JPH0571879B2 - - Google Patents
Info
- Publication number
- JPH0571879B2 JPH0571879B2 JP1293706A JP29370689A JPH0571879B2 JP H0571879 B2 JPH0571879 B2 JP H0571879B2 JP 1293706 A JP1293706 A JP 1293706A JP 29370689 A JP29370689 A JP 29370689A JP H0571879 B2 JPH0571879 B2 JP H0571879B2
- Authority
- JP
- Japan
- Prior art keywords
- speed
- pulley
- blower
- control
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims description 49
- 239000003638 chemical reducing agent Substances 0.000 claims description 24
- 230000008859 change Effects 0.000 claims description 13
- 230000002441 reversible effect Effects 0.000 claims description 13
- 238000007664 blowing Methods 0.000 claims 2
- 239000007787 solid Substances 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 12
- 239000000498 cooling water Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009347 mechanical transmission Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Control Of Positive-Displacement Air Blowers (AREA)
- Transmission Devices (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、慣性モーメントの大きな負荷とし
て主に軸流送風機用のフアンの機械的変速制御を
完全自動で行うための送風制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a blower control device for completely automatically controlling the mechanical speed of a fan, mainly for an axial blower, which is a load with a large moment of inertia.
従来から送風フアンを駆動する方式として機械
的変速機を適用することが考えられてきたが、そ
の全ては実用化に達してない。
Conventionally, it has been considered to apply a mechanical transmission as a method of driving a blower fan, but none of them have reached practical use.
その一例として特開昭54−67251号公報のもの
がある。 An example of this is disclosed in Japanese Patent Application Laid-Open No. 54-67251.
第1図Aはその構成図を示す。図中1は冷却
塔、2は散水器、3は充填材、4は水槽、5は冷
却水の入口配管、6は出口配管、7は空気流であ
る。原理は加熱されている冷却水を散水器2で散
布し、下からの空気流7によつて冷却水を冷却処
理し出口6に返えすものである。空気流7の風量
を連続的に変化させるため送風機を変速制御しよ
うとするものである。 FIG. 1A shows its configuration diagram. In the figure, 1 is a cooling tower, 2 is a water sprinkler, 3 is a filler, 4 is a water tank, 5 is a cooling water inlet pipe, 6 is an outlet pipe, and 7 is an air flow. The principle is that heated cooling water is sprayed by a sprinkler 2, cooled by an air flow 7 from below, and then returned to an outlet 6. This is intended to control the speed of the blower in order to continuously change the amount of airflow 7.
10は無段減速機、11は送風電動機、12は
歯車減速機、13は送風フアン、14は電源、1
5はコンピユータ、16はセンサである。 10 is a stepless reducer, 11 is a blower motor, 12 is a gear reducer, 13 is a blower fan, 14 is a power source, 1
5 is a computer, and 16 is a sensor.
ここではコンピユータ15で処理し、無段減速
機10に変速信号を与え送風フアン13の回転数
を制御せんとするものである。 Here, the processing is performed by the computer 15, and a speed change signal is given to the stepless reduction gear 10 to control the rotational speed of the blower fan 13.
〔問題点〕
この種の思想自体は従来から当業者が幾度とな
く行つて来たが、いずれも着想の域を脱せず、現
実には実用化に失敗し、商品化に到らなかつた。
その理由は、次の二つの点に大きな原因があつ
た。[Problem] This kind of idea itself has been developed many times by those skilled in the art, but each of them has never gone beyond the idea, failed to put it into practical use, and never achieved commercialization. .
The reason for this was mainly due to the following two points.
その第一の理由は、無段減速機10が送風フア
ンのような大きな慣性の負荷に耐えられずに伝達
部が短期に破損することであり、第二の理由は変
速機を具体的に如何なる構成で自動制御するのか
に対する解決策が得られなかつた点にある。 The first reason is that the transmission part will be damaged in a short period of time because the continuously variable reducer 10 cannot withstand a large inertial load such as a blower fan, and the second reason is that the transmission part will be damaged in a short period of time. The problem was that no solution could be found as to whether the configuration should be automatically controlled.
例えば従来から周知の無段減速機10で説明す
る。第1図Bは金属摩擦式の変速機の断面図であ
り、静止摩擦駆動方式の一例である。同図では軸
中心から半面側の断面図のみが描かれている。図
中Aは入力軸、Bは出力軸、Cは太陽車で固定側
車C1と移動側車C2とで、遊星車EをバネDで常
時挾み込み、一方遊星車EとキヤリヤFが連動す
る。Gは変速比制御部で、固定リングG2と移動
カムG1で挾み込み遊星車Eを放射方向に移動可
能にしている。この構造では遊星車Eが可変遊星
の役目を果し、移動カムG1の操作でこの割れ目
の間隔により変速比が制御される。 For example, the description will be made using a conventionally well-known stepless reduction gear 10. FIG. 1B is a sectional view of a metal friction type transmission, which is an example of a static friction drive system. In this figure, only a cross-sectional view of the half side from the axis center is drawn. In the figure, A is the input shaft, B is the output shaft, C is the sun wheel, and the fixed side car C 1 and the moving side car C 2 constantly hold the planet wheel E with the spring D, while the planet wheel E and the carrier F are linked. G is a gear ratio control unit, which allows the planetary wheels E to be moved in the radial direction using a fixed ring G2 and a moving cam G1 . In this structure, the planet wheel E plays the role of a variable planet, and the gear ratio is controlled by the interval between the cracks by operating the moving cam G1 .
しかし、この種の金属車CおよびE間の摩擦伝
達方式を送風機の如き大慣性負荷に適用すると、
次の現象が生ずる。 However, when this type of friction transmission method between metal wheels C and E is applied to a large inertial load such as a blower,
The following phenomenon occurs.
