限るものではなく、輝尽性蛍光体を含有
する記録媒体でもよい。例えば、輝尽性蛍光体ディテク
タを用いて画像情報を蓄積し、半導体レーザーにより走
査して取り出し、このデジタル画像情報を外部メモリに
記憶させて、CRTに再生することもできる。
Then, imaging / recording is performed by changing the irradiation time for each part according to the moving speed of the pencil beam PB obtained by passing through the slit 22c on the imaging surface 6. In the case of a screen / film, radiation is applied to a phosphor layer (fluorescent screen) to be converted into visible light, and this variable light is exposed to a film coated with a silver salt photosensitive material. However, the imaging surface 6 is not limited to this, and may be a recording medium containing a stimulable phosphor. For example, image information can be stored by using a stimulable phosphor detector, scanned and extracted by a semiconductor laser, and this digital image information can be stored in an external memory and reproduced on a CRT.

次に一連の作用を説明する。 Next, a series of operations will be described.

放射線源1から照射された放射線は、窓部材21の開口
21aを横断する各スリット部材22の微小スリット22cを透
過して複数本のペンシルビームPBとなり、各ペンシルビ
ームPBは被写体3を透過した後、ブッキーグリッド4を
介して面ディテクタ5に当たり、ここで各ペンシルビー
ムPBの被写体3の透過量が検出される。
The radiation emitted from the radiation source 1
A plurality of pencil beams PB are transmitted through the minute slits 22c of each slit member 22 traversing 21a, and each pencil beam PB is transmitted through the subject 3 and hits the surface detector 5 via the bucky grid 4, where each pencil beam PB is transmitted. The amount of transmission of the pencil beam PB through the subject 3 is detected.

前記透過量の検出信号は、制御回路7に入力され、制
御回路7はこれら各検出信号に対応する部位のドライブ
ユニット23に夫々制御信号を出力し、各ドライブユニッ
ト23は、該制御信号に応じた速度でスリット部材22を移
動走査させる。即ち、各ドライブユニット23と制御回路
7とで走査手段が構成される。
The detection signal of the transmission amount is input to the control circuit 7, and the control circuit 7 outputs a control signal to each of the drive units 23 corresponding to the respective detection signals, and each of the drive units 23 outputs a speed corresponding to the control signal. To move and scan the slit member 22. That is, each drive unit 23 and the control circuit 7 constitute a scanning unit.

具体的には、透過量が大きい所では移動速度を大きく
して単位面積当たりの照射時間を短くし、露出過多を抑
制し、透過量が小さい所では移動速度を小さくし照射時
間を長くして露出不足を抑制することによって適正な露
出補償を行う。これにより、解剖学的厚みに応じた露出
調整が為されラチチュードの広い鮮明な撮像が得られ
る。
Specifically, in places where the amount of transmission is large, increase the moving speed to shorten the irradiation time per unit area, suppress overexposure, and in places where the amount of transmission is small, reduce the moving speed and lengthen the irradiation time. Appropriate exposure compensation is performed by suppressing underexposure. As a result, the exposure is adjusted according to the anatomical thickness, and a clear image with a wide latitude can be obtained.

そして、このように露出調整をペンシルビームPBの移
動速度で制御すれば、照射面積で制御する場合に比較し
て、要求される照射量を対応部分に略正確に一致させて
照射することができるので、偽画像の発生を防止でき、
隣接する領域の放射線の散乱の影響を防止できるので、
より正確な撮像が得られる。
When the exposure adjustment is controlled by the moving speed of the pencil beam PB in this way, compared to the case of controlling by the irradiation area, the required irradiation amount can be almost exactly matched with the corresponding portion, and irradiation can be performed. So that fake images can be prevented,
Since the effect of the scattering of radiation in the adjacent area can be prevented,
More accurate imaging can be obtained.

第3図は、第2の実施例を示し、放射線吸収性流体で
ある水銀31を、オイル若しくは水等の放射線透過流体32
を少量間に挟んで充填した複数本の管体33の小径部33a
を、第1実施例同様縦方向に隙間無く並べて窓部材21の
開口21aに臨ませる。
FIG. 3 shows a second embodiment in which mercury 31 which is a radiation absorbing fluid is mixed with a radiation transmitting fluid 32 such as oil or water.
Small diameter portion 33a of a plurality of tubes 33 filled with a small amount of
Are arranged in the vertical direction without any gap in the same manner as in the first embodiment so as to face the opening 21a of the window member 21.

