JPH0222320B2 - - Google Patents
Info
- Publication number
- JPH0222320B2 JPH0222320B2 JP54129980A JP12998079A JPH0222320B2 JP H0222320 B2 JPH0222320 B2 JP H0222320B2 JP 54129980 A JP54129980 A JP 54129980A JP 12998079 A JP12998079 A JP 12998079A JP H0222320 B2 JPH0222320 B2 JP H0222320B2
- Authority
- JP
- Japan
- Prior art keywords
- speed
- transmission
- belt
- pulley
- cooling tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims description 52
- 239000003638 chemical reducing agent Substances 0.000 claims description 33
- 238000001816 cooling Methods 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 14
- 230000002441 reversible effect Effects 0.000 claims description 11
- 239000000498 cooling water Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000009347 mechanical transmission Effects 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、慣性モーメントの大きな負荷とし
て送風フアンの機械的変速制御を完全自動で行う
ための冷却塔送風装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cooling tower blower device for fully automatically controlling the mechanical speed change of a blower fan as a load with a large moment of inertia.
従来から送風フアンを駆動する方式として機械
式変速機を適用することが考えられて来たが、そ
の全ては実用化に達していない。
Conventionally, it has been considered to apply a mechanical transmission as a method of driving a blower fan, but none of them have reached practical use.
その一例として特開昭54−67251号公報のもの
がある。 An example of this is disclosed in Japanese Patent Application Laid-Open No. 54-67251.
第1図Aはその構成図を示す。図中は冷却塔、
2は散水器、3は充填材、4は水槽、5は冷却水
の入口配管、6は出口配管、7は空気流である。
原理は加熱されている冷却水を散水器12で散布
し、下からの空気流7によつて冷却水を冷却処理
し出口6に返えすものである。空気流7の風量を
連続的に変化させるため送風機を変速制御しよう
とするものである。 FIG. 1A shows its configuration diagram. In the figure, a cooling tower is shown.
2 is a water sprinkler, 3 is a filling material, 4 is a water tank, 5 is an inlet pipe for cooling water, 6 is an outlet pipe, and 7 is an air flow.
The principle is that heated cooling water is sprayed by a sprinkler 12, cooled by an air flow 7 from below, and then returned to the outlet 6. This is intended to control the speed of the blower in order to continuously change the amount of airflow 7.
10は無段減速機、11は送風電動機、12は
歯車減速機、13は送風フアン、14は電源、1
5はコンピユータ、16はセンサである。 10 is a stepless reducer, 11 is a blower motor, 12 is a gear reducer, 13 is a blower fan, 14 is a power source, 1
5 is a computer, and 16 is a sensor.
ここではコンピユータ15で処理し、無段減速
機10に変速信号を与え送風フアン13の回転数
を制御せんとするものである。 Here, the processing is performed by the computer 15 and a speed change signal is given to the stepless reducer 10 to control the rotational speed of the blower fan 13.
この種の思想自体は従来から当業者が幾度とな
く行つて来たが、いずれも着想の域を脱せず、現
実には実用化に失敗し、商品化に到らなかつた。
その理由は、次の二つの点に大きな原因があつ
た。
Although those skilled in the art have come up with this type of idea many times in the past, all of them have remained beyond ideas, failed to put them into practical use, and have not been commercialized.
The reason for this was mainly due to the following two points.
その第一の理由は、無段減速機10が送風フア
ンのような大きな慣性の負荷に耐えられずに伝達
部が短期に破損することであり、第二の理由は変
速機を具体的に如何なる構成で自動制御するのか
に対する解決策が得られなかつた点にある。 The first reason is that the transmission part will be damaged in a short period of time because the continuously variable reducer 10 cannot withstand a large inertial load such as a blower fan, and the second reason is that the transmission part will be damaged in a short period of time. The problem was that no solution could be found as to whether the configuration should be automatically controlled.
例えば従来から周知の無段減速機10で説明す
る。第1図Bは金属摩擦式の変速機の断面図であ
り、静止摩擦駆動方式の一例である。同図では軸
中心から半面側の断面図のみが描かれている。図
中Aは入力軸、Bは出力軸、Cは太陽車で固定側
車C1と移動側車C2とで、遊星車EをバネDで常
時挟み込み、一方遊星車EとキヤリヤFが連動す
る。Gは変速比制御部で、固定リングG2と移動
カムG1で挟み込み遊星車Eを放射方向に移動可
能にしている。この構造では遊星車Eが可変遊星
の役目を果し、移動カムG1の操作でこの割れ目
の間隔により変速比が制御される。 For example, the description will be made using a conventionally well-known stepless reduction gear 10. FIG. 1B is a sectional view of a metal friction type transmission, which is an example of a static friction drive system. In this figure, only a cross-sectional view of the half side from the axis center is drawn. In the figure, A is the input shaft, B is the output shaft, C is the sun wheel, and the fixed side car C 1 and the moving side car C 2 constantly sandwich the planet wheel E with the spring D, while the planet wheel E and the carrier F are interlocked. do. G is a gear ratio control unit, which is sandwiched between a fixed ring G2 and a moving cam G1 , and enables the planetary wheel E to move in the radial direction. In this structure, the planet wheel E plays the role of a variable planet, and the gear ratio is controlled by the interval between the cracks by operating the moving cam G1 .
しかし、この種の金属車CおよびE間の摩擦伝
達方式を送風機の如き大慣性負荷に適用すると、
次の現象が生ずる。 However, when this type of friction transmission method between metal wheels C and E is applied to a large inertial load such as a blower,
The following phenomenon occurs.