送風機では入力軸Aから出力軸Bに動力伝達す
るときは、遊星車ではZ点を支点として接触点X
を接線方向に回動し、これによりY点より出力を
取出すため、トルク伝達は潤滑油中の粘性抗力で
スムースに伝達される。しかし逆に大慣性負荷で
は主電動機11を停止したとき、或いは停止しな
いでも特に移動カムG1で減速側に操作したとき
に、負荷側に慣性が残つているため、本来動力伝
達が行われず、出力軸B側から入力軸A側に動力
が伝達される。この逆伝達の際には遊星車Eは支
点をZ点としてY点が作用点となるため、本来の
伝達点であるX点では変則的な外力を受ける結
果、潤滑油による粘性伝達が適切に作用せず、遊
星車Eと太陽車Cの各金属接触面に瞬時に損償が
発生しこれが繰り返すことにより短期にスクラツ
プ化することに起因していた。 In a blower, when transmitting power from input shaft A to output shaft B, in a planetary wheel, point Z is the fulcrum and contact point X
is rotated in the tangential direction, thereby extracting the output from the Y point, so torque is transmitted smoothly by the viscous drag in the lubricating oil. However, on the other hand, with a large inertia load, when the main motor 11 is stopped, or even when the main motor 11 is not stopped but the moving cam G1 is operated to the deceleration side, inertia remains on the load side, so power transmission is not normally performed. Power is transmitted from the output shaft B side to the input shaft A side. During this reverse transmission, the planetary wheel E has its fulcrum as the Z point and the Y point as the point of action, so the original transmission point, the X point, receives an irregular external force, and as a result, the viscous transmission by the lubricating oil is not properly carried out. This was caused by the fact that the metal contact surfaces of the planet wheel E and the sun wheel C did not work, and damage occurred instantaneously on the respective metal contact surfaces of the planet wheel E and the sun wheel C, and as this was repeated, the metal contact surface became scraped in a short period of time.
さらに、この無段減速機10のもつ本来的な欠
点に加え、更に第二の理由として無段減速機10
の変速比を具体的に如何なる方式で制御するかに
関する技術が対応できなかつた。第一の理由が動
力伝達の方式が解決課題であつたのに対し、第二
の理由では動力伝達ではなく変速制御の方式が解
決課題であつた。特に従来は機械式変速機を操作
するのに手動操作式しか対応できず、送風装置に
適用する場合には遠隔自動操作が不可欠の要件で
あり、さもなければ、オペレータが直接変速機の
設置場所にまで行つて操作していたのでは、変速
機を設置する意義が失われていたが、これに対す
る充分な対応策が無つた。 Furthermore, in addition to the inherent drawbacks of this continuously variable reducer 10, there is a second reason why the continuously reduced reducer 10
There was no technology available to specifically control the gear ratio. For the first reason, the problem to be solved was the power transmission method, whereas for the second reason, the problem to be solved was not the power transmission, but the speed change control method. In particular, in the past, only manual operation was available to operate mechanical transmissions, and when applied to blower equipment, remote automatic operation is an essential requirement. Otherwise, the operator can directly operate the transmission at the installation location. If they had gone all the way to operate it, the purpose of installing a transmission would have been lost, but there was no adequate countermeasure for this.
この発明では、上述した第一の課題である動力
伝達方式を純機械式の増減速型ベルト変速機で、
また第二の課題である変速制御方式を電子サーボ
調節器で構成し、両者の連結に際して電機・機械
変換構構を特殊に構成させて完全自動制御システ
ム化を達成した送風制御装置を提供することを目
的としている。
In this invention, the power transmission method, which is the first problem mentioned above, is achieved by using a purely mechanical speed-up/down type belt transmission.
The second objective is to provide a blower control device in which the speed change control method is configured with an electronic servo controller, and an electrical/mechanical conversion mechanism is specially configured when the two are connected to achieve a completely automatic control system. The purpose is
この発明では、動力伝達を行う増減速型ベルト
変速機と、変速操作を行う電子サーボ調節器との
両者を互いに連動させるため、可逆電動機と、こ
の電動機の回動力を利用して調整巻ネジを正転な
いし逆転させることにより増減速型ベルト変速機
のプーリ装置の固定および摺動プーリ間隔を制御
して、変速比のサーボ自動制御を達成したもので
ある。
In this invention, in order to interlock both the speed-up/deceleration type belt transmission that transmits power and the electronic servo adjuster that performs speed change operation, a reversible electric motor is used, and the rotational force of this electric motor is used to operate an adjustment screw. The fixing and sliding pulley intervals of the pulley device of the speed change belt transmission are controlled by rotating forward or reverse, thereby achieving automatic servo control of the gear ratio.
この構成によれば、送風装置のように大慣性の
負荷機器にあつても、純機械要素の利点である堅
牛性、耐久性、信頼性、高効率性のメリツトと、
純電気要素の利点である情報処理の高精度化、高
速処理のメリツトを併せ持つた変速送風システム
が実現し、特にパイロツト電動制御機からなる電
気・機械変換機能をベルト変速本体に設置したこ
とにより、遠隔地の送風フアン近傍のベルト変速
機と電気的結線のみでほぼ理想的なサーボ制御に
よる自動化が実現する。
According to this configuration, even in a load device with large inertia such as a blower, the advantages of pure mechanical elements such as robustness, durability, reliability, and high efficiency can be achieved.
A variable-speed fan system has been realized that combines the advantages of high-precision information processing and high-speed processing, which are the advantages of purely electric elements.In particular, by installing the electric/mechanical conversion function consisting of a pilot electric controller in the belt speed changer body, Almost ideal automation using servo control can be achieved by simply connecting a belt transmission near the blower fan in a remote location and electrically connecting it.