前記各管体33は放射線透過性材料で形成され下部が拡
径されて圧力室33bに形成され、該圧力室33b内に周壁を
径方向に収縮可能な可撓性を有した圧電素子34が嵌挿さ
れており、その周壁が通電により外側に膨大変形して圧
力室33bに充填される水銀31容積を縮小させることによ
って圧力室33b内に充填された水銀31を小径部33bに押し
出して放射線透過流体32を開口21aを横断させる構成と
なっている。ここで、放射線透過流体32の充填部分が、
放射線を透過できる微小スリットを構成する。そして、
各圧電素子34に接続した駆動回路35を介して圧電素子34
の通電量を制御することによって放射線透過流体32つま
り微小スリットの移動速度を制御できる。駆動回路35は
制御回路36に接続されており、制御回路36は、第1実施
例同様の面ディテクタ5からの放射線透過量検出信号に
より、透過量の大小に応じて放射線透過流体32の移動速
度を変えるように各駆動回路35を制御する。したがっ
て、各圧電素子34とこれを駆動するための駆動回路35及
び制御回路36が移動走査手段を構成する。尚、管33の圧
力室33b反対側の端部は球状として、水銀を溜める水銀
溜室33cとしてある かかる構成とすれば、圧電素子34は応答速度が大であ
るから、放射線透過流体32を極めて応答性良く移動制御
することができ、これにより、前記実施例同様各部位の
露出度を適正に保つように制御され、偽画像や散乱によ
る影響が無く撮像面6の全面にわたってラチチュードの
広い良好な画像が得られる。
Each of the pipes 33 is formed of a radiation-transmissive material, and the lower portion thereof is expanded in diameter to form a pressure chamber 33b. Inside the pressure chamber 33b, a piezoelectric element 34 having flexibility capable of radially contracting a peripheral wall is provided. The peripheral wall is deformed to a large extent by energization and the volume of mercury 31 filled in the pressure chamber 33b is reduced, so that the mercury 31 filled in the pressure chamber 33b is pushed out to the small-diameter portion 33b and radiation is applied. The configuration is such that the permeated fluid 32 crosses the opening 21a. Here, the filled portion of the radiation transmitting fluid 32 is
A minute slit capable of transmitting radiation is formed. And
A piezoelectric element 34 is connected via a drive circuit 35 connected to each piezoelectric element 34.
The moving speed of the radiation-transmitting fluid 32, that is, the minute slit, can be controlled by controlling the amount of current flowing through the slit. The drive circuit 35 is connected to a control circuit 36, and the control circuit 36 uses the radiation transmission amount detection signal from the surface detector 5 similar to the first embodiment to move the radiation transmitting fluid 32 in accordance with the magnitude of the transmission amount. Is controlled to change the driving circuit. Therefore, each piezoelectric element 34, a driving circuit 35 for driving the same, and a control circuit 36 constitute a moving scanning unit. Note that the end of the tube 33 on the side opposite to the pressure chamber 33b is spherical and serves as a mercury storage chamber 33c for storing mercury. With such a configuration, since the piezoelectric element 34 has a high response speed, the radiation transmitting fluid 32 is extremely The movement can be controlled with good responsiveness, whereby the exposure is controlled so as to maintain the exposure of each part properly as in the above-described embodiment. An image is obtained.

さらに、ソレノイド等の駆動機構を用いたものに比較
して、各管体33は十分小型であり(応答性向上のため小
型とする必要がある)且つ圧電素子34の制御回路もLSI
により十分小型化することができるため、全体としての
モジュレータ2を大幅に小型化できる。
Furthermore, each tube 33 is sufficiently small (need to be small in order to improve responsiveness), and the control circuit of the piezoelectric element 34 is also an LSI, as compared with a device using a drive mechanism such as a solenoid.
Therefore, the modulator 2 as a whole can be significantly reduced in size.

尚、以上示した実施例においては、各ペンシルビーム
PBを水平方向に移動走査するものを示したが、これらの
機構を90°回転させてペンシルビームPBを上下方向に移
動走査するようにしてもよいことは勿論である。また、
ディテクタや輝尽性蛍光体により一度弱い放射線ビーム
を照射した後、放射線透過量の検出値に基づいて本撮像
時の照射量を補正制御するものにも適用できる。
In the embodiment described above, each pencil beam is used.
Although the mechanism for moving and scanning the PB in the horizontal direction is shown, it is a matter of course that these mechanisms may be rotated by 90 ° to move and scan the pencil beam PB in the vertical direction. Also,
The present invention can also be applied to a device in which a weak radiation beam is once irradiated by a detector or a stimulable phosphor, and then the irradiation amount at the time of main imaging is corrected and controlled based on the detected value of the radiation transmission amount.

〈発明の効果〉 以上説明したように本発明によれば、放射線照射量の
制御を、微小スリットの移動速度を制御することによっ
て行う構成としたため、偽画像や散乱の影響の無いラチ
チュードの広い良好な画像が得られるものである。
<Effects of the Invention> As described above, according to the present invention, since the control of the radiation dose is performed by controlling the moving speed of the minute slits, a wide latitude without influence of spurious images and scattering can be obtained. The result is a unique image.

