JPH02220431A - Formation of semiconductor substrate - Google Patents

Formation of semiconductor substrate

Info

Publication number
JPH02220431A
JPH02220431A JP3927789A JP3927789A JPH02220431A JP H02220431 A JPH02220431 A JP H02220431A JP 3927789 A JP3927789 A JP 3927789A JP 3927789 A JP3927789 A JP 3927789A JP H02220431 A JPH02220431 A JP H02220431A
Authority
JP
Japan
Prior art keywords
gaas
substrate
silicide
single crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3927789A
Other languages
Japanese (ja)
Inventor
Tagahiko Ohara
大原 多賀彦
Hiroshi Okamoto
浩 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3927789A priority Critical patent/JPH02220431A/en
Publication of JPH02220431A publication Critical patent/JPH02220431A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a warp of a silicon substrate by forming the thin layer of a silicide on the rear which faces the surface of a single crystal silicon substrate and forming a III-V compound semiconductor single crystal epitaxial layer on the surface of the single crystal silicon substrate. CONSTITUTION:A thin layer 2 of a silicide, a compound which is formed by combining a metal having a high melting point with silicon is formed on the rear facing the surface of a single crystal silicon substrate 1 that forms an epitaxial layer. After that, a III-V compound semiconductor single crystal epitaxial layer 3b is formed on the surface of the single silicon substrate 1. Consequently, the growth of the GaAs epitaxial layer 3b on the surface of a wafer 1 allows a warp caused by the GaAs layer 3b to be cancelled by the warp made in the opposite direction by the silicide layer 2. An epitaxial wafer having a flat III-V compound semiconductor epitaxial layer 3b on its surface is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶シリコン基板上にm−v族化合物半導
体、特にGaAs半導体、の単結晶エピタキシャル層を
形成してなる半導体基板の形成法に係り、半導体基板と
しての反りを低減させることを図った半導体基板形成法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a semiconductor substrate in which a single crystal epitaxial layer of an m-v group compound semiconductor, particularly a GaAs semiconductor, is formed on a single crystal silicon substrate. The present invention relates to a method for forming a semiconductor substrate that is intended to reduce warpage as a semiconductor substrate.

〔従来の技術〕[Conventional technology]

一般に、GaAsなどの■−■族化合物半導体はその優
れた特徴を活かして高機能、高性能な半導体装置に利用
されている。しかしながら、化合物半導体結晶は一般に
高価であり、また、大面積の高品質基板結晶が得にくい
などの問題がある。これに対処して、安価で良質軽量な
シリコン(Si)を基板とし、このSi基板上に半導体
装置を構成するための化合物半導体層を積層する方法が
幾つか提案されており(例えば、 (i)R,P。
In general, ■-■ group compound semiconductors such as GaAs are utilized in highly functional and high-performance semiconductor devices by taking advantage of their excellent characteristics. However, compound semiconductor crystals are generally expensive, and there are also problems such as difficulty in obtaining large-area, high-quality substrate crystals. To deal with this, several methods have been proposed in which cheap, high-quality, lightweight silicon (Si) is used as a substrate, and compound semiconductor layers are stacked on this Si substrate to form a semiconductor device (for example, (i )R,P.

Ga1e、J、C,C,Fan、B、Y、Tsaur、
G、W。
Ga1e, J., C.C., Fan, B.Y., Tsaur;
G.W.

Turner、 and F、M、 Davis、 I
 EEE  Elect−ron Device Le
tt、 、 (アイ・イーφイー・イーエレクトロンデ
バイス レター)EDL−2,169(1981); 
  (■)  M、  Akiyama、  Y、  
Kawarada。
Turner, and F. M., Davis, I.
EEE Elect-ron Device Le
tt, , (IEφE Electron Device Letter) EDL-2, 169 (1981);
(■) M, Akiyama, Y,
Kawarada.

and K、 Kaminishi、 Jpn、 J 
= Appl、 Phys。
and K, Kaminishi, Jpn, J.
= Appl, Phys.