第2図に於いて、両吸込式直交流冷却塔10を
一実施例としてその部分断面図を示してある。同
図中、11は水槽、12は空気吸込口ルーバ、1
3は充填材、14はエリミネータ、15は隔壁で
あり、さらにこれ等の上部には冷却水が入口配管
17から散水槽16に供給されている。さらに中
央部には円筒状フアンスタツク24が組み付けて
あり、その上部に空気吹出口20が設けられ、そ
の間に送風フアン21と歯車減速機22が放射状
に組込まれたパイプステー23の中心部に設置さ
れる。
In FIG. 2, a partial cross-sectional view of the double suction type cross-flow cooling tower 10 is shown as an embodiment. In the figure, 11 is a water tank, 12 is an air inlet louver, 1
Reference numeral 3 indicates a filler, 14 an eliminator, and 15 a partition wall. Cooling water is supplied from an inlet pipe 17 to a water sprinkling tank 16 above these. Further, a cylindrical fan stack 24 is assembled in the center, and an air outlet 20 is provided at the top of the fan stack 24, between which a blower fan 21 and a gear reducer 22 are installed in the center of a pipe stay 23 that is radially incorporated. Ru.
さらにフアンスタツク24に隣接した上面板2
5には、誘導電動機27と、パイロツト電動制御
機29と、これ等の電動機27および制御機29
を一体組み付けした増減速型ベルト変速機28と
で構成する可変動力機構26が設置されている。
またこの変速機28の回転出力は、カツプリング
30および伝達体31によつて歯車減速機22に
連結される。また、変速機28は、ベルト・プー
リ間の摩擦熱を防熱するため、冷却用空気導入口
35から配管36を介して変速機28の密閉室を
循環した後、排気口37から防出される機構を有
し、ベルト寿命率の向上を図つている。40およ
び41は、供給電力および制御信号用の配線であ
る。 Furthermore, the top plate 2 adjacent to the fan stack 24
5 includes an induction motor 27, a pilot electric controller 29, and these electric motors 27 and controllers 29.
A variable power mechanism 26 is installed, which is comprised of an increase/decrease type belt transmission 28 which is integrally assembled with a variable power mechanism 26.
Further, the rotational output of the transmission 28 is coupled to the gear reducer 22 by a coupling 30 and a transmission body 31. In addition, the transmission 28 has a mechanism in which the cooling air is circulated through the closed chamber of the transmission 28 via the piping 36 from the cooling air inlet 35 and then released from the exhaust port 37 in order to insulate the frictional heat between the belt and the pulley. This is aimed at improving the belt life rate. 40 and 41 are wiring for power supply and control signals.
第3図は、増減速型ベルト変速機28の構成図
である。この変速機28は、枠体45と蓋体46
とで湿り空気の侵入を防ぐため密閉室が形成さ
れ、内部には、電動機回転軸すなわち入力軸51
と、中間回転軸52とには、それぞれ変速ベルト
53を挾持するための固定プーリ54a,55a
および摺動プーリ54b,55bとからなる一対
のプーリ装置54,55が装着されている。駆動
側プーリ装置54には、摺動プーリ54bに取り
付けや羽根車56bと、渦巻型ケーシング56a
とからなる渦巻遠心ブロワ装置56が取り付けら
れ、ケーシング56aの一部は配管36′と連通
し、第2図に示す導入配管36と連通している。
これによつて室内に防熱空気を導入し、排出口3
7から吐出させている。パイロツト電動制御機2
9は、調節巻上ネジ57と連結し、この調整巻上
ネジ57の正転ないし逆転の回動に伴つて、案内
環58が上下し、これによつて固定プーリ54a
と摺動プーリ54aの間隔を調節し、変速比を制
御している。 FIG. 3 is a configuration diagram of the speed-up/down type belt transmission 28. As shown in FIG. This transmission 28 includes a frame body 45 and a lid body 46.
A sealed chamber is formed to prevent moist air from entering, and the motor rotation shaft, that is, the input shaft 51 is located inside.
Fixed pulleys 54a and 55a for clamping the speed change belt 53 are provided on the intermediate rotating shaft 52 and the intermediate rotating shaft 52, respectively.
A pair of pulley devices 54 and 55 consisting of sliding pulleys 54b and 55b are attached. The drive-side pulley device 54 includes an impeller 56b attached to a sliding pulley 54b, and a spiral casing 56a.
A vortex centrifugal blower device 56 consisting of the following is attached, and a portion of the casing 56a communicates with the pipe 36', which in turn communicates with the introduction pipe 36 shown in FIG.
This introduces heat-insulated air into the room, and
It is discharged from 7. Pilot electric controller 2
9 is connected to an adjustment hoisting screw 57, and as the adjusting hoisting screw 57 rotates in the forward or reverse direction, the guide ring 58 moves up and down, thereby causing the fixed pulley 54a to move up and down.
The gear ratio is controlled by adjusting the distance between the sliding pulley 54a and the sliding pulley 54a.
このパイロツト電動制御機29とプーリ装置5
4の間に介在する可逆電動機79、調節巻上ネジ
57、案内環58は、サーボ調節系に於いては電
気・機械信号の変換機能を果している。 This pilot electric controller 29 and pulley device 5
A reversible electric motor 79, an adjustment hoisting screw 57, and a guide ring 58, which are interposed between the servo adjustment system and the servo adjustment system, function to convert electrical and mechanical signals.
すなわち、プーリ装置54と可変ベルト53と
の接触周円半径が変化すると、単にバネ力で挾持
されている従動側でもその接触周円半径が変化
し、この協動動作によつて変速比が制御される。
ベルト変換保守のため、中間軸52を二つのベア
リング59a,59bによつて片持支持させ一端
を自由端にしており、蓋体46を枠体45から分
離可能な構造とし、されにこれに伴つて、軸支承
体60は枠体45に対してスライド調整が可能な
ように、ボルト62による調節機構および長穴6
1を有している。 That is, when the contact radius between the pulley device 54 and the variable belt 53 changes, the contact radius also changes on the driven side, which is simply held by the spring force, and this cooperative operation controls the gear ratio. be done.