【図面の簡単な説明】[Brief description of the drawings]

第1図、本発明の第1の実施例の全体構成を示す平面
図、第2図(A)は、同上実施例の要部縦断面図、同図
(B)は、同図(A)のB−B矢視断面図、同図(C)
は、同図(A)のC−C矢視断面図、第3図(A)は、
第2の実施例の要部縦断面図、同図(B)は同じく要部
平面図である。 1……放射線源、2……モジュレータ、3……被写体、
7……制御回路、22……スリット部材、22c……微小ス
リット、31……水銀、32……放射線透過性流体、33……
管体、34……圧電素子、35……駆動回路、36……制御回
路、PB……ペンシルビーム
FIG. 1 is a plan view showing the overall configuration of a first embodiment of the present invention, FIG. 2 (A) is a longitudinal sectional view of a main part of the embodiment, and FIG. 2 (B) is FIG. (C) of FIG.
FIG. 3A is a cross-sectional view of FIG.
FIG. 4B is a plan view of a main part of the second embodiment, and FIG. 1 ... radiation source, 2 ... modulator, 3 ... subject,
7: control circuit, 22: slit member, 22c: minute slit, 31: mercury, 32: radiolucent fluid, 33:
Tube, 34 Piezoelectric element, 35 Drive circuit, 36 Control circuit, PB Pencil beam

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放射線源と被写体との間に、長手方向の一
部に放射線を透過させる微小スリットを有した複数のス
リット部材を、長手方向と直角な方向に並べて配設する
と共に、各スリット部材のスリットを夫々スリット部材
の長手方向に速度可変に移動させることによりスリット
を透過する放射線を走査する走査手段を備えて構成した
ことを特徴とする放射線撮像装置における放射線照射量
調整装置。
1. A plurality of slit members each having a minute slit for transmitting radiation in a part of a longitudinal direction between a radiation source and a subject are arranged side by side in a direction perpendicular to the longitudinal direction. A radiation irradiation amount adjusting apparatus in a radiation imaging apparatus, comprising: a scanning unit configured to scan radiation transmitted through a slit by moving a slit of the member at a variable speed in a longitudinal direction of the slit member.
JP1078385A 1989-03-31 1989-03-31 Radiation dose adjusting device in radiation imaging device Expired - Lifetime JP2772667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078385A JP2772667B2 (en) 1989-03-31 1989-03-31 Radiation dose adjusting device in radiation imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078385A JP2772667B2 (en) 1989-03-31 1989-03-31 Radiation dose adjusting device in radiation imaging device

Publications (2)

Publication Number Publication Date
JPH02257942A JPH02257942A (en) 1990-10-18
JP2772667B2 true JP2772667B2 (en) 1998-07-02

Family

ID=13660548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078385A Expired - Lifetime JP2772667B2 (en) 1989-03-31 1989-03-31 Radiation dose adjusting device in radiation imaging device

Country Status (1)

Country Link
JP (1) JP2772667B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712902B1 (en) 2019-03-18 2021-05-26 Siemens Healthcare GmbH Filter system for local attenuation of x-rays, x-ray apparatus and method for locally modifying the intensity of x-ray radiation

Also Published As

Publication number Publication date
JPH02257942A (en) 1990-10-18

Similar Documents

Publication Publication Date Title
US5008915A (en) Methods for forming a radiograph using slit radiography
US4773087A (en) Quality of shadowgraphic x-ray images
US6061426A (en) X-ray examination apparatus including an x-ray filter
US4323779A (en) Scanning radiographic method
US4196351A (en) Scanning radiographic apparatus
JP2562734B2 (en) X-ray scanning device, X-ray flux control device, and modulation method
EP1378148B1 (en) Method and apparatus for measuring the position, shape, size and intensity distribution of the effective focal spot of an x-ray tube
JPS60253199A (en) Slit radiation camera
JPS59145983A (en) Detector for energy discriminating radiation and its method
US4321473A (en) Focusing radiation collimator
JPH0690423B2 (en) Slit radiography equipment
US4972458A (en) Scanning equalization radiography
US4581535A (en) Method of recording X-ray image
JPS6117970A (en) Detecting system of two x-ray energy
US4550419A (en) Diagnostic radiology setup with means for suppressing stray radiation
JP2772667B2 (en) Radiation dose adjusting device in radiation imaging device
US5514874A (en) Method and apparatus for non-invasive imaging including quenchable phosphor-based screens
Arnold et al. Digital Radiography Overview
US3839634A (en) Image intensifier densitometer
JPH05345041A (en) High-energy radiation detector equipment
JP2816696B2 (en) Radiation imaging device
US4304998A (en) Panoramic dental X-ray machine employing image intensifying means
Weiss Large field cineradiography and image intensification utilizing the TVX system
JP2789209B2 (en) Radiation imaging device
JPH0451172B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees