JPH02223809A - Three-dimensional shape measuring instrument using light cutting method - Google Patents

Three-dimensional shape measuring instrument using light cutting method

Info

Publication number
JPH02223809A
JPH02223809A JP1043850A JP4385089A JPH02223809A JP H02223809 A JPH02223809 A JP H02223809A JP 1043850 A JP1043850 A JP 1043850A JP 4385089 A JP4385089 A JP 4385089A JP H02223809 A JPH02223809 A JP H02223809A
Authority
JP
Japan
Prior art keywords
difference
dimensional shape
measured
light irradiation
slit light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1043850A
Other languages
Japanese (ja)
Other versions
JPH076774B2 (en
Inventor
Takakazu Ishimatsu
隆和 石松
Takayuki Ohata
大幡 高之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNISUN KK
Original Assignee
YUNISUN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNISUN KK filed Critical YUNISUN KK
Priority to JP1043850A priority Critical patent/JPH076774B2/en
Publication of JPH02223809A publication Critical patent/JPH02223809A/en
Publication of JPH076774B2 publication Critical patent/JPH076774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a device which has high accuracy at low cost by picking up light cutting lines by two light cutting line image pickup means in different directions and recognizing the three-dimensional shape of a body to be measured from the mean value when the difference between the light cutting images is small or respective cutting lines when the difference is large. CONSTITUTION:The image pickup cameras 2a and 2b are controlled with a synchronizing signal and the light cutting images 5a and 5b are inputted alternately. Those input images are switched at intervals of, for example, 1/30 second. Then the light cutting images 5a and 5b are converted by a comparator into binary data 51a and 51b so at the process fast, which are processed to calculate the three-dimensional coordinates of a position on the surface of the body 3 to be measured, thereby obtaining recognition results 52a and 52b of the three-dimensional coordinates. Consequently, the three-dimensional shape measuring instrument of relatively simple constitution is realized at low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、光切断法による三次元形状測定装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement of a three-dimensional shape measuring device using a light cutting method.

〈従来の技術〉 第5図は光切断法による三次元形状測定装置の概要を示
したものである。光源11からスリット光12が照射さ
れると被測定物13の表面に光切断m14が得られ、こ
れをCCDカメラ等の撮像装置15で撮像する。そして
撮・像装置15で得られた光切断像のデータを三角測量
法を用いて処理することにより、被測定物13の表面各
点の三次元座標上の位置を求めて三次元形状のデータを
得るのである。
<Prior Art> FIG. 5 shows an outline of a three-dimensional shape measuring device using the optical cutting method. When the slit light 12 is irradiated from the light source 11, a light cut m14 is obtained on the surface of the object to be measured 13, and this is imaged by an imaging device 15 such as a CCD camera. Then, by processing the data of the optically sectioned image obtained by the imaging/imaging device 15 using the triangulation method, the position on the three-dimensional coordinates of each point on the surface of the object to be measured 13 is determined, and the data of the three-dimensional shape is obtained. This is what we get.

〈発明が解決しようとする課題〉 このような光切断法による測定では、光源11と撮像装
置15との角度θが90’に近付くほど被測定物13の
表面の凹凸が検出されやすくなるので測定精度が向上す
る。しかしながら、被測定物13が凹凸の大きなもので
ある場合には、角度θが大きくなると死角となる部分が
生じてデータの得られない欠落箇所が多くなるため、角
度θを大きくすることξこよる測定精度の向上には一定
の限度があった。
<Problems to be Solved by the Invention> In measurement using such a light cutting method, as the angle θ between the light source 11 and the imaging device 15 approaches 90', it becomes easier to detect irregularities on the surface of the object to be measured 13. Improves accuracy. However, if the object to be measured 13 has large irregularities, it is recommended to increase the angle ξ because if the angle θ becomes large, blind spots will occur and there will be many missing points where data cannot be obtained. There were certain limits to the improvement of measurement accuracy.

また従来の測定装置では、スリット光以外の光線による
外乱などのノイズを防止するために装置全体と被測定物
を暗室内に入れて測定する等の対°策が採られており、
装置の大型化や高価格化の一因となっていた。
Furthermore, in conventional measurement devices, measures are taken to prevent noise such as disturbance caused by light beams other than the slit light, such as placing the entire device and the object to be measured in a dark room.
This was one of the causes of larger and more expensive equipment.