For belt conversion and maintenance, the intermediate shaft 52 is cantilever-supported by two bearings 59a and 59b, with one end being a free end, and the lid 46 is separable from the frame 45. The shaft support 60 has an adjustment mechanism using a bolt 62 and an elongated hole 6 so that it can be slid with respect to the frame 45.
1.
本発明では、上述のように第一段伝達機に増減
速型ベルト変速機を、また第二段に定減速比の減
速機をそれぞれ組合せている。ここで増減速型ベ
ルト変速機とは、電動機の入力回転数より増速す
る方向にも、減速する方向に中間軸52を変速で
きるものをいう。従つて単に入力に対しても減速
方向にしか変速できない無段減速機とは異つてい
る。 In the present invention, as described above, the first stage transmission is combined with an increasing/decelerating type belt transmission, and the second stage is combined with a constant reduction ratio speed reducer. Here, the increasing/decelerating type belt transmission is one that can change the speed of the intermediate shaft 52 both in the direction of speeding up and in the direction of decelerating the input rotational speed of the electric motor. Therefore, it is different from a continuously variable reducer that can only change speed in the deceleration direction in response to an input.
このような増減速型ベルト変速機と減速機の組
合せは、次の相乗効果が働き、大慣性の負荷に対
しても充分に安定かつ有利な伝達機として働くこ
とが判明した。 It has been found that such a combination of an increase/decrease type belt transmission and a speed reducer has the following synergistic effect, and works as a sufficiently stable and advantageous transmission even with a load of large inertia.
第1に、大慣性負荷では、運転中にパイロツト
電動制御機からの減速指令時に、負荷のもつ大き
な慣性動力が逆伝達されても、ベルト自体のもつ
弾性力と、従動側プーリ装置のスプリングの回
逃、ベルト・プーリ間のスリツプとの三つの作用
でそのストレスを回逃できる利点があり、このこ
とが大慣性負荷を連続運転する際の耐久性を保証
している点が挙げられる。 First, with a large inertial load, even if the large inertial power of the load is reversely transmitted when a deceleration command is issued from the pilot electric controller during operation, the elastic force of the belt itself and the spring of the driven pulley device It has the advantage of being able to relieve stress through the three actions of relief and slip between the belt and pulley, and this guarantees durability when continuously operating a large inertial load.
第2に、増減速型変速機と減速機の組合では、
特に増減領域にて、一旦プーリ装置54,55が
入力回転数を増速させておき乍ら、再び減速機2
2で減速させることを行わせるため大変無駄のよ
うに思れるが、このことが機器の小型化、経済
化、保守の簡易化に有利に作用している。 Second, in the combination of an increasing/decelerating type transmission and a reducer,
Particularly in the increase/decrease range, the pulley devices 54 and 55 increase the input rotation speed, and then the reducer 2
Although it may seem like a waste of time to decelerate the speed in step 2, this has an advantageous effect on making the equipment smaller, more economical, and easier to maintain.
第1の点から述べると、電動機27の停止時は
第4図でも明らかなように接触器4Rが停止する
のでパイロツト電動制御機29も停止(後述す
る)している。そこで送風フアン21から減速機
22を経て加わる逆方向の回動力は単にベルト5
3を伝わつて電動機27のロータを回動する程度
であると考えられるが、運転中の減速指令時はフ
アンがまだ指令前の高速慣性を維持し、一方でパ
イロツト電動制御機29が強引にベルト53をス
プリング55cと共に作用しながら電動機29も
入力プーリ54に大きな回動力を与えている。従
つて必然的に指令前の負荷の高速慣性力と電動機
回動力との間の速度のストレスがこの場合でもベ
ルトおよびプーリの線ないし面接触部に直接加わ
ることになる。この場合ベルト伝達はネオプレン
等の合成ゴムを主体としている弾性力がこのスト
レスを吸収し、さらに吸収し得ないときはプー
リ・スプリング55cの回逃によりベルト・プー
リ間にスリツプが発生し、ベルト材質が摩耗する
ことがあつてもこの速度ストレスを吸収する作用
がある。このことは、先に述べた金属摩擦減速機
とはその原理を根本的に相異しており、金属の伝
達車自体に損傷を招くような事態は本発明ではな
く、ベルトが消耗品となることを積極的に利用し
た保証機能が働くのである。 From the first point, when the electric motor 27 is stopped, the contactor 4R is stopped, as is clear from FIG. 4, so the pilot electric controller 29 is also stopped (described later). Therefore, the rotating force in the opposite direction applied from the blower fan 21 via the reducer 22 is simply the belt 5
However, when deceleration is commanded during operation, the fan still maintains the high-speed inertia before the command, and on the other hand, the pilot electric controller 29 forcibly rotates the rotor of the electric motor 27. The electric motor 29 also applies a large rotational force to the input pulley 54 while acting on the input pulley 53 together with the spring 55c. Therefore, the stress of the speed between the high-speed inertial force of the load before the command and the rotational force of the electric motor is necessarily applied directly to the line or surface contact portion of the belt and pulley even in this case. In this case, in belt transmission, the elastic force mainly made of synthetic rubber such as neoprene absorbs this stress, and if this stress cannot be absorbed, a slip occurs between the belt and the pulley due to the escape of the pulley spring 55c, and the belt material Even if it wears out, it has the effect of absorbing this speed stress. This is fundamentally different in principle from the metal friction reducer mentioned earlier, and the situation where the metal transmission wheel itself is damaged is not part of the present invention, and the belt becomes a consumable item. The guarantee function works by actively utilizing this fact.
