JPH02222861A - Fast breeder reactor - Google Patents

Fast breeder reactor

Info

Publication number
JPH02222861A
JPH02222861A JP1008625A JP862589A JPH02222861A JP H02222861 A JPH02222861 A JP H02222861A JP 1008625 A JP1008625 A JP 1008625A JP 862589 A JP862589 A JP 862589A JP H02222861 A JPH02222861 A JP H02222861A
Authority
JP
Japan
Prior art keywords
reactor
heat exchanger
primary
core
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1008625A
Other languages
Japanese (ja)
Inventor
Norihiko Iida
飯田 式彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1008625A priority Critical patent/JPH02222861A/en
Publication of JPH02222861A publication Critical patent/JPH02222861A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To make a reactor vessel small in size and to enable prolongation of a period replacement of fuel by providing an electromagnetic pump outside a guard vessel and on the lateral side of an intermediate heat exchanger and by providing a vertically movable reflector on the lateral side of a reactor core. CONSTITUTION:A reflector 25 of beryllium or the like, a driving mechanism 26 thereof and an electromagnetic pump 27 are provided outside a reactor vessel 2. Primary sodium Na circulates through a reactor core 20, flows into an intermediate heat exchanger 22 from a primary inlet 30 and flows out of a primary outlet 31. Secondary Na flowing into the exchanger 22 from a secondary inlet 11 lowers and flows into a central riser 33 from a window 32 and flows out of a secondary outlet 14, and the primary Na is subjected to heat exchange in the meantime. Then, the primary Na coming out of the outlet 31 lowers through an annulus 34, passes through a flow rate mixing device 21 and enters the reactor core 20. The reflector 25, which is positioned below at the time of start of the operation, rises 26 gradually after a core fuel located below is burnt, so that fuel disposed above be burnt. According to this constitution, it is possible to make the vessel 2 small in size and to improve reliability.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は例えば液体金属ナトリウム(以下、ナトリウム
と記す)を冷却材として使用する高速増殖炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a fast breeder reactor that uses, for example, liquid metal sodium (hereinafter referred to as sodium) as a coolant.

(従来の技術〉 従来のタンク型高速増殖炉の原子炉構造及び1次冷却系
を第6図について説明する。同図に示すようにガードベ
ッセル1に囲まれた原子炉容器2内に炉心3が収納され
ており、その炉心3の上部に炉心上部機構4および回転
プラグ5が配設されている。炉心上部機構4内には炉心
3を制御するための制御棒6と、炉心3の温度を測定す
るための集合体出口温度計7が設置されている。炉心3
は炉心支持構造物8によって原子炉容器2から支持され
ている。冷却材であるナトリウムは炉心3を流出し、中
間熱交換器1次人口9に流入し、中間熱交換器1火山口
1(>から流出する。中間熱交換器では2次ナトリウム
が2次人口11から流入し、下降管12を下降し、下降
管窓13から流出し、ざらに2火山口14から流出し、
この間で1次ナトリウムと熱交換を行なう。中間熱交換
器1次出口10から流出したナトリウムはポンプ15で
吸込まれ炉内配管16を通り、高圧プレナム17に流入
し、炉心3にもどる。また、従来タンク型原子炉では炉
心3を構成する燃料を、1年に1回交換する必要がおり
、このために燃料交換用のキャスク18が設置されてい
る。
(Prior art) The reactor structure and primary cooling system of a conventional tank-type fast breeder reactor will be explained with reference to FIG. is housed, and a core upper mechanism 4 and a rotating plug 5 are arranged above the core 3. Inside the core upper mechanism 4, there are control rods 6 for controlling the reactor core 3, and control rods 6 for controlling the temperature of the core 3. An assembly outlet thermometer 7 is installed to measure the temperature of the reactor core 3.
is supported from the reactor vessel 2 by a core support structure 8 . Sodium, which is a coolant, flows out of the core 3, flows into the primary intermediate heat exchanger 9, and flows out from the intermediate heat exchanger 1 volcano mouth 1 (>. In the intermediate heat exchanger, secondary sodium flows into the secondary intermediate heat exchanger 11, descends down the downcomer pipe 12, flows out through the downcomer window 13, flows out from the volcanic mouth 14,
During this time, heat exchange is performed with the primary sodium. Sodium flowing out from the intermediate heat exchanger primary outlet 10 is sucked in by the pump 15, passes through the furnace piping 16, flows into the high pressure plenum 17, and returns to the reactor core 3. Furthermore, in conventional tank-type nuclear reactors, it is necessary to replace the fuel constituting the reactor core 3 once a year, and for this purpose, a cask 18 for fuel replacement is installed.