この発明はこのような問題点に着目し、比較的簡単な構
成によって光切断法による測定精度を向上することを目
的としてなされたものである。
The present invention has focused on these problems and has been made with the aim of improving the measurement accuracy by the optical sectioning method with a relatively simple configuration.

く課題を解決するための手段〉 上述の目的を達成するために、この発明の光切断法によ
る三次元形状測定装置は、被測定物の光切断線を得るた
めのスリット光照射手段と、(・0互に離隔して配置さ
れ、且つ上記スリット光照射手段に対して一定の位置関
係を保ちつつスリット光照射手段と共に被測定物の周囲
を周回する2個の光切断線撮像手段と、各撮像手段で得
られる2個の光切断像から被測定物の三次元形状の認識
処理を行う処理手段、とを備えている。そしてこの処理
手段は、2個の光切断像の認識結果の差が所定の基準値
以内の場合には両者の平均値を処理結果とし、認識結果
の差が基準値を越える場合にはそれぞれの認識結果をそ
のまま処理結果とするように構成されている。
Means for Solving the Problems> In order to achieve the above-mentioned object, a three-dimensional shape measuring device using a light cutting method according to the present invention includes a slit light irradiation means for obtaining a light cutting line of an object to be measured;・Two optical cutting line imaging means arranged at a distance from each other and orbiting around the object to be measured together with the slit light irradiation means while maintaining a constant positional relationship with respect to the slit light irradiation means; The processing means performs recognition processing of the three-dimensional shape of the object from the two optically sectioned images obtained by the imaging means.The processing means recognizes the difference between the recognition results of the two optically sectioned images. is within a predetermined reference value, the average value of both is used as the processing result, and when the difference between the recognition results exceeds the reference value, each recognition result is used as the processing result.

また第2の発明においては、認識結果の差が基準値を越
える場合にそれぞれの認識結果の連続性を判定し、連続
性の有る方の認識結果を処理結果として採用するようし
こ構成されている。
Further, in the second invention, if the difference between the recognition results exceeds a reference value, the continuity of each recognition result is determined, and the recognition result with continuity is adopted as the processing result. There is.

なお、上記の各発明において認識結果の差が基準値を越
える場合とは、得られた各データの差が大きい場合のほ
か、一方のデータが欠落したような場合も含んでいる。
In addition, in each of the above inventions, the case where the difference in recognition results exceeds the reference value includes not only the case where the difference between the obtained data is large but also the case where one of the data is missing.

第1図はこの発明の構成を示す図であり、Aはスリット
光照射手段、B□及びB2は光切断線撮像手段、Cは処
理手段、Dは被測定物、Eは回転装置である。なお、ス
リット光照射手段Aと光切断線撮像手段B工及びB2の
周回は、被測定物りとの間の相対的なものであり、固定
された被測定物りの回りを光照射手段Aと撮像手段B工
lB2を公転させ−Cもよく、逆に光照射手段Aと撮像
手段B 11B2を固定して被測定物りをその位置で自
転させてもよい。Fは上記各手段の動作を同期させるた
めの外部同期装置、Gは処理手段Cの出力を記憶する記
憶装置、Hは記憶装置Gに記憶されたデータを必・要に
応じて出力する出力装置である。
FIG. 1 is a diagram showing the configuration of the present invention, where A is a slit light irradiation means, B□ and B2 are optical cutting line imaging means, C is a processing means, D is an object to be measured, and E is a rotating device. Note that the rotation of the slit light irradiation means A and the optical cutting line imaging means B and B2 is relative to the object to be measured, and the light irradiation means A moves around the fixed object to be measured. Alternatively, the light irradiation means A and the imaging means B 11B2 may be fixed and the object to be measured may be rotated at that position. F is an external synchronizer for synchronizing the operations of each of the above means, G is a storage device that stores the output of the processing means C, and H is an output device that outputs the data stored in the storage device G as necessary. It is.