更に第2の有利な条件として小型化、経済化が
達成される。すなわち、送風フアンはそれ自体の
特性として、その軸馬力Wは回転数Nの三乗に比
例し、最大増速時に最大動力が必要となるので、
このときの伝達馬力を基準にベルト変速機および
減速機の容量を選定すれば良い。すなわち、通常
ベルト伝達体では、その伝達馬力W0を一定にす
ると、その馬力は回転数Nとベルト張力Tの積
(N・T)に比例するので、増速機として働く伝
達機を用いると回転数Nが多いのでその分だけベ
ルトに加わる張力Tは小さくて済む。すなわち初
段の伝達機はベルトもプーリも極めて小型でかつ
安価なものが使用できることを意味している。こ
のことは塔体頂上に配置する関係上、塔体自体の
構造も簡易化し、保守も容易化するためその経済
効果は大きい。 Furthermore, as a second advantageous condition, miniaturization and economy can be achieved. In other words, as a characteristic of the blower fan itself, its shaft horsepower W is proportional to the cube of the rotation speed N, and maximum power is required at maximum speed increase.
The capacities of the belt transmission and speed reducer may be selected based on the transmitted horsepower at this time. In other words, in a normal belt transmission body, if the transmitted horsepower W 0 is constant, the horsepower is proportional to the product (N T) of the rotation speed N and belt tension T, so if a transmission that works as a speed increaser is used, Since the number of rotations N is high, the tension T applied to the belt can be reduced accordingly. This means that the first stage transmission can use extremely small and inexpensive belts and pulleys. This has a great economic effect because it is placed on the top of the tower, which simplifies the structure of the tower itself and facilitates maintenance.
第4図は、冷却水温の自動制御調節装置のブロ
ツク回路接続図である。冷却塔10の冷却水出口
65に温度検出器67が設けられ、サーボ調節器
70に接続される。サーボ調節器70は、ブリツ
ジ入力回路71、演算増幅器72、フイルタ7
3、演算増幅器74、正帰還回路75、不感帯回
路76、増速および減速側出力スイツチ回路77
および78から構成されている。また、この出力
スイツチ回路77および78は、その接点77a
および78aを介してパイロツト電動制御機29
に接続されている。一方、パイロツト電動制御機
29は増減速型ベルト変速機28内の入力軸側プ
ーリ装置54と連結している。冷却水温の検出器
67と、サーボ調節器70と、パイロツト電動制
御器29、ベルト変速器28、減速機22および
送風フアンは第一の帰還回路を形成している。こ
のリバーシブル電動機79を有するパイロツト電
動制御機29への電力供給機8′およびT′は、送
風電動機27への三相供給電力線83のSおよび
T端子から供給されている。一方、この電力線8
3には起動停止制御回路80と低温部制御回路8
1が接続されている。 FIG. 4 is a block circuit connection diagram of the automatic cooling water temperature control and adjustment device. A temperature detector 67 is provided at a cooling water outlet 65 of the cooling tower 10 and connected to a servo regulator 70 . The servo controller 70 includes a bridge input circuit 71, an operational amplifier 72, and a filter 7.
3. Operational amplifier 74, positive feedback circuit 75, dead band circuit 76, speed increase and deceleration side output switch circuit 77
and 78. Further, the output switch circuits 77 and 78 have their contacts 77a
and the pilot electric controller 29 via 78a.
It is connected to the. On the other hand, the pilot electric controller 29 is connected to an input shaft side pulley device 54 in the speed-up/down type belt transmission 28. The cooling water temperature detector 67, the servo regulator 70, the pilot electric controller 29, the belt transmission 28, the speed reducer 22 and the blower fan form a first feedback circuit. Power supplies 8' and T' to the pilot electric controller 29 having the reversible motor 79 are supplied from the S and T terminals of the three-phase power supply line 83 to the blower motor 27. On the other hand, this power line 8
3 includes a start/stop control circuit 80 and a low temperature section control circuit 8.
1 is connected.
このサーボ調節器70の動作は、次の通りであ
る。起動スイツチSWを押圧すると常閉接点2R
2を介してリレー3Rが動作し、接点3R1で自
己保持すると共にサーボ調節器70の電源(図示
を省略)が投入され、サーボ調節器70は作動す
るが、パイロツト電動制御機29は接点4R2が
開放されているので動作しない。次に冷却水の温
度がサーボ調節器70の比例動作領域内の温水に
維持している間は、低温領域制御用の機械式温度
検出器68の接点が閉成しているので、低温部制
御回路81が接点3R1の閉成で作動し、このと
き接点3R2が閉成しておりリレー4Rが付勢さ
れる。従つて送風電動機27が三接点4R1を経
て作動する。これと同時にインタロツク接点4R
2の閉成によつてパイロツト電動制御機29が動
作し正常な比例制御動作を行う。第3,4図から
明白な通りパイロツト電動制御機29には可逆電
動機79と歯車減速機が内蔵されその電動機79
の一部はサーボ調節器70の信号に応じ調整巻上
ネジ57を正転又は逆転させながら変速プーリ5
4の摺動プーリ54bをスプリング55cに抗し
て移動させて変速制御をするのに使われる。また
この電動機79は更に伝達装置即ち歯車減速機を
ブリツジ回路71とも連動し、このブリツジ回路
71内にて変速比の状態が可変抵抗器で検出され
てサーボ調節系の第二の帰還回路が構成され、フ
アン回転数を任意に変速制御する。 The operation of this servo adjuster 70 is as follows. When the start switch SW is pressed, normally closed contact 2R
The relay 3R operates via the contact 3R1, and the power to the servo regulator 70 (not shown) is turned on. It doesn't work because it's open. Next, while the temperature of the cooling water is maintained within the proportional operation region of the servo controller 70, the contact of the mechanical temperature detector 68 for low temperature region control is closed, so the low temperature region control is controlled. The circuit 81 is activated when the contact 3R1 is closed, and at this time, the contact 3R2 is closed and the relay 4R is energized. Therefore, the blower motor 27 operates via the three contacts 4R1. At the same time, interlock contact 4R
2 closes, the pilot electric controller 29 operates and performs normal proportional control operation. As is clear from FIGS. 3 and 4, the pilot electric controller 29 has a built-in reversible electric motor 79 and a gear reducer.