(日本応用物理学会誌)、 23 L843 (198
4) ;  (ui)W、 I 、 Wang、 Ap
pl、 Phys、 Lett、 (応用物理学レター
) 44.1149 (1984)などを 参照)、S
i基板上に比較的良質の化合物半導体結晶膜が形成され
るようになりつつある。
(Journal of the Japanese Society of Applied Physics), 23 L843 (198
4) ; (ui) W, I, Wang, Ap
pl, Phys, Lett, (Applied Physics Letters) 44.1149 (1984), etc.), S.
Comparatively high quality compound semiconductor crystal films are being formed on i-substrates.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Si基板上にm−v族化合物半導体層を積層して半導体
基板とする場合、G a A s成長層には。
When a semiconductor substrate is obtained by laminating an m-v group compound semiconductor layer on a Si substrate, the Ga As growth layer has the following characteristics.

Si基板との熱膨張係数差に起因する引っ張り応力が作
用して、Si基板上にGaAsを成長させたエピタキシ
ャル・ウェハに反りを生じさせるという問題が残されて
いる。例えば、厚さ280μmのSi基板上にGaAs
エピタキシャル層を約4μm成長させた場合、直径2吋
の基板でもウェハ中央が下に凸に約50μmはど反るこ
とが知られている(第3図)。
There remains the problem that tensile stress due to the difference in thermal expansion coefficient with the Si substrate acts on the epitaxial wafer, causing warpage in the epitaxial wafer in which GaAs is grown on the Si substrate. For example, GaAs is deposited on a 280 μm thick Si substrate.
It is known that when an epitaxial layer is grown to about 4 .mu.m, the center of the wafer will warp downward by about 50 .mu.m even on a 2 inch diameter substrate (FIG. 3).

この大きな反りはSi基板上に成長したGaAs層を利
用して半導体装置を製造しようとするとき、特に写真製
版工程などで問題となり、製造歩留りを大きく低下させ
るなどの問題がある。また、このGaAs/Si基板を
宇宙用太陽電池に応用しようとする場合、太陽電池の単
位重量当たりの発生電力(重量能率)が問題となる。重
量能率を充分に高めるためには、Si基板の厚さを少な
くとも100μm以下にする必要があるが、この場合に
はウェハの反りはますます大きくなり、太陽電池製作工
程中のカバーガラス接着工程や、アセンブリの際の溶接
工程で困難を生じさせ、またセルの割れが生じたり、著
しい歩留りの低下が起こり、高性能な宇宙用太陽電池の
製造が困蔑になるという問題がある。
This large warpage becomes a problem when attempting to manufacture a semiconductor device using a GaAs layer grown on a Si substrate, especially in a photolithography process, and causes problems such as a significant decrease in manufacturing yield. Furthermore, when applying this GaAs/Si substrate to a space solar cell, the power generated per unit weight of the solar cell (weight efficiency) becomes a problem. In order to sufficiently increase weight efficiency, it is necessary to reduce the thickness of the Si substrate to at least 100 μm or less, but in this case, the wafer warpage becomes even greater, and the cover glass bonding process during the solar cell manufacturing process and This poses a problem in that it causes difficulty in the welding process during assembly, causes cell cracking, and significantly reduces yield, making it difficult to manufacture high-performance space solar cells.