く作用〉 各撮像手段はそれぞれ異なる方向から光切断線を撮像し
ており、両方の撮像手段に同時に死角が発生する確率は
撮像手段が1個の場合と比軟して非常に小さくなるので
、前述の角度θをある程度大きくすることが可能となり
、測定精度の向上が容易となる。また、各撮像手段で得
た光切断像の平均値によって三次元形状が認識され、認
識結果の差が大きい場合には個々の結果がそのまま区分
されて出力されるので、一方の撮像手段のデータに異常
があっても他方の撮像手段によってデータを補完するこ
とが可能となる。
Effect> Each imaging device images the light cutting line from a different direction, and the probability that a blind spot will occur in both imaging devices at the same time is very small compared to when there is only one imaging device. It becomes possible to increase the above-mentioned angle θ to a certain extent, and it becomes easy to improve measurement accuracy. In addition, the three-dimensional shape is recognized based on the average value of the optically sectioned images obtained by each imaging means, and if there is a large difference in the recognition results, the individual results are separated and output as they are, so the data from one imaging means is Even if there is an abnormality in the other imaging means, it is possible to supplement the data with the other imaging means.

また第2の発明では、認識結果の差が大きい場合に連続
性の有る方の認識結果が採用されるので、一方の撮像手
段のデータに異常があっても他方の撮像手段によってデ
ータが自動的に補完される。
In addition, in the second invention, when the difference in recognition results is large, the recognition result with continuity is adopted, so even if there is an abnormality in the data of one imaging device, the data can be automatically transferred by the other imaging device. is supplemented by

このためノイズの影響を受ける確率が低くなり、欠落箇
所がなく、あるいは欠落箇所の少ないデータが得られ、
特別な暗室などを設けなくても測定が可能になると共に
、測定精度が向上される。
Therefore, the probability of being affected by noise is low, and data with no or few missing points can be obtained.
Measurement becomes possible without the need for a special dark room, and measurement accuracy is improved.

〈実施例〉 次に図示の一実施例について説明する。第2図は装置の
概要を示した平面図、第3図はブロック図、第4図は制
御手順のフローチャーI・である。
<Example> Next, an example shown in the drawings will be described. FIG. 2 is a plan view showing an outline of the apparatus, FIG. 3 is a block diagram, and FIG. 4 is a flowchart I of the control procedure.

第2図において、lはスリット光照射手段である光源、
2a及び2bは光切断線撮像手段である撮像カメラ、3
は被測定物である。
In FIG. 2, l is a light source which is a slit light irradiation means;
2a and 2b are imaging cameras which are optical cutting line imaging means; 3;
is the object to be measured.

光源lは原点Oを中心とした半径rの円周1′上に原点
○を含む図の紙面に垂直な方向に広がるスリット光4を
照射する姿勢で配置され、且つ常に原点0に向いた状態
で円周1′上を所定の速度で回転するように設けられて
いる。また撮像カメラ2a及び2bは、光源1を通る円
周1′の接線上の光源1から等距離の位置に光g1との
角度θで配置されており、且つ常に原点Oに向いた状態
で光g1と共に回転するように設けられている。
The light source 1 is arranged in a position to emit a slit light 4 that spreads in a direction perpendicular to the plane of the drawing including the origin ○ on a circumference 1' with a radius r centered on the origin O, and is always facing the origin 0. It is provided to rotate at a predetermined speed on the circumference 1'. Further, the imaging cameras 2a and 2b are placed at positions equidistant from the light source 1 on the tangent to the circumference 1' passing through the light source 1 at an angle θ with respect to the light g1, and always face the origin O. It is provided to rotate together with g1.

上記のθは例えば45°に選定される。また、被測定物
3は原点○を含む位置に固定されており、各撮像カメラ
2a及び2bは、その視野にスリット光4によって被測
定物3上に生ずる光切断線5が入るように構成されてい
る。
The above θ is selected to be 45°, for example. Further, the object to be measured 3 is fixed at a position including the origin ○, and each of the imaging cameras 2a and 2b is configured so that the optical cutting line 5 generated on the object to be measured 3 by the slit light 4 is included in its field of view. ing.

なお光源1としては、従来の光切断法による三次元形状
fllff定装置で使用されているものと同種の光源を
適宜用いることができ、また撮像カメラ2a及び2bと
しては、従来の光切断法による三次元形状測定装置で使
用されているもの、例えばCODカメラ等を適宜用いる
ことができる。
As the light source 1, the same type of light source as that used in the three-dimensional shape fllff determination apparatus using the conventional light cutting method can be used as appropriate, and as the imaging cameras 2a and 2b, the light source using the conventional light cutting method can be used. A device used in a three-dimensional shape measuring device, such as a COD camera, can be used as appropriate.