A part of the shift pulley 5 rotates the adjusting hoisting screw 57 in the forward or reverse direction according to the signal from the servo adjuster 70.
It is used to control the speed change by moving the No. 4 sliding pulley 54b against the spring 55c. Further, this electric motor 79 further has a transmission device, that is, a gear reduction gear, connected to a bridge circuit 71, and within this bridge circuit 71, the state of the speed change ratio is detected by a variable resistor, thereby forming a second feedback circuit of the servo adjustment system. The speed of the fan rotation speed is controlled arbitrarily.
なお、調整巻上ネジ57をプーリ装置54に設
置された例を示したが他の型式でも良く、可逆電
動機79と一体に組み込んでも良い。 Although an example is shown in which the adjustment hoisting screw 57 is installed on the pulley device 54, other types may be used, and the adjustment hoisting screw 57 may be integrated with the reversible motor 79.
このとき、外気湿球温度が一定してれば冷却水
温が上昇すると送風フアンの回転数は上昇するが
パイロツト電動制御機29のハイ・リミツトスイ
ツチH.L.が閉成しても、送風フアンは最増速状
態で連続運転する。また冷却水温が低下したとき
には、ロー・リミツト・スイツチL.L.が閉成して
リレー1Rが閉成しても、リレー3Rはまだ接点
2R2によつて励磁されているので、送風電動機
27は回転を持続し送風フアン21は最低速で回
動する。 At this time, if the outside air wet bulb temperature is constant, the rotation speed of the blower fan will increase as the cooling water temperature rises, but even if the high limit switch HL of the pilot electric controller 29 closes, the blower fan will increase to the maximum speed. Continuous operation in this condition. Furthermore, when the cooling water temperature drops, even if low limit switch LL closes and relay 1R closes, relay 3R is still energized by contact 2R2, so blower motor 27 continues to rotate. The blower fan 21 rotates at the lowest speed.
このとき、冷却水温が冬期の如く、さらに降下
すると、液封入式の入口水もしくは出口水温検出
器68が作動し、リレー4Rが消勢して、主電動
機27を停止させることができるようになつてい
る。すなわち、冷却水温度がサーボ調節器70の
比例帯領域内の温度レンジは送風フアン回転数を
その温度に応じて比例制御し、比例帯領域以下の
温度になると主電動機27の自動発停制御に切り
換え得るように構成している。 At this time, when the cooling water temperature drops further as in winter, the liquid-filled inlet water or outlet water temperature detector 68 is activated, the relay 4R is deenergized, and the main motor 27 can be stopped. ing. That is, when the cooling water temperature falls within the proportional band range of the servo controller 70, the fan rotation speed is proportionally controlled according to the temperature, and when the temperature falls below the proportional band range, automatic start/stop control of the main motor 27 is performed. It is configured so that it can be switched.
次に、本装置を全停させるときは、停止スイツ
チSWを押圧し、リレー2Rを付勢し、接点2R
1,2R2が反転し、これと同時にサーボ調節器
70のブリツジ入力回路71の接点(図示せず)
を作動し、減速出力スイツチ回路78のみが動作
する信号を送出する。すると、パイロツト電動制
御機29は、この減速指令を受け、いずれロー・
リミツト・スイツチL.Lが閉成し、リレー1Rが
消勢し、接点1R1が開路してリレー3Rが消勢
して調節器70は動作を停止し、さらにその接点
3R2を経てリレー4Rが停止する。すなわち、
起動停止制御回路80はこのように緩起動制御を
行つており、停止時にベルト53が最減速状態で
停止させており、保守の容易性を達成し、同時
に、次の再起動時には常時送風フアンが最低速、
すなわち先に述べた動力三乗低減法則の原理によ
り最軽負荷状態から起動させている。このため、
特に起動の際には、リアクトル起動機などの補助
機器設備が不要になる利点がある。なお、上述し
た起動停止制御回路80に於いて行つた緩起動制
御並びにブロワ装置56は、いずれも単なるベル
ト保護対策であつて前者は起動時のベルト衝撃の
回逃のためであり、後者は摩擦熱によるベルト材
質の軟弱化による切断防止対策であり、本願発明
の要旨である完全自動化への耐久性向上のための
補助対策に過ぎず直接的には発明の要旨と関係は
ない。 Next, to completely stop this device, press the stop switch SW, energize relay 2R, and contact 2R.
1 and 2R2 are inverted, and at the same time, the contacts of the bridge input circuit 71 of the servo regulator 70 (not shown)
, and sends out a signal that causes only the deceleration output switch circuit 78 to operate. Then, the pilot electric controller 29 receives this deceleration command and eventually lowers the speed.
Limit switch LL is closed, relay 1R is deenergized, contact 1R1 is opened, relay 3R is deenergized, regulator 70 stops operating, and relay 4R is stopped via contact 3R2. That is,
The start/stop control circuit 80 performs slow start control in this way, and when stopped, the belt 53 is stopped at its maximum deceleration, achieving ease of maintenance, and at the same time, the blower fan is always turned on at the next restart. lowest speed,
That is, the engine is started from the lightest load state based on the principle of the power cube reduction law mentioned above. For this reason,
Particularly during startup, there is an advantage that auxiliary equipment such as a reactor starter is not required. Note that the slow start control performed in the start/stop control circuit 80 and the blower device 56 described above are both mere belt protection measures; the former is for relieving the belt impact at the time of start, and the latter is for preventing friction. This is a measure to prevent the belt material from being cut due to softening due to heat, and is merely an auxiliary measure to improve durability toward full automation, which is the gist of the present invention, and is not directly related to the gist of the invention.