本発明の目的は、従来技術での上記問題点を解決し、G
aAs/Siのエピタキシャル・ウェハの反りを低減し
、大型GaAs/Siウェハを用いた各種半導体装置の
製造工程での作業を容易にし、製造歩留りを向上させる
ことのできる半導体基板形成法を提供するにある。
The purpose of the present invention is to solve the above-mentioned problems in the prior art, and
To provide a semiconductor substrate forming method capable of reducing warpage of aAs/Si epitaxial wafers, facilitating work in the manufacturing process of various semiconductor devices using large GaAs/Si wafers, and improving manufacturing yield. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、単結晶シリコン基板上にm−v族化合物半
導体単結晶エピタキシャル層を形成してなる半導体基板
の形成方法において、(イ)まず、上記エピタキシャル
層を形成しようとする単結晶シリコン基板の表面に対し
て向き合う裏面上に、高融点金属とシリコンとの化合物
であるシリサイドの薄層を形成する工程と、(ロ)しか
る後、単結晶シリコン基板の表面上にm−v族化合物半
導体単結晶エピタキシャル層を形成する工程とを含む形
成方法とすることにより、達成される。
The above object is to provide a method for forming a semiconductor substrate by forming an m-v group compound semiconductor single crystal epitaxial layer on a single crystal silicon substrate. (b) forming a thin layer of silicide, which is a compound of a high melting point metal and silicon, on the back surface facing the front surface; This can be achieved by using a formation method including a step of forming a crystalline epitaxial layer.

(作用〕 シリサイドの熱膨張係数は、その組成、堆積温度、焼成
温度等により異なるが、一般にシリコンより大きく、そ
のためシリサイド層には引っ張り応力が作用し、第4図
に示すように、シリサイド膜2を内側にして、Si基板
1を上に凸に反らせる。そのため、裏面にシリサイド層
を形成しておいたウェハの表面上にGaAsエピタキシ
ャル層を成長させたエピタキシャル・ウェハでは、シリ
サイド層による反対方向の反りにより、GaAs層によ
る反りを打ち消すことが可能となる。よって、第2図に
示すように、平坦な■−■族化合物半導体エピタキシャ
ル層3bを表面上に有するエピタキシャル・ウェハが実
現できる。
(Function) The coefficient of thermal expansion of silicide varies depending on its composition, deposition temperature, firing temperature, etc., but is generally larger than that of silicon. Therefore, tensile stress acts on the silicide layer, and as shown in FIG. The Si substrate 1 is curved upward in a convex manner, with the silicide layer on the inside.For this reason, in an epitaxial wafer in which a GaAs epitaxial layer is grown on the front surface of a wafer on which a silicide layer has been formed on the back surface, the silicide layer causes the Si substrate 1 to curve in the opposite direction. The warpage makes it possible to cancel out the warpage caused by the GaAs layer.Therefore, as shown in FIG. 2, an epitaxial wafer having a flat 1-2 group compound semiconductor epitaxial layer 3b on its surface can be realized.

シリサイドは、集積回路の電極、配線材料として使われ
ることからも分かるように、極めて低抵抗で安定な材料
であり、したがって、シリサイド層2は、そのまま半導
体装置の裏面電極材料として使用できる。
As can be seen from the fact that silicide is used as an electrode and wiring material in integrated circuits, it is a stable material with extremely low resistance. Therefore, the silicide layer 2 can be used as is as a back electrode material of a semiconductor device.

シリサイド層に生じる引っ張り応力は、シリサイド材料
、付着時の基板温度、その後の熱処理温度、シリサイド
層の厚さ等により広範囲に選べるので、GaAs膜のエ
ピタキシャル条件、デバイス製造条件等に応じて最適化
が可能で、製造工程上の自由度が高い。
The tensile stress generated in the silicide layer can be selected over a wide range depending on the silicide material, the substrate temperature at the time of deposition, the subsequent heat treatment temperature, the thickness of the silicide layer, etc., so it can be optimized depending on the epitaxial conditions of the GaAs film, device manufacturing conditions, etc. possible, with a high degree of freedom in the manufacturing process.