(発明が解決しようとする課題) 従来の高速増殖炉の原子炉構造及び1次冷却系は上述し
たように構成されているので、安全でかつ安定した運転
が可能である。しかしながら、近年、高速増殖炉の一層
の安全性向上と単純化、メンテナンスフリー化が求めら
れている。
(Problems to be Solved by the Invention) Since the reactor structure and primary cooling system of a conventional fast breeder reactor are configured as described above, safe and stable operation is possible. However, in recent years, there has been a demand for further safety improvements, simplification, and maintenance-free fast breeder reactors.

このため、次の点で改善すべき課題がある。Therefore, there are issues to be improved in the following points.

(1)原子炉容器を小型化し、原子炉容器の信頼性を向
上させる。
(1) Miniaturize the reactor vessel and improve its reliability.

(2)制御棒及び1次ポンプなどの駆動部をナトリウム
中に設置させないでよりいっそうの信頼性向上を図る。
(2) To further improve reliability by not installing driving parts such as control rods and primary pumps in sodium.

(3)炉心燃料の交換期間を延長し、燃料交換に関する
メンテナンス作業を大幅に削減する。
(3) Extend the core fuel replacement period and significantly reduce maintenance work related to fuel replacement.

(4)ループ型原子炉については、1次系に設置する蒸
気発生器で生じるナトリウムと水との反応を削除する。
(4) For loop reactors, the reaction between sodium and water that occurs in the steam generator installed in the primary system will be eliminated.

(5)原子炉出力規模を小ざくして固有の安全性を向上
させる。
(5) Improve inherent safety by reducing reactor output scale.

本発明は上記課題を解決するためになされたもので、タ
ンク型原子炉においては寿命中燃料交換を行なわない原
子炉構造を有する高速増殖炉を提供することにある。ま
たループ型原子炉においては1次系に設置する熱交換器
をナトリウムとガスによる熱交換器とし、ナトリウムと
水の反応を削除する冷却系を有する高速増殖炉を提供す
ることにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fast breeder reactor having a reactor structure that does not require fuel exchange during its lifetime in a tank type reactor. Another object of the present invention is to provide a fast breeder reactor in which the heat exchanger installed in the primary system of a loop reactor is a heat exchanger using sodium and gas, and has a cooling system that eliminates the reaction between sodium and water.

[発明の構成] (課題を解決するための手段) 上記課題を解決するために本発明に係る高速増殖炉はタ
ンク型原子炉においては原子炉容器とガードベッセル内
に炉心と中間熱交換器を備え、ガードベッセルの外側、
中間熱交換器の側部に電磁ポンプを備え、ガードベッセ
ルの外側および炉心側部に上下動が可能なベリリウムな
どの反射体を備えたことを特徴とする。またループ型原
子炉においては原子炉容器とガードベッセル内に炉心を
備え、容器の外側および炉心の側部に上下動が可能なベ
リリウムの反射体を備え、原子炉容器から流出したナト
リウムは熱交換性能を向上したナトリウム・ガス熱交換
器に流入し、熱交換器を流出したナトリウムは配管外側
に設置した電磁ポンプによって原子炉に流入することを
特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, a fast breeder reactor according to the present invention includes a reactor core and an intermediate heat exchanger in a reactor vessel and a guard vessel in a tank type nuclear reactor. In preparation, outside the guard vessel,
It is characterized by having an electromagnetic pump on the side of the intermediate heat exchanger, and a reflector made of beryllium or the like that can move up and down on the outside of the guard vessel and on the side of the core. In addition, a loop reactor has a reactor core inside the reactor vessel and guard vessel, and is equipped with a beryllium reflector that can move up and down on the outside of the vessel and on the side of the core, and the sodium that flows out from the reactor vessel is heat exchanged. The sodium that flows into the sodium gas heat exchanger with improved performance and flows out of the heat exchanger is characterized by flowing into the reactor by an electromagnetic pump installed outside the piping.