第5図は、本発明の他の実施例冷却塔送風装置
の部分構成図で、第1図に示す減速機22に、ベ
ルト31′、定速比プーリ85および86で構成
したベルト減速機85を使用している。この方式
は先に述べた様に、減速指令時に大慣性負荷側か
ら戻る回動力と電動機からの回動力の相互の差に
よるストレスをこの減速機29のベルト31′も
積極的に吸収する性質が出てくるため、このスト
レスに対してはより優れた効果を有し、その分だ
け、増減速側ベルト変速のベルトの摩耗が減る利
点がある。
FIG. 5 is a partial configuration diagram of a cooling tower blower device according to another embodiment of the present invention, in which a belt reducer 85 is added to the reducer 22 shown in FIG. are using. As mentioned earlier, this system has the property that the belt 31' of the reducer 29 also actively absorbs the stress caused by the difference between the rotational force returned from the large inertia load side and the rotational force from the electric motor when a deceleration command is issued. Therefore, it has a better effect against this stress, and has the advantage of reducing wear on the belt of the belt speed changer on the acceleration/deceleration side.
従来大馬力・大慣性の送風フアンを用いて制御
媒体を冷却することは多数行われているが、送風
フアンの回転数の制御が困難であつたため、三方
弁等を用いたバイパス流量制御によつて結果的に
制御媒体の温度制御を行う方法等が大部分であつ
た。このため温度の乱れが大きく、高精度の調節
を期待することが不可能であつた。しかし本発明
によれば、主動力の伝達を大慣性負荷に対して極
めて安定した耐久性を持つ増減速型ベルト変速機
で実行し、一方変速比の制御には純電気式サーボ
調節器で構成したので、それぞれの長所を充分に
発揮した、高信頼、高精度の温度制御系が実現す
る。
Conventionally, a large horsepower, high inertia blower fan has been used to cool the control medium, but since it was difficult to control the rotational speed of the blower fan, bypass flow control using a three-way valve, etc. As a result, most of the methods involved controlling the temperature of the control medium. As a result, temperature fluctuations were large and it was impossible to expect highly accurate adjustment. However, according to the present invention, the main power is transmitted by an increase/decrease type belt transmission that has extremely stable durability against large inertial loads, while the gear ratio is controlled by a pure electric servo regulator. As a result, a highly reliable and highly accurate temperature control system that fully utilizes the strengths of each can be realized.
特に機械部分として増減速型ベルト変速機を用
いたことは大慣性フアンの起動衝撃、減速制御指
令時に生ずる送風フアンと電動機との両者の間の
速度差によるストレス等を充分に吸収し、長時間
の連続責務を達成でき、しかも小型化が可能なこ
とから送風フアンの制御に有利である。またこの
ベルト変速機にパイロツト電動制御機を連結させ
ているので、制御系からみると増減速型ベルト変
速機が一つの操作端としてまとめることができ、
サーボ調節器により遠隔自動制御がほぼ理想的な
構成で達成される結果、従来不可能とされて来た
送風フアンによる温度制御が現実のものとなり、
例えば大容量の冷凍機の凝縮器側の温度制御も安
定化するため冷凍機自体の高効率運転が実現し省
エネルギー化が達成されるなど、その派生的な工
業価値は極めて大きい。 In particular, the use of an accelerating/decelerating belt transmission for the mechanical part sufficiently absorbs the startup impact of the large inertia fan and the stress caused by the speed difference between the fan and the electric motor that occurs when deceleration control commands are issued. It is advantageous for controlling ventilation fans because it can achieve continuous duty and can be made smaller. In addition, since the pilot electric controller is connected to this belt transmission, from the perspective of the control system, the speed-up/deceleration type belt transmission can be integrated into one operating end.
As a result of achieving remote automatic control using a servo controller in an almost ideal configuration, temperature control using a blower fan, which was previously considered impossible, has become a reality.
For example, the temperature control on the condenser side of a large-capacity refrigerator can be stabilized, resulting in highly efficient operation of the refrigerator itself and energy savings, and its derivative industrial value is extremely large.
第1図Aは、従来単なる着想として考えられた
送風装置を冷却塔に適用した場合の構成図を、ま
た同図Bはそこに使用され無段減速機の一例の部
分断面図を示し、第2図は、本発明の一実施例冷
却塔の外観概要図を示し、第3図は、同冷却塔に
使用される増減速型ベルト変速機の部分断面図を
示し、第4図は、同冷却塔用の送風電動機および
同ベルト変速機を制御するためのサーボ制御回路
系の結線図を、さらに第5図は、本発明の他の実
施例冷却塔の部分構成概要図をそれぞれ示してい
る。
図中、10…冷却塔、21…送風フアン、22
…定速比減速機、27…主送風電動機、28…増
減速型ベルト変速機、29…パイロツト電動制御
機、51…入力回転軸、52…中間回転軸、70
…サーボ調節回路、80…起動停止制御回路、8
1…低温部制御回路。
Figure 1A shows a configuration diagram of a case where a blower device, which was conventionally considered as a mere idea, is applied to a cooling tower, and Figure 1B shows a partial cross-sectional view of an example of a stepless reducer used there. Fig. 2 shows a schematic external view of a cooling tower according to an embodiment of the present invention, Fig. 3 shows a partial sectional view of an increase/decrease type belt transmission used in the cooling tower, and Fig. 4 shows the same. FIG. 5 shows a wiring diagram of a servo control circuit system for controlling a blower motor for a cooling tower and a belt transmission thereof, and FIG. 5 shows a schematic diagram of a partial configuration of a cooling tower according to another embodiment of the present invention. . In the figure, 10...Cooling tower, 21...Blower fan, 22
...constant speed ratio reducer, 27...main blower motor, 28...increase/deceleration type belt transmission, 29...pilot electric controller, 51...input rotating shaft, 52...intermediate rotating shaft, 70
... Servo adjustment circuit, 80 ... Start/stop control circuit, 8
1...Low temperature section control circuit.