送風機では入力軸Aから出力軸Bに動力伝達す
るときは、遊星車ではZ点を支点として接触点X
を接続方向に回動し、これによりY点より出力を
取出すため、トルク伝達は潤滑油中の粘性抗力で
スムースに伝達される。しかし逆に大慣性負荷で
は主電動機11を停止したとき、或いは停止しな
いでも特に移動車G1で減速側に操作したときに、
負荷側に慣性が残つているため、本来動力伝達が
行われず、出力軸B側から入力軸A側に動力が伝
達される。この逆伝達の際には遊星車Eは支点を
Z点としてY点が作用点となるため、本来の伝達
点であるX点では変則的な外力を受ける結果、潤
滑油による粘性伝達が適切に作用せず、遊星車E
と太陽車Cの各金属接触面に瞬時に損傷が発生
し、これが繰り返すことにより短期にスクラツプ
化することに起因していた。 In a blower, when transmitting power from input shaft A to output shaft B, in a planetary wheel, point Z is the fulcrum and contact point X
is rotated in the connection direction, thereby extracting output from the Y point, so torque is transmitted smoothly by the viscous drag in the lubricating oil. However, on the contrary, with a large inertia load, when the main motor 11 is stopped, or even if it is not stopped, especially when moving vehicle G1 is operated to the deceleration side,
Since inertia remains on the load side, power transmission is not normally performed, but power is transmitted from the output shaft B side to the input shaft A side. During this reverse transmission, the planetary wheel E has its fulcrum as the Z point and the Y point as the point of action, so the original transmission point, the X point, receives an irregular external force, and as a result, the viscous transmission by the lubricating oil is not properly carried out. Does not work, planetary wheel E
Damage occurred instantaneously to each metal contact surface of the sun wheel C, and as this was repeated, it became scrap in a short period of time.
さらに、この無段減速機10のもつ本来的な欠
点に加え、更に第二の理由として無段減速機11
の変速比を具体的に如何なる方式で制御するのか
両面の技術が確立されるに到らなかつたため、送
風機の機械式変速制御は行われて来なかつた。 Furthermore, in addition to the inherent drawbacks of this continuously variable reducer 10, there is a second reason why the continuously reduced reducer 11
Mechanical speed change control of the blower has not been carried out because the technology for controlling the speed ratio of the blower has not yet been established.
この発明は、上述した様な金属と金属との点接
触による動力伝達を行わずに、ベルトによる線な
いし面接触による動力伝達方式として増減速型ベ
ルト減速機を用いることにより上述の欠点を解消
し、しかも変速比の制御に対してサーボ調節系で
自動制御することにより、実用化が可能な冷却塔
送風装置を提供することを目的としている。
This invention solves the above-mentioned drawbacks by using an accelerating/decelerating type belt speed reducer as a power transmission method using line or surface contact using a belt, instead of transmitting power through point contact between metals as described above. Moreover, it is an object of the present invention to provide a cooling tower blower device that can be put to practical use by automatically controlling the speed ratio using a servo adjustment system.
本発明では、変速ベルトを固定および摺動プー
リ間で挟持させるため一対の該プーリからなるプ
ーリ装置を入力軸および中間軸に取付けて単一の
枠体内に収納すると共に上記入力軸を送風電動機
と連結される増減速型ベルト変速機と、上記入力
軸側プーリ装置に係合するように上記枠体に設置
され上記中間軸側プーリ装置に設けたスプリング
に抗して上記入力軸側プーリ装置を摺動させる可
逆電動機を有するパイロツト電動制御機と、上記
パイロツト電動制御機に結線され電気的変速比例
出力を供給するサーボ調節器との構成で、送風フ
アンの安定した自動制御運転を達成したものであ
り、特にサーボ調節器は入力回路で冷却水の温度
検出器とまた増速ないし減速指令用出力回路で上
記パイロツト電動制御機とそれぞれ結線され、更
に上記可逆電動機を伝達装置を経て上記入力回路
に連動させる帰還回路を構成したものである。
In the present invention, in order to sandwich the speed change belt between fixed and sliding pulleys, a pulley device consisting of a pair of pulleys is attached to an input shaft and an intermediate shaft and housed in a single frame, and the input shaft is connected to a blower motor. The input shaft side pulley device is installed against a spring provided on the intermediate shaft side pulley device and installed on the frame body so as to engage with the coupled speed-up/deceleration type belt transmission and the input shaft side pulley device. Stable automatic control operation of the blower fan is achieved by the configuration of a pilot electric controller having a reversible electric motor for sliding, and a servo controller connected to the pilot electric controller and supplying an electric variable speed proportional output. In particular, the servo controller is connected to a cooling water temperature detector in an input circuit and to the pilot electric controller in an output circuit for increasing or decelerating commands, and further connects the reversible motor to the input circuit via a transmission device. This is a feedback circuit that is linked to each other.
この構成によると、大慣性の送風フアンに適用
しても主電動機を停止したとき、或いは運転中に
減速側に指令を出したときに、上述した様な反作
用が出力軸側からベルトを介して入力軸側に加わ
るが、このときベルト自体がプーリに対してスリ
ツプし、しかし瞬時的にはベルト材質(合成ゴ
ム)の弾性がこれらの反作用を吸収し、結果的に
材質自体の摩耗が発生しても、基本的な機械的構
成に損傷が及ぶことが無い。
According to this configuration, even when applied to a blower fan with large inertia, when the main motor is stopped or when a command is issued to the deceleration side during operation, the above-mentioned reaction is generated from the output shaft side via the belt. is applied to the input shaft, but at this time the belt itself slips against the pulley, but the elasticity of the belt material (synthetic rubber) momentarily absorbs this reaction, resulting in wear of the material itself. However, there is no damage to the basic mechanical structure.
〔実施例〕
第2図に於いて、両吸込式直交流冷却塔10を
一実施例としてその部分断面図を示してある。同
図中、11は水槽、12は空気吸込口ルーバ、1
3は充填材、14はエリミネータ、15は隔壁で
あり、さらにこれ等の上部には冷却水が入口配管
17から散水槽16に供給されている。さらに中
央部には円筒状フアンタツク24が組み付けてあ
り、その上部に空気吹出口20が設けられ、その
間に送風フアン21と歯車減速機22が放射状に
組込まれたパイプステー23の中心部に設置され
る。[Embodiment] FIG. 2 shows a partial sectional view of a double suction type cross-flow cooling tower 10 as an embodiment. In the figure, 11 is a water tank, 12 is an air inlet louver, 1
Reference numeral 3 indicates a filler, 14 an eliminator, and 15 a partition wall. Cooling water is supplied from an inlet pipe 17 to a water sprinkling tank 16 above these. Further, a cylindrical fan tuck 24 is installed in the center, and an air outlet 20 is provided at the top of the cylindrical fan tuck 24, between which a blower fan 21 and a gear reducer 22 are installed in the center of a pipe stay 23 that is radially incorporated. Ru.