第3図のブロック図において、6は画像処理装置、7は
回転駆動部、8は出力装置である。画像処理装置6の主
要部はコンピュータで構成されており、演算や各種制御
の中心となるCPU61、制御プログラム等を記憶させ
であるROM62、得られた諸データを記憶するRAM
63、同期信号を発生するクロック回路64のほか、適
宜の入出力回路(図示せず)等を備えている。また回転
駆動部7は、画像処理装置6からの制御信号によって光
源lと撮像カメラ2a及び2bを駆動するように適宜構
成されている。更に出力装置8は、画像処理装置6で得
られた三次元形状の認識結果のデータを出力するもので
1例えばCRTデイスプレィやプリンタ等で構成されて
いる。
In the block diagram of FIG. 3, 6 is an image processing device, 7 is a rotation drive unit, and 8 is an output device. The main part of the image processing device 6 is composed of a computer, which includes a CPU 61 which plays a central role in calculations and various controls, a ROM 62 which stores control programs, etc., and a RAM which stores various data obtained.
63, a clock circuit 64 that generates a synchronization signal, and other appropriate input/output circuits (not shown). Further, the rotation drive unit 7 is appropriately configured to drive the light source 1 and the imaging cameras 2a and 2b in response to a control signal from the image processing device 6. Furthermore, the output device 8 outputs the data of the three-dimensional shape recognition result obtained by the image processing device 6, and is comprised of, for example, a CRT display or a printer.

この実施例の測定装置は上述のように構成されており、
まず第1の発明の動作を第4図のフローチャートにより
説明する。
The measuring device of this example is configured as described above,
First, the operation of the first invention will be explained with reference to the flowchart shown in FIG.

各撮像カメラ2a、2bは同期信号により制御されてお
り、まずステップS1でそれぞれの画像信号、すなわち
光切断像5a、5bが交互に入力される。この人力の切
り換えは例えば1/30秒ごとに行われる。ステップ$
2では信号の高速処理を可能とするために、光切断像5
a、5bをコンパレータにより2値化し、ステップS3
で2値化された各データ51a、51bを処理して被測
定物3の表面の三次元座標上の位置を演算し、三次元座
標の認識結果52a、52bを得る。なお。
Each imaging camera 2a, 2b is controlled by a synchronization signal, and first, in step S1, respective image signals, that is, optically cut images 5a, 5b are inputted alternately. This manual switching is performed, for example, every 1/30 seconds. Step $
2, in order to enable high-speed signal processing, the optically sectioned image 5
a, 5b are binarized by a comparator, and step S3
The binarized data 51a and 51b are processed to calculate the position on the three-dimensional coordinates of the surface of the object to be measured 3, and three-dimensional coordinate recognition results 52a and 52b are obtained. In addition.

光g1と被測定物3との距離や表面の傾斜等によって光
切断線5の幅が異なるたあ、演算は線の中心を構成する
画素の座標を検出するように行われる。このステップS
3の処理は、原点Oを中心とした半径rとスリット光4
に対する撮像カメラ2a、2bの角J!jtOが既知で
あるので、従来の光切断法で一般に行われている公知の
手順によって適宜実施することができる。
Since the width of the light cutting line 5 varies depending on the distance between the light g1 and the object to be measured 3, the slope of the surface, etc., the calculation is performed to detect the coordinates of the pixel forming the center of the line. This step S
The process in step 3 is based on the radius r centered on the origin O and the slit light 4.
The angle J of the imaging cameras 2a and 2b with respect to J! Since jtO is known, it can be suitably carried out using known procedures commonly used in conventional photosection methods.

ステップS4では、上記の認識結果52a、52bとし
て求められた各点の座標データをその直前の他方のカメ
ラによる座標データと比較し、両者の差があらかじめ設
定されている基準値以内であればステップS5で両者の
平均値を求め、これを処理結果53として出力する。ま
た差が基準値を越える場合には、ステップS6でそれぞ
れの認識結果52a、52bをそのまま処理結果53a
In step S4, the coordinate data of each point obtained as the above recognition results 52a and 52b is compared with the coordinate data obtained by the other camera immediately before it, and if the difference between the two is within a preset reference value, step In S5, the average value of both is calculated and outputted as the processing result 53. Further, if the difference exceeds the reference value, in step S6, the respective recognition results 52a and 52b are used as they are as the processing result 53a.
.