(作 用) 本発明に係る高速増殖炉によれば、原子炉容器の直径は
5〜10万KWeの出力規模で1m〜1.5面であり、
容器の信頼性は大幅に向上する。また、ナトリウム中に
、制御棒および1次ポンプのような駆動部を備えていな
いため作動機器の信頼性は大幅に向上する。また、炉心
燃料はベリリウムなどの反射体を順次動かしベリリウム
などの反射体がある部分でのみ燃焼が促進し、それ以外
は燃焼が抑制され、ゆっくりと反射体を動かすことによ
ってプラントの寿命中、燃料交換を不要とし、メンテナ
ンス性を大幅に向上させる。
(Function) According to the fast breeder reactor according to the present invention, the reactor vessel has a diameter of 1 m to 1.5 sides at an output scale of 50,000 to 100,000 KWe,
Container reliability is greatly improved. Furthermore, since there are no driving parts such as control rods and primary pumps in the sodium tank, the reliability of the operating equipment is greatly improved. In addition, by sequentially moving reflectors such as beryllium, combustion of the core fuel is promoted only in areas where there are reflectors such as beryllium, and combustion is suppressed in other areas. By slowly moving the reflectors, fuel Eliminates the need for replacement and greatly improves maintainability.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例を示す立断面図である。FIG. 1 is an elevational sectional view showing a first embodiment of the present invention.

なお図中、第6図と同一部分には同一符号で示し、重複
する部分の説明を省略する。
In the figure, the same parts as in FIG. 6 are designated by the same reference numerals, and the explanation of the overlapping parts will be omitted.

第1図に示すように、ガードベッセル1で囲まれた原子
炉容器2の内部に炉心20.流量混合装置21、中間熱
交換器22および炉心20と中間熱交換器22を原子炉
容器上部構造23から吊り下げるための吊り胴24が設
置されている。原子炉容器2の外部にはベリリウムなど
の反射体25とその駆動機構26および電磁ポンプ27
が設置されている。原子炉容器上部構造23にはカバー
ガス28の制御系29が設置されている。1次ナトリウ
ムは炉心20を流出して中間熱交換器1火入口30から
中間熱交換器22内に流入し、中間熱交換器1次出口3
1から流出する。
As shown in FIG. 1, a reactor core 20 is placed inside a reactor vessel 2 surrounded by a guard vessel 1. A suspension shell 24 for suspending the flow mixer 21, the intermediate heat exchanger 22, and the reactor core 20 and intermediate heat exchanger 22 from the reactor vessel upper structure 23 is installed. Outside the reactor vessel 2, there is a reflector 25 made of beryllium or the like, its drive mechanism 26, and an electromagnetic pump 27.
is installed. A control system 29 for the cover gas 28 is installed in the reactor vessel upper structure 23 . The primary sodium flows out of the core 20, flows into the intermediate heat exchanger 22 from the intermediate heat exchanger 1 fire inlet 30, and flows into the intermediate heat exchanger 22 through the intermediate heat exchanger primary outlet 3.
Flows from 1.