さらにフアンスタツク24に隣接した上面板2
5には、誘導電動機27と、パイロツト電動制御
機29と、これ等の電動機27および制御機29
を一体組み付けした増減速型ベルト変速機28と
で構成する可変動力機構26が設置されている。
またこの変速機28の回転出力は、カツプリング
30および伝達体31によつて歯車減速機22に
連結される。また、変速機28は、ベルト・プー
リ間の摩擦熱を防熱するため、冷却用空気導入口
35から配管36を介して伝達機28の密閉室を
循環した後、排気口37から防出される機構を有
し、ベルト寿命率の向上を図つている。40およ
び41は、供給電力および制御信号用の配線であ
る。 Furthermore, the top plate 2 adjacent to the fan stack 24
5 includes an induction motor 27, a pilot electric controller 29, and these electric motors 27 and controllers 29.
A variable power mechanism 26 is installed, which is comprised of an increase/decrease type belt transmission 28 which is integrally assembled with a variable power mechanism 26.
Further, the rotational output of the transmission 28 is coupled to the gear reducer 22 by a coupling 30 and a transmission body 31. In addition, the transmission 28 has a mechanism in which the air is circulated through the closed chamber of the transmission 28 from the cooling air inlet 35 through the piping 36 and then released from the exhaust port 37 in order to prevent frictional heat between the belt and the pulley. This is aimed at improving the belt life rate. 40 and 41 are wiring for power supply and control signals.
第3図は、増減速型ベルト変速機28の構成図
である。この変速機28は、枠体45と蓋体46
とで湿り空気の侵入を防ぐため密閉室が形成さ
れ、内部には、電動機回転軸すなわち入力軸51
と、中間回転軸52とには、それぞれ変速ベルト
53を挟持するための固定プーリ54a,55a
および摺動プーリ54b,55bとからなる一対
のプーリ装置54,55が装着されている。駆動
側プーリ装置54には、摺動プーリ54bに取り
付けや羽根車56bと、渦巻型ケーシング56a
とからなる渦巻遠心ブロウ装置56が取り付けら
れ、ケーシング56aの一部は配管36′と連通
し、第2図に示す導入配管36と連通している。
これによつて室内に防熱空気を導入し、排出口3
7から吐出させている。パイロツト電動制御機2
9は、調節巻上ネジ57と連結し、この調節巻上
ネジ57の正転ないし逆転の回動に伴つて、案内
環58が上下し、これによつて固定プーリ54a
と摺動プーリ54aの間隔を調節し、変速比を制
御している。このパイロツト電動制御機29とプ
ーリ装置54の間に介在する可逆電動機79、調
節巻上ネジ57、案内環58は、サーボ調節系に
於いては電気・機械信号の変換機能を果してい
る。 FIG. 3 is a configuration diagram of the speed-up/down type belt transmission 28. As shown in FIG. This transmission 28 includes a frame body 45 and a lid body 46.
A sealed chamber is formed to prevent moist air from entering, and the motor rotation shaft, that is, the input shaft 51 is located inside.
Fixed pulleys 54a and 55a for holding the speed change belt 53 are provided on the intermediate rotating shaft 52 and the intermediate rotating shaft 52, respectively.
A pair of pulley devices 54 and 55 consisting of sliding pulleys 54b and 55b are attached. The drive-side pulley device 54 includes an impeller 56b attached to a sliding pulley 54b, and a spiral casing 56a.
A vortex centrifugal blow device 56 consisting of a casing 56a is attached, and a portion of the casing 56a communicates with the pipe 36', which in turn communicates with the introduction pipe 36 shown in FIG.
This introduces heat-insulated air into the room, and
It is discharged from 7. Pilot electric controller 2
9 is connected to an adjusting hoisting screw 57, and as the adjusting hoisting screw 57 rotates in the forward or reverse direction, the guide ring 58 moves up and down, thereby causing the fixed pulley 54a to move up and down.
The gear ratio is controlled by adjusting the distance between the sliding pulley 54a and the sliding pulley 54a. A reversible electric motor 79, an adjustment hoisting screw 57, and a guide ring 58, which are interposed between the pilot electric controller 29 and the pulley device 54, perform an electrical/mechanical signal conversion function in the servo adjustment system.
すなわち、プーリ装置54と可変ベルト53と
の接触周円半径が変化すると、単にバネ力で挟持
されている従動側でもその接触周円半径が変化
し、この協動動作によつて変速比が制御される。
ベルト交換保守のため、中間軸52を二つのベア
リング59a,59bによつて片持支持させ一端
を自由端にしており、蓋体46を枠体45から分
離可能な構造とし、さらにこれに伴つて、軸支承
体60は枠体45に対してスライド調整が可能な
ように、ボルト62による調節機構および長穴6
1を有している。 That is, when the contact radius between the pulley device 54 and the variable belt 53 changes, the contact radius also changes on the driven side, which is simply held by the spring force, and the gear ratio is controlled by this cooperative operation. be done.
For belt replacement and maintenance, the intermediate shaft 52 is cantilever-supported by two bearings 59a and 59b, with one end being a free end, and the lid 46 is separable from the frame 45. The shaft support 60 has an adjustment mechanism using a bolt 62 and an elongated hole 6 so that it can be slid with respect to the frame 45.
1.
本発明では、上述のように第一段伝達機に増減
速型ベルト変速機を、また第二段に定減速比の減
速機をそれぞれ組合せている。ここで増減速型ベ
ルト変速機とは、電動機の入力回転数より増速す
る方向にも、減速する方向にも中間軸52を変速
できるものをいう。従つて単に入力に対して減速
方向にしか変速できない無段減速機とは異つてい
る。 In the present invention, as described above, the first stage transmission is combined with an increasing/decelerating type belt transmission, and the second stage is combined with a constant reduction ratio speed reducer. Here, the increasing/decelerating type belt transmission is one that can change the speed of the intermediate shaft 52 both in the direction of increasing the speed and in the direction of decelerating the input rotation speed of the electric motor. Therefore, it is different from a continuously variable reducer that can only change speed in the direction of deceleration in response to input.