シリサイド生成時の高温熱処理(シンター)の際に体積
収縮を起こし、シリサイドにはやはり張力型の内部応力
が生じる。この内部応力は高温でも保持されており、こ
のためSi基板はGaAs成長時でも上に凸に(GaA
sを成長させる面を外側に)曲がる。したがってGaA
sを成長させる表面のSiの格子定数は広げられ、Ga
Asの格子不定数により近くなり、従来、81基板上に
直接GaAsを成長させた場合に格子不整合が原因でS
iとG a A sの界面に発生していた転位などの結
晶欠陥の低減にも効果があり、より高品質のGaAsエ
ピタキシャル結晶が形成出来る。
Volumetric contraction occurs during high-temperature heat treatment (sintering) during silicide formation, and tension-type internal stress is also generated in the silicide. This internal stress is maintained even at high temperatures, and as a result, the Si substrate becomes convex upward even during GaAs growth (GaAs
Bend the surface on which you want to grow s outward). Therefore, GaA
The lattice constant of Si on the surface growing s is broadened, and Ga
This is closer to the lattice mismatch of As, and conventionally, when GaAs was grown directly on an 81 substrate, S
It is also effective in reducing crystal defects such as dislocations occurring at the interface between i and GaAs, and higher quality GaAs epitaxial crystals can be formed.

〔実施例〕〔Example〕

以下1図面を参照して、代表的な■−■化合物半導体で
あるGaAsを用いた場合の本発明の一実施例を説明す
る。
An embodiment of the present invention using GaAs, which is a typical ■-■ compound semiconductor, will be described below with reference to one drawing.

第1図は本発明による半導体基板の形成法の工程を説明
する図面である。面方位(100)、厚さ200μmの
Si基板を適当な治具に固定し、スパッタ装置内に設置
し、基板温度を200℃に加熱する。
FIG. 1 is a diagram illustrating the steps of a method for forming a semiconductor substrate according to the present invention. A Si substrate with a surface orientation of (100) and a thickness of 200 μm is fixed to a suitable jig, placed in a sputtering apparatus, and the substrate temperature is heated to 200° C.

その後例えばターゲツト材にTiSi、を用いSi基板
上に約2μm堆積する。その際にGaAsを成長させよ
うとする面にシリサイドが付着しないようにすることが
必要である1例えばG a A sを成長させようとす
る面を適当な治具で覆うとか、表面に比較的薄い酸化膜
や、あるいは耐熱性の高い樹脂等のコーティングとかの
保護膜を形成して、シリサイド膜堆積後保護膜を除去す
るなどの方法が可能である。なお、シリサイド堆積後の
Si基板1は、シリサイド膜2を低温で堆積し、かつシ
ンターを行っていないので、第1図(a)に示すように
ほぼ平坦なままである。
Thereafter, for example, TiSi is used as a target material and is deposited to a thickness of about 2 μm on the Si substrate. At that time, it is necessary to prevent silicide from adhering to the surface on which GaAs is to be grown.1 For example, by covering the surface on which GaAs is to be grown with a suitable jig, or by It is possible to form a protective film such as a thin oxide film or a coating of a highly heat-resistant resin, and then remove the protective film after depositing the silicide film. Note that the Si substrate 1 after silicide deposition remains substantially flat as shown in FIG. 1(a) because the silicide film 2 was deposited at a low temperature and no sintering was performed.

この基板を洗浄し、MOCVD炉内に設置し、900℃
以上の温度で水素雰囲気中で10分ないし30分の熱処
理を行い、GaAs成長面の清浄化処理を行う、基板温
度を約400℃に下げ非晶質状態のGaAsを約10n
m堆積させる。高温での表面清浄処理化の際に堆積され
たシリサイドはシンターされて体積収縮を起こし、さら
に非晶質GaAsの成長時には約500℃の温度差での
Siとシリサイドとの熱膨張係数の違いにより、シリサ
イドには張力型の内部応力が生じる。この内部応力のた
めSi基板は第1図(b)に示すように非晶質GaAs
13aの成長時にはやや上に凸に(GaAsを成長させ
る面を外側に)曲がる。
This substrate was cleaned, placed in an MOCVD furnace, and heated to 900°C.
Heat treatment is performed for 10 to 30 minutes in a hydrogen atmosphere at the above temperature to clean the GaAs growth surface.The substrate temperature is lowered to about 400°C and about 10 nm of amorphous GaAs is removed.
Deposit m. The silicide deposited during surface cleaning treatment at high temperatures is sintered and causes volume contraction, and when growing amorphous GaAs, the difference in thermal expansion coefficient between Si and silicide due to a temperature difference of approximately 500°C , tension-type internal stress occurs in silicide. Due to this internal stress, the Si substrate becomes amorphous GaAs as shown in Figure 1(b).
When growing 13a, it curves slightly upward (with the surface on which GaAs is grown outward).