中間熱交換器22では2次ナトリウムが2次入口11か
ら流入し、中間熱交換器22を下降した後に、窓32か
ら中央上昇管33に流入して、この中央上昇管33内を
上昇し、2洗出口14から流出する2次ナトリウムと1
次ナトリウムが熱交換する。中間熱交換器1洗出口31
から流出したナトリウムはアニユラス34を下降し、流
量混合装置21を通り、炉心20に流入する。ベリリウ
ムなどの反射体25は運転開始時に炉心20の下方に設
置し、下方に配置された炉心燃料を燃焼させる。その後
、徐々に駆動機構26を用いて上方に駆動させることに
よって上方に設置されている炉心燃料も燃焼する。
In the intermediate heat exchanger 22, secondary sodium flows from the secondary inlet 11, descends through the intermediate heat exchanger 22, flows into the central riser pipe 33 through the window 32, and rises within the central riser pipe 33, 2 Secondary sodium flowing out from the washing outlet 14 and 1
Sodium exchanges heat. Intermediate heat exchanger 1 washing outlet 31
The sodium flowing out from the reactor core 20 flows down the annulus 34, passes through the flow mixer 21, and enters the reactor core 20. A reflector 25 made of beryllium or the like is installed below the reactor core 20 at the start of operation, and burns the core fuel disposed below. Thereafter, the core fuel installed above is also burned by gradually driving it upward using the drive mechanism 26.

しかして、本実施例によれば原子炉容器2は従来の原子
炉容器に比較して著しく小型化され、原子炉容器の信頼
性は向上する。また炉心の制御と、1次ナトリウムの駆
動を容器の外部から行なうため、駆動部の信頼性は向上
する。ざらに、炉心20は徐々に燃焼が進行するため、
運転中燃料交換は不要であり、メンテナンス性が大きく
向上する。
Therefore, according to this embodiment, the reactor vessel 2 is significantly smaller than the conventional reactor vessel, and the reliability of the reactor vessel is improved. Furthermore, since the core is controlled and the primary sodium is driven from outside the vessel, the reliability of the drive unit is improved. Roughly, since combustion progresses gradually in the core 20,
There is no need to change fuel during operation, greatly improving maintainability.

次に第2図を参照しながら本発明の第2の実施例を説明
する。
Next, a second embodiment of the present invention will be described with reference to FIG.

この第2の実施例が第1図に示した第1の中間熱交換器
22の1次および2次ナトリ1クム流路パスを変更し、
1次ナトリウムを一度上昇させ、熱交換しながら下降さ
せるバスとしたことである。なお、第2図中第1図と同
一部分には同一符号で示し重複する部分の説明を省略す
る。すなわち、第2図において、炉心20から流出した
1次ナトリウムは上昇管41を通して、中間熱交換器2
2内を上昇する。1次ナトリウムは上昇後、1次ナトリ
ウム窓42から流出して中間熱交換器22内を下降し、
1訳出口43から流出する。2次ナトリウムは2次人口
11から流入し、入口プレナム44を経て伝熱管45内
を通り、出口プレナム46に流入し、2次ナトリウム出
口14から流出する。
This second embodiment changes the primary and secondary natrium flow path paths of the first intermediate heat exchanger 22 shown in FIG.
The bath was designed to raise primary sodium once and then lower it while exchanging heat. Note that the same parts in FIG. 2 as in FIG. 1 are designated by the same reference numerals, and the explanation of the overlapping parts will be omitted. That is, in FIG. 2, the primary sodium flowing out from the reactor core 20 passes through the riser pipe 41 and reaches the intermediate heat exchanger 2.
Rise within 2. After rising, the primary sodium flows out from the primary sodium window 42 and descends inside the intermediate heat exchanger 22,
It flows out from the first translation exit 43. Secondary sodium enters from the secondary population 11 , passes through the inlet plenum 44 , through the heat transfer tubes 45 , enters the outlet plenum 46 , and exits from the secondary sodium outlet 14 .