このような増減速型ベルト変速機と減速機の組
合せは、次の相乗効果が働き、大慣性の負荷に対
しても充分に安定かつ有利な伝達機として働くこ
とが判明した。 It has been found that such a combination of an increase/decrease type belt transmission and a speed reducer has the following synergistic effect, and works as a sufficiently stable and advantageous transmission even with a load of large inertia.
第1に、大慣性負荷では、運転中にパイロツト
電動制御機からの減速指令時に、負荷のもつ大き
な慣性動力が逆伝達されても、ベルト自体のもつ
弾性力と、従動側プーリ装置のスプリングの回
逃、ベルト・プーリ間のスリツプとの三つの作用
でそのストレスを回逃できる利点があり、このこ
とが大慣性負荷を連続運転する際の耐久性を保証
している点が挙げられる。 First, with a large inertial load, even if the large inertial power of the load is reversely transmitted when a deceleration command is issued from the pilot electric controller during operation, the elastic force of the belt itself and the spring of the driven pulley device It has the advantage of being able to relieve stress through the three actions of relief and slip between the belt and pulley, and this guarantees durability when continuously operating a large inertial load.
第2に、増減速型変速機と減速機の組合では、
特に増速領域にて、一旦プーリ装置54,55が
入力回転数を増速させておき乍ら、再び減速機2
2で減速させることを行わせるため大変無駄のよ
うに思れるが、このことが機器の小型化、経済
化、保守の簡易化に有利に作用している。 Second, in the combination of an increasing/decelerating type transmission and a reducer,
Particularly in the speed increase region, once the pulley devices 54 and 55 increase the input rotation speed, the speed reducer 2
Although it may seem like a waste of time to decelerate the speed in step 2, this has an advantageous effect on making the equipment smaller, more economical, and easier to maintain.
第1の点から述べると、電動機27の停止時は
第4図でも明らかなように接触番4Rが停止する
のでパイロツト電動制御機29も停止(後述す
る)している。そこで送風フアン21から減速機
22を経て加わる逆方向の回動力は単にベルト5
3を伝わつて電動機27のロータを回動する程度
であると考えられるが、運転中の減速指令時はフ
アンがまた指令前の高速慣性を維持し、一方でパ
イロツト電動制御機29が強引にベルト53をス
プリング55cと共に作用しながら電動機29も
入力プーリ54に大きな回動力を与えている。従
つて必然的に指令前の負荷の高速慣性力と電動機
回動力との間速度のストレスがこの場合でもベル
トおよびプーリの線ないし面接触部に直接加わる
ことになる。この場合ベルト伝達はネオプレン等
の合成ゴムを主体としている弾性力がこのストレ
スを吸収し、さらに吸収し得ないときはプーリ・
スプリング55cの回逃によりベルト・プーリ間
にスリツプが発生し、ベルト材質が摩耗すること
があつてもこの速度ストレスを吸収する作用があ
る。このことは、先に述べた金属摩擦減速機とは
その原理を根本的に相異しており、金属の伝達車
自体に損傷を招くような事態は本発明ではなく、
ベルトが消耗品となることを積極的に利用した保
証機能が働くのである。 From the first point, when the electric motor 27 is stopped, the contact number 4R is stopped, as is clear from FIG. 4, so the pilot electric controller 29 is also stopped (described later). Therefore, the rotating force in the opposite direction applied from the blower fan 21 via the reducer 22 is simply the belt 5
However, when deceleration is commanded during operation, the fan maintains the high-speed inertia before the command, and on the other hand, the pilot electric controller 29 forcibly rotates the rotor of the electric motor 27. The electric motor 29 also applies a large rotational force to the input pulley 54 while acting on the input pulley 53 together with the spring 55c. Therefore, the speed stress between the high-speed inertia force of the load before the command and the rotational force of the electric motor is inevitably applied directly to the line or surface contact portion of the belt and pulley even in this case. In this case, the elastic force of the belt transmission, which is mainly made of synthetic rubber such as neoprene, absorbs this stress, and if this stress cannot be absorbed further, the pulley
Even if a slip occurs between the belt and the pulley due to the escape of the spring 55c, and the belt material wears out, this speed stress is absorbed. This is fundamentally different in principle from the metal friction reducer mentioned above, and the present invention does not involve a situation that would cause damage to the metal transmission wheel itself.
The warranty function takes advantage of the fact that the belt is a consumable item.
更に第2の有利な条件として小型化、経済化が
達成される。すなわち、送風フアンはそれ自体の
特性として、その軸馬力Wは回転数Nの三乗に比
例し、最大増速時に最大動力が必要となるので、
このときの伝達馬力を基準にベルト変速機および
減速機の容量を選定すれば良い。すなわち、通常
ベルト伝達体では、その伝達馬力Woを一定にす
ると、その馬力は回転数Nとベルト張力Tの積
(N・T)に比例するので、増速機として働く伝
達機を用いると回転数Nが多いのでその分だけベ
ルトに加わる張力Tは小さくて済む。すなわち初
段の伝達機はベルトもプーリも極めて小型でかつ
安価なものが使用できることを意味している。こ
のことは塔体頂上に配置する関係上、塔体自体の
構造も簡易化し、保守も容易化するためその経済
効果は大きい。 Furthermore, as a second advantageous condition, miniaturization and economy can be achieved. In other words, as a characteristic of the blower fan itself, its shaft horsepower W is proportional to the cube of the rotation speed N, and maximum power is required at maximum speed increase.
The capacities of the belt transmission and speed reducer may be selected based on the transmitted horsepower at this time. In other words, in a normal belt transmission, if the transmitted horsepower Wo is constant, the horsepower is proportional to the product (N・T) of the rotation speed N and belt tension T, so if a transmission that acts as a speed increaser is used, the rotation Since the number N is large, the tension T applied to the belt can be reduced accordingly. This means that the first stage transmission can use extremely small and inexpensive belts and pulleys. This has a great economic effect because it is placed on the top of the tower, which simplifies the structure of the tower itself and facilitates maintenance.