Claims (1)
ンスタツク近傍に配置した送風電動機と、この送
風電動機回転数を直接増速又は減速させる増減速
型ベルト変速機と、この増減速型ベルト変速機の
出力動力を更に減速して上記送風フアンに伝達す
る減速機と、変速比を制御する電子サーボ調節装
置とから成ると共に、上記増減速型ベルト変速機
は、入力軸および中間軸にそれぞれ可変ベルトを
固定および摺動プーリ間で挾持するため装着した
一対のプーリ装置と、上記電子サーボ調節装置の
電気変速信号を機械変速信号に変換するため上記
摺動プーリと直接連結して該摺動プーリを上下動
させて変速制御するためのパイロツト電動制御機
とを有する送風制御装置。 2 上記パイロツト電動制御機は、変速制御用の
可逆電動機を有し上記増減速型ベルト変速機の本
体に設置されて、上記可変電動機は上記入力軸側
プーリ装置と連動すると共に該固体および摺動プ
ーリ間隔を制御する調整巻上ネジを正逆転させて
該摺動プーリの案内環を摺動させ変速比を制御し
てなる特許請求の範囲第1項記載の送風制御装
置。 3 上記パイロツト電動制御機の可逆電動機と、
上記サーボ調節器の出力スイツチ回路とは、正転
端子を増速指令スイツチ回路でまた逆転端子を減
速指令スイツチ回路でそれぞれ開閉制御してなる
特許請求の範囲第2項記載の送風制御装置。[Scope of Claims] 1. A blower fan in a fan stack, a blower motor disposed near the fan stack, an increasing/decelerating type belt transmission that directly increases or decelerates the rotational speed of the blowing motor, and an increasing/decelerating type belt transmission. The speed reducer is comprised of a speed reducer that further reduces the output power of the machine and transmits it to the blower fan, and an electronic servo adjustment device that controls the gear ratio. a pair of pulley devices installed to hold the belt between the fixed and sliding pulleys; and a pair of pulley devices installed to clamp the belt between the fixed and sliding pulleys; A blower control device having a pilot electric controller for controlling speed change by moving up and down. 2 The pilot electric controller has a reversible electric motor for speed change control, and is installed in the main body of the speed-up/deceleration type belt transmission, and the variable electric motor is interlocked with the input shaft side pulley device and is connected to the solid body and the sliding 2. The air blowing control device according to claim 1, wherein the adjustment hoisting screw for controlling the pulley interval is rotated in the forward and reverse directions to slide the guide ring of the sliding pulley to control the gear ratio. 3 A reversible electric motor of the pilot electric controller,
3. The air blow control device according to claim 2, wherein the output switch circuit of the servo regulator is configured to control the opening and closing of the forward rotation terminal by a speed increase command switch circuit and the reverse rotation terminal by a deceleration command switch circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1293706A JPH03194395A (en) | 1989-11-11 | 1989-11-11 | Blowing controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1293706A JPH03194395A (en) | 1989-11-11 | 1989-11-11 | Blowing controller |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12998079A Division JPS5656581A (en) | 1979-10-11 | 1979-10-11 | Cooling tower |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03194395A JPH03194395A (en) | 1991-08-26 |
JPH0571879B2 true JPH0571879B2 (en) | 1993-10-08 |
Family
ID=17798181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1293706A Granted JPH03194395A (en) | 1989-11-11 | 1989-11-11 | Blowing controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03194395A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5467251A (en) * | 1977-11-08 | 1979-05-30 | Ishikawajima Harima Heavy Ind Co Ltd | Water cooling towersigma automatic water temperature control method |
JPS54120444A (en) * | 1978-03-10 | 1979-09-19 | Naomichi Shitou | Cooling tower device |
-
1989
- 1989-11-11 JP JP1293706A patent/JPH03194395A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5467251A (en) * | 1977-11-08 | 1979-05-30 | Ishikawajima Harima Heavy Ind Co Ltd | Water cooling towersigma automatic water temperature control method |
JPS54120444A (en) * | 1978-03-10 | 1979-09-19 | Naomichi Shitou | Cooling tower device |
Also Published As
Publication number | Publication date |
---|---|
JPH03194395A (en) | 1991-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4252751A (en) | Fan control system for cooling apparatus | |
EP0158158B1 (en) | Auxiliary device driving unit driven by an engine | |
JPH0158386B2 (en) | ||
KR20010042290A (en) | Drive arrangement for at least one secondary aggregate of a motor vehicle and method for operating the drive arrangement | |
CN110177926A (en) | With the reversed accessory belt drive system of more ratios and torque | |
US5360091A (en) | Electrically actuated clutch brake apparatus | |
JPH0243117B2 (en) | ||
JPH0571879B2 (en) | ||
JPH0571880B2 (en) | ||
CA2444187C (en) | Viscous fluid type heat generator | |
JPH0222320B2 (en) | ||
EP0184102B1 (en) | Accessory drive device in engine | |
GB2063364A (en) | Fan control system for cooling apparatus such as cooling towers | |
JPH0140279B2 (en) | ||
JPH0217695B2 (en) | ||
CN201601568U (en) | Controllable soft-start electric roller | |
JPS5938419B2 (en) | Engine auxiliary drive system | |
JPH01170723A (en) | Drive device for auxiliary machinery of engine | |
JPH0361765A (en) | Shift control device | |
JPH03204476A (en) | Belt change gear controller | |
JPH0150785B2 (en) | ||
JPS62188853A (en) | Belt transmission | |
JPH0960596A (en) | Capacity controller for screw compressor | |
EP3633235A1 (en) | Power-transmission and/or variable-speed drive device | |
JPH034797Y2 (en) |