53bとし、両データを区分して出力する。以上の処理
が被測定物3の表面の各点について順次行われ、これら
の出力データはステップS7でRAM63に記憶され、
以後の利用に備えられるのである。
53b, and both data are separated and output. The above processing is performed sequentially for each point on the surface of the object to be measured 3, and these output data are stored in the RAM 63 in step S7.
It can be prepared for future use.

従って、平均された処理結果53が出力される場合には
、従来の1個のカメラを用いる場合よりも信頼性が高く
、精度のよい測定結果を得ることができる。
Therefore, when the averaged processing result 53 is output, it is possible to obtain a measurement result with higher reliability and accuracy than when a single conventional camera is used.

また、認識結果52a、52bの差が基準値を越えたた
めにそのまま処理結果53a、53bとして出力された
場合には、例えば出力装置8で出力された結果を技術者
が見比べて取捨選択したり、取捨選択する手順をプログ
ラムに入れておいて画像処理装置6で処理したりするの
である。これにより、各撮像カメラ2a、2bによる測
定結果を相互に補完することが可能となるので、測定結
果を全く得ることができないという確率は従来の装置と
比較して大幅に低減されることになる。なお。
In addition, if the difference between the recognition results 52a and 52b exceeds the reference value and the processing results 53a and 53b are output as they are, for example, an engineer compares the results output by the output device 8 and selects the results. The procedure for selecting and discarding images is written into a program and processed by the image processing device 6. This makes it possible to mutually complement the measurement results obtained by the imaging cameras 2a and 2b, and the probability of not being able to obtain any measurement results is significantly reduced compared to conventional devices. . In addition.

このように認識結果52a、52bの差が基準値を越え
る場合というのは、例えば外乱によるノイズが一方の撮
像カメラの出力に重畳された場合や、一方の撮像カメラ
に死角が生じて光切断線の一部が欠落したような場合な
どである。
In this way, the difference between the recognition results 52a and 52b exceeds the reference value, for example, when noise due to disturbance is superimposed on the output of one of the imaging cameras, or when a blind spot occurs in one of the imaging cameras and the optical cutting line This is the case when a part of the image is missing.

また、第2の発明は上記の取捨選択をデータの連続性を
考慮して行うようにしたものであり、第4図のステップ
S4で認識結果52a、52bの差が基準値を越えた場
合には、破線で示すようにステップS8に移って各認識
結果52a、52bの連続性を判定し、連続性を有する
方の認識結果を採用してこれを処理結果53′として出
力するのである。この連続性は、例えば対応する箇所の
前後のデータを一定期間順次比較してデータの変動が一
定の基準値内にあるか否かで判定するのであり、比較の
期間や基準値を被測定物3の形状などに応じて適切に選
定しておくことにより、ノイズや欠落のない測定結果を
得ることができる。
In addition, the second invention is such that the above-mentioned selection is performed in consideration of data continuity, and when the difference between the recognition results 52a and 52b exceeds a reference value in step S4 of FIG. As shown by the broken line, the process moves to step S8, where the continuity of each recognition result 52a, 52b is determined, and the recognition result with continuity is adopted and outputted as a processing result 53'. This continuity is determined by, for example, sequentially comparing data before and after corresponding points over a certain period of time and determining whether the data fluctuations are within a certain reference value. By making an appropriate selection according to the shape of item 3, it is possible to obtain measurement results without noise or omissions.

なお、実施例では撮像カメラ2a及び2bを光rA1の
両側に対称に配置しているが、この発明はカメラが光源
に対して非対称に、あるいは光源に対して同じ側に配置
された場合にも適用することができる。
In the embodiment, the imaging cameras 2a and 2b are arranged symmetrically on both sides of the light rA1, but the present invention also applies when the cameras are arranged asymmetrically with respect to the light source or on the same side with respect to the light source. Can be applied.