第4図は、冷却水温の自動制御調節装置のブロ
ツク回路接続図である。冷却塔10の冷却水出口
65に温度検出器67が設けられ、サーボ調節器
70に接続される。サーボ調節器70は、ブリツ
ジ入力回路71、演算増幅器72、フイルタ7
3、演算増幅器74、正帰還回路75、不感帯回
路76、増速および減速側出力スイツチ回路77
および78から構成されている。また、この出力
スイツチ回路77および78は、その接点77a
および78aを介してパイロツト電動制御機29
に接続されている。一方、パイロツト電動制御機
29は増減速型ベルト変速機28内の入力軸側プ
ーリ装置54と連結している。冷却水温の検出器
67と、サーボ調節器70と、パイロツト電動制
御機29、ベルト変速機28、減速機22および
送風フアンは第一の帰還回路を形成している。こ
のリバーシブル電動機79を有するパイロツト電
動制御機29への電力供給機8′およびT′は、送
風電動機27への三相供給電力線83のSおよび
T端子から供給されている。一方、この電力線8
3には起動停止制御回路80と低温部制御回路8
1が接続されている。 FIG. 4 is a block circuit connection diagram of the automatic cooling water temperature control and adjustment device. A temperature detector 67 is provided at a cooling water outlet 65 of the cooling tower 10 and connected to a servo regulator 70 . The servo controller 70 includes a bridge input circuit 71, an operational amplifier 72, and a filter 7.
3. Operational amplifier 74, positive feedback circuit 75, dead band circuit 76, speed increase and deceleration side output switch circuit 77
and 78. Further, the output switch circuits 77 and 78 have their contacts 77a
and the pilot electric controller 29 via 78a.
It is connected to the. On the other hand, the pilot electric controller 29 is connected to an input shaft side pulley device 54 in the speed-up/down type belt transmission 28. The cooling water temperature detector 67, the servo regulator 70, the pilot electric controller 29, the belt transmission 28, the speed reducer 22, and the blower fan form a first feedback circuit. Power supplies 8' and T' to the pilot electric controller 29 having the reversible motor 79 are supplied from the S and T terminals of the three-phase power supply line 83 to the blower motor 27. On the other hand, this power line 8
3 includes a start/stop control circuit 80 and a low temperature section control circuit 8.
1 is connected.
このサーボ調節器70の動作は、次の通りであ
る。起動スイツチSWを押圧すると常閉接点2R
2介してリレー3Rが動作し、接点3R1で自己
保持すると共にサーボ調節器70の電源(図示を
省略)が投入され、サーボ調節器70は作動する
が、パイロツト電動制御機29は接点4R2が開
放されているので動作しない。次に冷却水の温度
がサーボ調節器70の比例動作領域内の温水に維
持している間は、低温領域制御用の機械式温度検
出器68の接点が閉成しているので、低温部制御
回路81が接点3R1の閉成で作動し、このとき
接点3R2が閉成しておりリレー4Rが付勢され
る。従つて送風電動機27が三接点4R1を経て
作動する。これと同時にインタロツク接点4R2
の閉成によつてパイロツト電動制御機29が動作
し正常な比例制御動作を行う。第3,4図から明
白な通りパイロツト電動制御機29は可逆電動機
79と歯車減速機が内蔵されその電動機79の一
部はサーボ調節器70の信号に応じ調整巻上リー
ド58を正転又は逆転させながら変速プーリ54
の摺動プーリ54bをスプリング55cに抗して
移動させて変速制御をするのに使われる。またこ
の電動機79は更に伝達装置即ち歯車減速機をプ
リツチ回路71とも連動し、このブリツチ回路7
1内にて変速比の状態が可変抵抗器で検出されて
サーボ調節系の第二の帰還回路が構成され、フア
ン回転数を任意に変速制御する。 The operation of this servo adjuster 70 is as follows. When the start switch SW is pressed, normally closed contact 2R
2, the relay 3R is operated, and the contact 3R1 is self-held, and the power to the servo regulator 70 (not shown) is turned on, and the servo regulator 70 is operated, but the pilot electric controller 29 has the contact 4R2 open. It doesn't work because it is. Next, while the temperature of the cooling water is maintained within the proportional operation region of the servo controller 70, the contact of the mechanical temperature detector 68 for low temperature region control is closed, so the low temperature region control is controlled. The circuit 81 is activated when the contact 3R1 is closed, and at this time, the contact 3R2 is closed and the relay 4R is energized. Therefore, the blower motor 27 operates via the three contacts 4R1. At the same time, interlock contact 4R2
When the valve is closed, the pilot electric controller 29 operates and performs normal proportional control operation. As is clear from FIGS. 3 and 4, the pilot electric controller 29 has a built-in reversible electric motor 79 and a gear reducer, and a part of the electric motor 79 rotates the hoisting lead 58 in the normal or reverse direction according to the signal from the servo regulator 70. The speed change pulley 54
It is used to control the speed change by moving the sliding pulley 54b against the spring 55c. Further, this electric motor 79 also has a transmission device, that is, a gear reduction gear, in conjunction with a pre-switch circuit 71.
1, the state of the speed change ratio is detected by a variable resistor, and a second feedback circuit of the servo adjustment system is configured to arbitrarily control the fan rotation speed.
なお、調整巻上リード57をプーリ装置54に
設置された例を示したが他の型式でも良く、可逆
電動機79と一体に組み込んでも良い。 Although an example is shown in which the adjustment hoisting lead 57 is installed on the pulley device 54, other types may be used, and the adjustment hoisting lead 57 may be integrated with the reversible motor 79.
このとき、外気湿球度が一定してれば冷却水温
が上昇すると送風フアンの回転数は上昇するがパ
イロツト電動制御機29のハイ・リミツトスイツ
チH.L・が閉成しても、送風フアンは最増速状態
で連続運転する。また冷却水温が低下したときに
は、ロー・リミツト・スイツチL.L.が閉成してリ
レー1Rが閉成しても、リレー3Rはまだ接点2
R2によつて励磁されているので、速風電動機2
7は回転を持続し送風フアン21は最低速で回動
する。 At this time, if the outside air wet bulb temperature is constant, the rotation speed of the fan will increase as the cooling water temperature rises, but even if the high limit switch HL of the pilot electric controller 29 closes, the fan will increase to the maximum speed. Operates continuously at high speed. Also, when the cooling water temperature drops, even if low limit switch LL closes and relay 1R closes, relay 3R still has contact 2.