この第2の実施例も第1の実施例と同様に原子炉容器2
のコンパクト化を図ることができる。また本実施例では
1次側のナトリウムが熱交換器内で2次ナトリウムと熱
交換し、冷却されたものが重力方向に落下するため、自
然な流路バスが形成される。
This second embodiment also has a reactor vessel 2 similar to the first embodiment.
can be made more compact. Furthermore, in this embodiment, the sodium on the primary side exchanges heat with the secondary sodium in the heat exchanger, and the cooled sodium falls in the direction of gravity, so that a natural flow path bus is formed.

第3図はループ型原子炉に適用した本発明の第3の実施
例を示している。第3図において、原子炉容器2の内部
に炉心20.炉内配管50.出口配管51が設置されて
いる。原子炉容器2の外部には上記実施例と同様にベリ
リウムなどの反射体25とその駆動部26が設置されて
いる。原子炉容器2はナトリウム・ガス熱交換器53と
配管54を介して接続されている。配管54はヘッダー
55に接続され、ヘッダー55には配管56が接続され
、配管56とナトリウム・ガス熱交換器53が接続され
ている。ナトリウム・ガス熱交換器53の下方には、配
管57が接続され、配管57は炉内配管50と接合部5
2により連結される。ナトリウム・ガス熱交換器53内
にはガス下降管58とガス出口59が設置されている。
FIG. 3 shows a third embodiment of the present invention applied to a loop type nuclear reactor. In FIG. 3, a reactor core 20. Furnace piping 50. An outlet pipe 51 is installed. A reflector 25 made of beryllium or the like and its drive unit 26 are installed outside the reactor vessel 2, as in the above embodiment. The reactor vessel 2 is connected to a sodium gas heat exchanger 53 via piping 54. Piping 54 is connected to a header 55, piping 56 is connected to header 55, and piping 56 is connected to sodium gas heat exchanger 53. A pipe 57 is connected below the sodium gas heat exchanger 53, and the pipe 57 connects to the furnace pipe 50 and the joint 5.
Connected by 2. A gas downcomer 58 and a gas outlet 59 are installed in the sodium gas heat exchanger 53 .

第4図および第5図にはナトリウム・ガス熱交換器53
の伝熱部分を拡大して一部側面の断面図で示している。
Figures 4 and 5 show a sodium gas heat exchanger 53.
The heat transfer part is shown in an enlarged partial side cross-sectional view.

伝熱管60内をナトリウムが下降し、伝熱管60の外側
をガスが上昇する。伝熱管60の外側には金属粒子61
が充填されている。第5図の平面図から明らかなように
伝熱管60aは隣接する伝熱管60bと板62で接続さ
れている。このように、ガスへの伝熱性能は著しく向上
され、熱交換器のコンパクト化が達成される。
Sodium descends inside the heat exchanger tube 60, and gas rises outside the heat exchanger tube 60. Metal particles 61 are placed on the outside of the heat exchanger tube 60.
is filled. As is clear from the plan view of FIG. 5, the heat exchanger tube 60a is connected to the adjacent heat exchanger tube 60b by a plate 62. In this way, the heat transfer performance to the gas is significantly improved, and the heat exchanger can be made more compact.

本実施例では原子炉容器は上記第1の実施例よりもさら
にコンパクト化される。ナトリウム・ガス熱交換器では
例え伝熱管60の漏洩が生じたとしても、従来の蒸気発
生器のようにす(〜リウムと水との反応はなく、安全性
向上は著しい。
In this embodiment, the reactor vessel is made more compact than in the first embodiment. In the sodium gas heat exchanger, even if the heat exchanger tube 60 leaks, it will not react like a conventional steam generator (there is no reaction between lithium and water, and the safety is significantly improved.

[発明の効果] 本発明によれば、次のような効果を奏する。[Effect of the invention] According to the present invention, the following effects are achieved.