〈発明の効果〉 上述の実施例から明らかなように、この発明の三次元形
状測定装置は、2個の光切断線撮像手段で異なる方向か
ら光切断線を撮像し、各撮像手段で得た光切断像の差が
小さい場合にはその平均値によって、差が大きい場合に
はそれぞれの撮像手段の光切断像によって、被測定物の
三次元形状を認識するようにしたものである。
<Effects of the Invention> As is clear from the above embodiments, the three-dimensional shape measuring device of the present invention images the optical section line from different directions using two optical section line imaging means, and The three-dimensional shape of the object to be measured is recognized by the average value when the difference between the optically sectioned images is small, and from the optically sectioned images of the respective imaging means when the difference is large.

また、各撮像手段で得た光切断像の差が大きい場合には
、連続性を考慮して被測定物の三次元形状を認工哉する
ようにしたものである。
Furthermore, when there is a large difference between the optically sectioned images obtained by the respective imaging means, the three-dimensional shape of the object to be measured is recognized in consideration of continuity.

従って、2個の光切断像の平均値が用いられるためノイ
ズの影響を受けにくく、特別な暗室などを設けなくても
高精度な測定が可能となる。また同時に両方の撮像手段
に死角が発生する確率は小さく、一方力撮像手段に死角
が生じても他方の撮像手段でデータを補完することがで
きるので、スリット光源との角度を大きくすることによ
る測定精度の向上が可能となる。
Therefore, since the average value of two optically sectioned images is used, it is less susceptible to noise, and highly accurate measurement is possible without the need for a special dark room. In addition, the probability that a blind spot will occur in both imaging means at the same time is small, and even if a blind spot occurs in one imaging means, the data can be supplemented with the other imaging means, so measurements can be made by increasing the angle with the slit light source. Accuracy can be improved.

更に、連続性の有るデータを採用する場合にはデータが
自動的に補完され、ノイズの影響や欠落のない測定結果
を得ることが容易となる。
Furthermore, when continuous data is used, the data is automatically supplemented, making it easy to obtain measurement results free from the effects of noise and omissions.

この発明には以上のような利点があり、光切断法による
高精度な三次元形状測定装置を比較的簡単な構成によっ
て安いコストで実現することができるのである。
The present invention has the above-mentioned advantages, and a highly accurate three-dimensional shape measuring device using the optical cutting method can be realized at low cost with a relatively simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示す図、第2図は一実施例の
概略平面図、第3図はブロック図、第4図は制御手順の
フローチャート、第5図は光切断法による一般的な三次
元形状測定装置の説明図である。 1・・・光源(スリット光照射手段)、2a、2b・・
撮像カメラ(光切断線撮像手段)、3・・・被測定物、
4・・スリット光、5・・・光切断線、6・・・画像処
理装置(処理手段)、7・・・回転駆動部、8・・・出
力装置、61・・cpu。
Fig. 1 is a diagram showing the configuration of the present invention, Fig. 2 is a schematic plan view of one embodiment, Fig. 3 is a block diagram, Fig. 4 is a flowchart of the control procedure, and Fig. 5 is a general method using the light cutting method. FIG. 2 is an explanatory diagram of a three-dimensional shape measuring device. 1... Light source (slit light irradiation means), 2a, 2b...
Imaging camera (optical cutting line imaging means), 3... object to be measured,
4... Slit light, 5... Optical cutting line, 6... Image processing device (processing means), 7... Rotation drive section, 8... Output device, 61... CPU.