Since it is excited by R2, the speed wind motor 2
7 continues to rotate, and the blower fan 21 rotates at the lowest speed.
このとき、冷却水温が冬期の如く、さらに降下
すると、液封入式の入口水もしくは出口水温検出
器68が作動し、リレー4Rが消勢して、主電動
機27を停止させることができるようになつてい
る。すなわち、冷却水温度がサーボ調節器70の
比例帯領域内の温度レンジでは送風フアン回転数
をその温度に応じて比例制御し、比例帯領域以下
の温度になると主電動機27の自動発停制御に切
り換え得るように構成している。 At this time, when the cooling water temperature drops further as in winter, the liquid-filled inlet water or outlet water temperature detector 68 is activated, the relay 4R is deenergized, and the main motor 27 can be stopped. ing. That is, when the cooling water temperature is within the proportional band range of the servo controller 70, the fan rotation speed is proportionally controlled according to the temperature, and when the temperature falls below the proportional band range, automatic start/stop control of the main motor 27 is performed. It is configured so that it can be switched.
次に、本装置を全停させるときは、停止スイツ
チSWを押圧し、リレー2Rを付勢し、接点2R
1,2R2が反転し、これと同時にサーボ調節器
70のブリツジ入力回路71の接点(図示せず)
を作動し、減速出力スイツチ回路78のみが動作
する信号を送出する。すると、パイロツト電動制
御機29は、この減速指令を受け、いずれロー・
リミツト・スイツチL.Lが閉成し、リレー1Rが
消勢し、接点1R1が開路してリレー3Rが消勢
して調節機70は動作を停止し、さらにその接点
3R2を経てリレー4Rが停止する。すなわち、
起動停止制御回路80はこのように緩起動制御を
行つており、停止時にベルト53が最減速状態で
停止させており、保守の容易性を達成し、同時
に、次の再起動時には常時送風フアン最低速、す
なわち先に述べた動力三乗低減法則の原理により
最軽負荷状態から起動させている。このため、特
に起動の再には、リアクルト起動機などの補助機
器設備が不要になる利点がある。なお、上述した
起動停止制御回路80に於いて行つた緩起動制御
並びにブロウ装置56は、いずれも単なるベルト
保護対策であつて前者は起動時のベルト衝撃の回
逃のためであり、後者は摩擦熱によるベルト材質
の軟弱化による切断防止対策であり、本願発明の
要旨である完全自動化への耐久性向上のための補
助対策に過ぎず直接的には発明の要旨と関係はな
い。 Next, to completely stop this device, press the stop switch SW, energize relay 2R, and contact 2R.
1 and 2R2 are inverted, and at the same time, the contacts of the bridge input circuit 71 of the servo regulator 70 (not shown)
, and sends out a signal that causes only the deceleration output switch circuit 78 to operate. Then, the pilot electric controller 29 receives this deceleration command and eventually lowers the speed.
Limit switch LL is closed, relay 1R is deenergized, contact 1R1 is opened, relay 3R is deenergized, regulator 70 stops operating, and relay 4R is stopped via contact 3R2. That is,
The start/stop control circuit 80 performs slow start control in this way, and when stopped, the belt 53 is stopped at its maximum deceleration, achieving ease of maintenance, and at the same time, at the next restart, the blower fan is always at the lowest In other words, the engine is started from the lightest load state based on the principle of the power cube reduction law mentioned earlier. For this reason, there is an advantage that auxiliary equipment such as a reactor starter is not required, especially for re-starting. Note that the slow start control performed in the start/stop control circuit 80 and the blow device 56 described above are both mere belt protection measures; the former is for relieving the belt impact at the time of start, and the latter is for preventing friction. This is a measure to prevent cutting due to softening of the belt material due to heat, and is merely an auxiliary measure to improve durability toward full automation, which is the gist of the present invention, and is not directly related to the gist of the invention.
第5図は、本発明の他の実施例冷却塔送風装置
の部分構成図で、第1図に示す減速機22に、ベ
ルト31′、定速比プーリ85および86で構成
したベルト減速機85を使用している。この方式
は先に述べた様に、減速指令時に大慣性負荷側か
ら戻る回動力と電動機からの回動力の相互の差に
よるストレスをこの減速機29のベルト31′も
積極的に吸収する性質が出てくるため、このスト
レスに対してはより優れた効果を有し、その分だ
け、増減速側ベルト変速のベルトの摩耗が減る利
点がある。
FIG. 5 is a partial configuration diagram of a cooling tower blower system according to another embodiment of the present invention, in which a belt reducer 85 is added to the reducer 22 shown in FIG. are using. As mentioned earlier, this system has the property that the belt 31' of the reducer 29 also actively absorbs the stress caused by the difference between the rotational force returned from the large inertia load side and the rotational force from the electric motor when a deceleration command is issued. Therefore, it has a better effect against this stress, and has the advantage of reducing wear on the belt of the belt speed change on the acceleration/deceleration side.