(1)炉心の制御を原子炉容器外から行なうため、炉心
上部に中間熱交換器を配することができる。この結果、
原子炉容器は著しくコンパクト化され、原子炉容器の信
頼性が向上する。
(1) In order to control the reactor core from outside the reactor vessel, an intermediate heat exchanger can be placed above the reactor core. As a result,
The reactor vessel is significantly more compact and the reliability of the reactor vessel is improved.

(2)ナトリウム中に駆動部がないため、プラントの運
転性は向上する。またメンテナンス性に優れる。
(2) Since there is no driving part in the sodium, the operability of the plant is improved. It also has excellent maintainability.

(3)炉心はベリリウムなどの反射体を上玉に駆動させ
てゆっくりと燃焼させるため、プラント運転中、燃料交
換は不要でおり、メンテナンス性が著しく向上する。
(3) Since the reactor core burns slowly by driving a reflector such as beryllium to the top, there is no need to change fuel during plant operation, which significantly improves maintainability.

(4)ループ型原子炉に適用した場合にはナトリウムと
水との反応がなく、安全性が著しく向上する。
(4) When applied to a loop reactor, there is no reaction between sodium and water, significantly improving safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明に係る高速増殖炉
のそれぞれの実施例を示す立面図、第3図は本発明をル
ープ型原子炉へ適用した例を示す系統図、第4図および
第5図は第2図における熱交換器伝熱部を拡大して示す
断面図、第6図は従来の高速増殖炉を示す立面図である
。 2・・・原子炉容器 2G・・・炉心 21・・・流量混合装置 22・・・中間熱交換器 23・・・原子炉上部構造 24・・・吊り胴 26・・・反射体駆動機構 27・・・電磁ポンプ 28・・・カバーガス 29・・・制御系 30・・・1火入口 31・・・1次出口 32・・・窓 33・・・中央上昇管 34・・・アニユラス 41・・・上昇管 42・・・1次ナトリウム窓 43・・・1次出口 44・・・入口プレナム 45・・・伝熱管 46・・・出口プレナム 50・・・炉内配管 51・・・出口配管 52・・・接合部 53・・・中間熱交換器 54・・・配管 55・・・ヘッダー 56、57・・・配管 58・・・下降管 60・・・伝熱管 61・・・金属粉子 62・・・板 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) $ 1 第 閃 ↑ ↑ ↑ ↑ 茶 図 第 乙 図
1 and 2 are elevational views showing respective embodiments of the fast breeder reactor according to the present invention, FIG. 3 is a system diagram showing an example in which the present invention is applied to a loop reactor, and FIG. 4 5 is an enlarged sectional view showing the heat transfer section of the heat exchanger in FIG. 2, and FIG. 6 is an elevational view showing a conventional fast breeder reactor. 2...Reactor vessel 2G...Reactor core 21...Flow mixer 22...Intermediate heat exchanger 23...Reactor upper structure 24...Hanging shell 26...Reflector drive mechanism 27 ... Electromagnetic pump 28 ... Cover gas 29 ... Control system 30 ... 1 Fire inlet 31 ... Primary outlet 32 ... Window 33 ... Central riser pipe 34 ... Annulus 41 ... ...Riser tube 42...Primary sodium window 43...Primary outlet 44...Inlet plenum 45...Heat transfer tube 46...Outlet plenum 50...Furnace piping 51...Outlet piping 52...Joint portion 53...Intermediate heat exchanger 54...Piping 55...Headers 56, 57...Piping 58...Down pipe 60...Heat transfer tube 61...Metal powder 62... Board (8733) Agent Patent Attorney Yoshiaki Inomata (and others)
1 person) $ 1 ↑ ↑ ↑ ↑ Tea diagram No. 2