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物の光切断線を得るためのスリット光照射
手段と、 相互に離隔して配置され、且つ上記スリット光照射手段
に対して一定の位置関係を保ちつつスリット光照射手段
と共に被測定物の周囲を周回する2個の光切断線撮像手
段と、 上記各撮像手段で得られる2個の光切断像から被測定物
の三次元形状の認識処理をそれぞれ行い、認識結果の差
が所定の基準値以内の場合には両者の平均値を処理結果
とし、認識結果の差が基準値を越える場合にはそれぞれ
の認識結果をそのまま処理結果とする処理手段、 とを備えたことを特徴とする光切断法による三次元形状
測定装置。
(1) A slit light irradiation means for obtaining a light cutting line of the object to be measured, and a slit light irradiation means that is placed apart from each other and is irradiated with the slit light irradiation means while maintaining a constant positional relationship with respect to the slit light irradiation means. The three-dimensional shape of the object to be measured is recognized from the two optical section line imaging means orbiting around the object and the two optical section images obtained by each of the above imaging means, and the difference between the recognition results is calculated. If the difference between the recognition results exceeds the reference value, the average value of the two is taken as the processing result when the difference is within a predetermined reference value, and the processing means takes the respective recognition result as the processing result as it is. A three-dimensional shape measuring device using the optical cutting method.
(2)被測定物の光切断線を得るためのスリット光照射
手段と、 相互に離隔して配置され、且つ上記スリット光照射手段
に対して一定の位置関係を保ちつつスリット光照射手段
と共に被測定物の周囲を周回する2個の光切断線撮像手
段と、 上記各撮像手段で得られる2個の光切断像から被測定物
の三次元形状の認識処理をそれぞれ行い、認識結果の差
が所定の基準値以内の場合には両者の平均値を処理結果
とし、認識結果の差が基準値を越える場合にはそれぞれ
の連続性を判定し、連続性の有る認識結果を処理結果と
して採用する処理手段、 とを備えたことを特徴とする光切断法による三次元形状
測定装置。
(2) A slit light irradiation means for obtaining a light cutting line of the object to be measured, and a slit light irradiation means that is placed apart from each other and is irradiated with the slit light irradiation means while maintaining a constant positional relationship with respect to the slit light irradiation means. The three-dimensional shape of the object to be measured is recognized from the two optical section line imaging means orbiting around the object and the two optical section images obtained by each of the above imaging means, and the difference between the recognition results is calculated. If the difference is within a predetermined reference value, the average value of both is used as the processing result, and if the difference between the recognition results exceeds the reference value, the continuity of each is determined, and the recognition result with continuity is adopted as the processing result. A three-dimensional shape measuring device using an optical cutting method, comprising: a processing means;
JP1043850A 1989-02-25 1989-02-25 Three-dimensional shape measuring device by optical cutting method Expired - Lifetime JPH076774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043850A JPH076774B2 (en) 1989-02-25 1989-02-25 Three-dimensional shape measuring device by optical cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043850A JPH076774B2 (en) 1989-02-25 1989-02-25 Three-dimensional shape measuring device by optical cutting method

Publications (2)

Publication Number Publication Date
JPH02223809A true JPH02223809A (en) 1990-09-06
JPH076774B2 JPH076774B2 (en) 1995-01-30

Family

ID=12675192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043850A Expired - Lifetime JPH076774B2 (en) 1989-02-25 1989-02-25 Three-dimensional shape measuring device by optical cutting method

Country Status (1)

Country Link
JP (1) JPH076774B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301708A (en) * 1991-03-29 1992-10-26 Aisin Seiki Co Ltd Noncontact type volume measuring device
JP2002107311A (en) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd Printed circuit board inspecting device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153643A (en) * 1984-08-24 1986-03-17 Fuji Photo Film Co Ltd Silver halide color photosensitive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153643A (en) * 1984-08-24 1986-03-17 Fuji Photo Film Co Ltd Silver halide color photosensitive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301708A (en) * 1991-03-29 1992-10-26 Aisin Seiki Co Ltd Noncontact type volume measuring device
JP2002107311A (en) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd Printed circuit board inspecting device and method

Also Published As

Publication number Publication date
JPH076774B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JPH1144533A (en) Preceding vehicle detector
US20180077405A1 (en) Method and system for scene scanning
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
JPH02223809A (en) Three-dimensional shape measuring instrument using light cutting method
JPH09196637A (en) Method for measuring bend angle of long material
JPH04169805A (en) Measuring apparatus of three-dimensional image
JP2007093369A (en) Displacement measuring apparatus and shape inspection apparatus using the same
JPH0875454A (en) Range finding device
JP2961140B2 (en) Image processing method
JP2005309782A (en) Image processor
JPH0443204B2 (en)
JPH11173840A (en) Device and method for measuring distance
JP2020129187A (en) Contour recognition device, contour recognition system and contour recognition method
JP2932418B2 (en) Work position measurement method
JP2516844B2 (en) Parts detection method and device
JP2913370B2 (en) Optical position measurement method
JP2979619B2 (en) Stereoscopic device
JPH0781835B2 (en) Width measuring device
JPH0534117A (en) Image processing method
JPH0425758B2 (en)
KR100190702B1 (en) Method for detecting bezel of monitor
JPH0528264A (en) Picture processor
JPH0133870B2 (en)
JP2001264031A (en) Shape-measuring method and device
JP2000329520A (en) Coil position detector