従来送風フアンのような大慣性の負荷にあつて
は、機械式の変速制御は極めて困難とされて来た
ため、専らエネルギ効率の極めて悪いインバータ
方式、渦電流モータ方式などの電気式が使われて
来たが、本発明では、増減速型ベルト変速機とし
てベルト及びプーリ間が線ないし面接触で動力伝
達が行えるものを採用した結果、安定した動力伝
達が達成され、しかも電気式に比して安価でかつ
高効率の純機械式の理想的な伝達が達成され得
る。一方、この増減速型ベルト変速機にパイロツ
ト電動制御機を組付けサーボ調節系で調節するこ
とによつて、変速比の制御を純電気式に具現化す
ることが可能になる。このことは動力伝達を機械
式に、変速制御を電気式に構成するので、両者が
利点が個別に確保できることから、耐久性、信頼
性が高く、冷却水の温度制御の際に極めて高精度
の制御性が単なる着想ではなく具体的に現実のも
のとなる。
Conventionally, mechanical speed control has been considered extremely difficult for loads with large inertia such as blower fans, so electric systems such as inverter systems and eddy current motor systems, which have extremely low energy efficiency, have been used. However, in the present invention, by adopting an accelerating/decelerating type belt transmission that can transmit power through line or surface contact between the belt and the pulley, stable power transmission is achieved, and moreover, it is more efficient than the electric type. An ideal, inexpensive and highly efficient purely mechanical transmission can be achieved. On the other hand, by assembling a pilot electric controller to this speed-up/down type belt transmission and adjusting it with a servo adjustment system, it becomes possible to control the gear ratio purely electrically. This means that power transmission is configured mechanically and speed change control is configured electrically, so the advantages of both can be secured independently, resulting in high durability and reliability, and extremely high precision when controlling the temperature of cooling water. Controllability becomes not just an idea but a concrete reality.
しかも大慣性負荷では、減速制御指令時に負荷
自体が指令以前の慣性動力を保持しているため、
このときの電動機と負荷のもつ回動力の差がスト
レスとして摩擦伝達部分に直接加わるが、増減速
型ベルト変速機では、プーリに取付けたスプリン
グの作用と、ベルトおよびプーリ間のスリツプ動
作、さらにベルトのもつ特質の三つの要因が瞬時
にこれ等のストレスを吸収する利点があり、極め
て耐久性の高い動力伝達を達成している。 Moreover, with large inertia loads, when deceleration control is commanded, the load itself retains the inertia power before the command.
At this time, the difference in rotational force between the electric motor and the load is directly applied as stress to the friction transmission part, but in an increase/deceleration type belt transmission, the action of the spring attached to the pulley, the slip action between the belt and the pulley, and the belt These three characteristics have the advantage of instantly absorbing these stresses, achieving extremely durable power transmission.
また、送風フアンを駆動システムの構成として
見たときにも初段に増速機としても減速機として
も動作する増減速型伝達機を、また次段に固定速
比の減速機を組合せている結果、初段の伝達機が
特に増速機としても機能するので、所定伝達馬力
を確保するのに小型のベルト変速機で良く、これ
を適用した機器自体が、全体としてコンパクトか
つ極めて安価な可変風量制御機構が達成できる。
しかも、斯かる可変風量制御機構を使用すること
による派生的効果として消費電力は低減し、また
制御対象として、例えば冷却塔の冷却水の温度等
の状態量を極めて高精度に制御することも可能と
なり、ひいては冷凍機などの高効率運転を達成で
きる等、そのもつ工業的価値は甚大である。 Also, when looking at the blower fan as a drive system configuration, the first stage is a speed increase/reduction type transmission that operates as both a speed increaser and a speed reducer, and the second stage is a fixed speed ratio speed reducer. Since the first stage transmission also functions as a speed increaser, a small belt transmission is sufficient to ensure the specified transmission horsepower, and the device itself that uses this is compact and extremely inexpensive variable air volume control. mechanism can be achieved.
Moreover, as a derivative effect of using such a variable air volume control mechanism, power consumption is reduced, and it is also possible to control state quantities such as the temperature of cooling water in a cooling tower with extremely high precision as a control target. Therefore, its industrial value is enormous, as it can achieve high-efficiency operation of refrigerators, etc.
第1図Aは、従来単なる着想として考えられて
いた送風装置を冷却塔に適用した場合の構成図
を、また同図Bはそこに使用され無段減速機の一
例の部分断面図を示し、第2図は、本発明の一実
施例冷却塔の外観概要図を示し、第3図は、同冷
却塔に使用される増減速型ベルト変速機の部分断
面図を示し、第4図は、同冷却塔用の送風電動機
および同ベルト変速機を制御するためのサーボ制
御回路系の結線図を、さらに第5図は、本発明の
他の実施例冷却塔の部分構成概要図をそれぞれ示
している。
図中、10……冷却塔、21……送風フアン、
22……定速比減速機、27……主送風電動機、
28……増減速型ベルト変速機、29……パイロ
ツト電動制御機、51……入力回転軸、52……
中間回転軸、70……サーボ調節回路、80……
起動停止制御回路、81……低温部制御回路。
FIG. 1A shows a configuration diagram when a blower device, which was conventionally considered as a mere idea, is applied to a cooling tower, and FIG. 1B shows a partial cross-sectional view of an example of a stepless reducer used therein. Fig. 2 shows a schematic external view of a cooling tower according to an embodiment of the present invention, Fig. 3 shows a partial sectional view of an increase/decrease type belt transmission used in the cooling tower, and Fig. 4 shows: FIG. 5 shows a wiring diagram of a servo control circuit system for controlling the blower motor and belt transmission for the cooling tower, and FIG. 5 shows a schematic partial configuration diagram of a cooling tower according to another embodiment of the present invention. There is. In the figure, 10... cooling tower, 21... ventilation fan,
22... Constant speed ratio reducer, 27... Main blower motor,
28...Acceleration/deceleration type belt transmission, 29...Pilot electric control machine, 51...Input rotating shaft, 52...
Intermediate rotating shaft, 70... Servo adjustment circuit, 80...
Start/stop control circuit, 81...Low temperature section control circuit.