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉容器と、この原子炉容器の外側から反射体
を上下に駆動させることによつて制御される炉心と、こ
の炉心の上方に配設した中間熱交換器とを備え、前記炉
心および中間熱交換器は前記原子炉容器上部構造から吊
胴によつて支持され、前記吊胴の外側にアニュラス部が
設けられてなることを特徴とする高速増殖炉。
(1) A reactor vessel, a reactor core that is controlled by driving a reflector up and down from the outside of the reactor vessel, and an intermediate heat exchanger disposed above this core; and a fast breeder reactor, wherein the intermediate heat exchanger is supported by a suspension shell from the reactor vessel upper structure, and an annulus portion is provided on the outside of the suspension shell.
(2)原子炉容器と、この原子炉容器の外側から反射体
を上下に駆動させることによって制御される炉心と、前
記原子炉容器の外側に熱交換器とを備え、前記熱交換器
は伝熱管内に冷却材が流れ該伝熱管外に金属粒子が充填
され、前記各々の伝熱管と伝熱管を板で連結してなるこ
とを特徴とする高速増殖炉。
(2) A reactor vessel, a reactor core controlled by driving a reflector up and down from outside the reactor vessel, and a heat exchanger outside the reactor vessel, the heat exchanger being a heat exchanger. A fast breeder reactor characterized in that a coolant flows inside the heat transfer tubes, metal particles are filled outside the heat transfer tubes, and each of the heat transfer tubes is connected by a plate.
JP1008625A 1989-01-19 1989-01-19 Fast breeder reactor Pending JPH02222861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008625A JPH02222861A (en) 1989-01-19 1989-01-19 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008625A JPH02222861A (en) 1989-01-19 1989-01-19 Fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH02222861A true JPH02222861A (en) 1990-09-05

Family

ID=11698133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008625A Pending JPH02222861A (en) 1989-01-19 1989-01-19 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH02222861A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552979A (en) * 1991-08-29 1993-03-02 Toshiba Corp Small-sized fast breeder reactor
US5196159A (en) * 1990-07-24 1993-03-23 Kabushiki Kaisha Toshiba Fast reactor
CN110211709A (en) * 2019-06-14 2019-09-06 北京卫星环境工程研究所 Heat pipe-type alkali metal converts integral reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196159A (en) * 1990-07-24 1993-03-23 Kabushiki Kaisha Toshiba Fast reactor
JPH0552979A (en) * 1991-08-29 1993-03-02 Toshiba Corp Small-sized fast breeder reactor
CN110211709A (en) * 2019-06-14 2019-09-06 北京卫星环境工程研究所 Heat pipe-type alkali metal converts integral reactor
CN110211709B (en) * 2019-06-14 2020-08-11 北京卫星环境工程研究所 Heat pipe type alkali metal conversion integrated reactor

Similar Documents

Publication Publication Date Title
US4235284A (en) Heat exchanger with auxiliary cooling system
US4246069A (en) Heat-generating nuclear reactor
JPH02222861A (en) Fast breeder reactor
US4713214A (en) Device for purifying liquid metal coolant for a fast neutron nuclear reactor
RU2733900C1 (en) Fast liquid-salt reactor
JPS59135397A (en) Secondary heat transfer circuit for liquid metal reactor
US4585058A (en) Heat exchanger having a bundle of straight tubes
JPH0618685A (en) Fast breeder
JP2835161B2 (en) Fast breeder reactor
JP2915469B2 (en) Liquid metal cooled reactor cooling system
JPS633292A (en) Fast breeder reactor
JPH04110694A (en) Fast breeder reactor
JPS63241380A (en) Nuclear reactor
JPS59131801A (en) Secondary heat transmission circuit for liquid metal nuclearreactor
JPH06160561A (en) Fast breeder reactor
JPH02234097A (en) Tank type fast breeder reactor
JP2539405B2 (en) Liquid metal cooling heat exchanger
JP2508538Y2 (en) Fast breeder reactor cooling unit
JPS5935782A (en) Heat exchanger for fast nuclear reactor
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor
JPH0427518B2 (en)
JPH0631820B2 (en) Heat exchanger for fast breeder reactor
JPS63284489A (en) Tank type fast breeder
JPH0558155B2 (en)
JPH02128192A (en) Decentralized nuclear reactor