Claims (1)
させるため一対の該プーリからなるプーリ装置を
入力軸および中間軸に取付けて単一の枠体内に収
納すると共に上記入力軸を送風電動機と連結され
る増減速型ベルト変速機と、上記入力軸側プーリ
装置に係合するように上記枠体に設置され上記中
間軸側プーリ装置に設けたスプリングに抗して上
記入力軸側プーリ装置を摺動させる可逆電動機を
有するパイロツト電動制御機と、上記中間軸と結
合しかつ出力軸に送風フアンを直結される減速機
と、上記パイロツト電動制御機に結線され電気的
変速比例出力を供給するサーボ調節器とから成る
と共に、上記サーボ調節器は入力回路で冷却状の
温度検出器とまた増速ないし減速指令用出力回路
で上記パイロツト電動制御機とそれぞれ結線さ
れ、更に上記可逆電動機を伝達装置を経て上記入
力回路に連動させる帰還回路を構成してなる冷却
塔送風装置。 2 特許請求の範囲第1項記載の冷却塔送風装置
において、上記減速機はベルトによるプーリ減速
機で構成してなる冷却塔送風装置。 3 特許請求の範囲第1項記載の冷却塔送風装置
において、上記減速機は歯車減速機で構成し該歯
車減速機の入力軸と上記中間軸は伝達体で連結し
てなる冷却塔送風装置。 4 特許請求の範囲第2項もしくは第3項記載の
冷却塔送風装置において、上記増減速型ベルト変
速機は上記枠体の一方の平面側から上記入力軸を
また他方の平面側から中間軸をそれぞれ導出し、
上記プーリ装置を取付けた上記入力および中間軸
は上記枠体内で一端側を自由端に形成されてなる
冷却塔送風装置。[Scope of Claims] 1. A pulley device consisting of a pair of pulleys is attached to an input shaft and an intermediate shaft and housed in a single frame in order to sandwich the speed change belt between fixed and sliding pulleys, and the input shaft is A speed-up/deceleration type belt transmission connected to the blower electric motor, and a belt transmission on the input shaft side that is installed in the frame so as to engage with the input shaft side pulley device against a spring provided on the intermediate shaft side pulley device. A pilot electric controller having a reversible motor that slides the pulley device, a speed reducer coupled to the intermediate shaft and having a blower fan directly connected to the output shaft, and a reducer connected to the pilot electric controller to generate an electrically variable speed proportional output. The servo controller is connected to a cooled temperature sensor through an input circuit and to the pilot electric controller through an output circuit for speeding up or decelerating commands, and further connects the reversible electric motor to the pilot electric controller. A cooling tower blower device comprising a feedback circuit interlocked with the input circuit via a transmission device. 2. The cooling tower blower device according to claim 1, wherein the speed reducer is a belt-based pulley speed reducer. 3. The cooling tower blower device according to claim 1, wherein the speed reducer is a gear speed reducer, and the input shaft of the gear speed reducer and the intermediate shaft are connected by a transmission body. 4. In the cooling tower blower device according to claim 2 or 3, the speed-up/deceleration type belt transmission connects the input shaft from one plane side of the frame body and the intermediate shaft from the other plane side. Derive each
In the cooling tower blower device, the input and intermediate shafts to which the pulley device is attached are formed within the frame with one end being a free end.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12998079A JPS5656581A (en) | 1979-10-11 | 1979-10-11 | Cooling tower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12998079A JPS5656581A (en) | 1979-10-11 | 1979-10-11 | Cooling tower |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2691387A Division JPS63243569A (en) | 1987-02-07 | 1987-02-07 | Transmission |
JP2691487A Division JPS62188853A (en) | 1987-02-07 | 1987-02-07 | Belt transmission |
JP1293707A Division JPH03194396A (en) | 1989-11-11 | 1989-11-11 | Temperature controller |
JP1293706A Division JPH03194395A (en) | 1989-11-11 | 1989-11-11 | Blowing controller |
JP29370889A Division JPH03204476A (en) | 1989-11-11 | 1989-11-11 | Belt change gear controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5656581A JPS5656581A (en) | 1981-05-18 |
JPH0222320B2 true JPH0222320B2 (en) | 1990-05-18 |
Family
ID=15023179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12998079A Granted JPS5656581A (en) | 1979-10-11 | 1979-10-11 | Cooling tower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5656581A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103363837A (en) * | 2012-04-10 | 2013-10-23 | 上海良机冷却设备有限公司 | Device facilitating overhaul and maintenance of transmission component in cooling tower |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5467251A (en) * | 1977-11-08 | 1979-05-30 | Ishikawajima Harima Heavy Ind Co Ltd | Water cooling towersigma automatic water temperature control method |
JPS54120444A (en) * | 1978-03-10 | 1979-09-19 | Naomichi Shitou | Cooling tower device |
-
1979
- 1979-10-11 JP JP12998079A patent/JPS5656581A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5467251A (en) * | 1977-11-08 | 1979-05-30 | Ishikawajima Harima Heavy Ind Co Ltd | Water cooling towersigma automatic water temperature control method |
JPS54120444A (en) * | 1978-03-10 | 1979-09-19 | Naomichi Shitou | Cooling tower device |
Also Published As
Publication number | Publication date |
---|---|
JPS5656581A (en) | 1981-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080250897A1 (en) | Rotation transmitting device and hydraulic drive unit | |
CN110177926A (en) | With the reversed accessory belt drive system of more ratios and torque | |
KR20010042290A (en) | Drive arrangement for at least one secondary aggregate of a motor vehicle and method for operating the drive arrangement | |
JP5093536B2 (en) | Continuously variable transmission assembly | |
US4168611A (en) | Acceleration and/or deceleration control system for mechanical power drives | |
JPH0222320B2 (en) | ||
JPH0571880B2 (en) | ||
JPH0243117B2 (en) | ||
CA2444187C (en) | Viscous fluid type heat generator | |
JPH0571879B2 (en) | ||
CN101792060B (en) | Controllable soft start electric drum | |
JP2015014342A (en) | Power transmission device of vehicle | |
JP2000289474A (en) | Power transmission for hybrid vehicle | |
CN201601568U (en) | Controllable soft-start electric roller | |
JPH01170723A (en) | Drive device for auxiliary machinery of engine | |
JPH0735101A (en) | Hydraulic and pneumatic complex feeding unit | |
JPH0217695B2 (en) | ||
JPS5938419B2 (en) | Engine auxiliary drive system | |
JPH0140279B2 (en) | ||
JPH0142693Y2 (en) | ||
EP3633235A1 (en) | Power-transmission and/or variable-speed drive device | |
JPS5938420B2 (en) | Engine auxiliary drive system | |
JPH0361765A (en) | Shift control device | |
US2867080A (en) | Driving mechanism for auxiliary apparatuses | |
KR970075587A (en) | Multifunctional Combined Power System |