次に基板温度を750℃に上げ通常のGaAsのエピタ
キシャル成長を行う、この成長温度下では。
Next, the substrate temperature is raised to 750° C. and normal GaAs epitaxial growth is performed at this growth temperature.

シリサイドのシンター時の温度との差が小さいため、熱
膨張係数差によるシリサイドの内部応力は減少し、Si
基板の反りは減少しているものの、やや上に凸の反りを
残している〔第1図(c))。
Since the difference between the temperature of the silicide and the temperature during sintering is small, the internal stress of the silicide due to the difference in thermal expansion coefficient is reduced, and the Si
Although the warpage of the substrate has been reduced, a slightly upwardly convex warp remains [Fig. 1(c)].

また、GaAs成長のための昇温過程、およびエピタキ
シャル成長の初期において非晶質GaAsは単結晶化す
る。
Furthermore, amorphous GaAs becomes single crystal during the temperature raising process for GaAs growth and in the initial stage of epitaxial growth.

上記工程で2インチSi基板にGaAsを約5μm成長
させたエピタキシャル・ウェハの場合でも、ウェハの中
央での反りは±10μm以下が得られ、反りが緩和され
ることが確認された。また、シリサイドの比抵抗も約2
0μΩ1以下と低く充分電極として使用可能である6 なお、Si基板厚、GaAs膜厚が上記実施例と異なる
場合には、その反り量を打ち消すようにシリサイドの膜
厚、組成比、形成温度などを調整すれば、反りの無い基
板を実現出来る。
Even in the case of an epitaxial wafer in which approximately 5 μm of GaAs was grown on a 2-inch Si substrate in the above process, the warpage at the center of the wafer was less than ±10 μm, and it was confirmed that the warp was alleviated. Also, the specific resistance of silicide is about 2
It has a low value of 0 μΩ or less and can be used as an electrode. 6 If the Si substrate thickness and GaAs film thickness are different from those in the above example, the silicide film thickness, composition ratio, formation temperature, etc. may be adjusted to cancel the amount of warpage. By making adjustments, it is possible to create a board without warping.

また、GaAsのエピタキシャル成長時にウェハはG 
a A s成長面を上にやや反った状態となっている。
Also, during epitaxial growth of GaAs, the wafer is
a As s The growth surface is slightly curved upward.

これはSiの格子定数を広げることになりGaAsとS
iとの格子不整合を緩和する上で有利である。これは、
Si基板上のGaAsエピタキシャル結晶の結晶性向上
に寄与する。
This broadens the lattice constant of Si, which leads to the increase in GaAs and S.
This is advantageous in alleviating the lattice mismatch with i. this is,
Contributes to improving the crystallinity of GaAs epitaxial crystals on Si substrates.

また本発明により形成した半導体基板は、GaAsのエ
ピタキシャル成長後に裏面のシリサイド膜を除去しても
、裏面にシリサイド膜を形成せずにGaAsをエピタキ
シャル成長させた半導体基板よりも反りが少ないことが
確認された。これはGaAs成長中の温度のもとてシリ
サイド膜から受ける応力を緩和するような塑性変形をし
たものと考えられる。
Furthermore, it was confirmed that the semiconductor substrate formed according to the present invention has less warpage even if the silicide film on the back surface is removed after epitaxial growth of GaAs than a semiconductor substrate in which GaAs is epitaxially grown without forming a silicide film on the back surface. . This is considered to be due to plastic deformation that relieves the stress received from the silicide film due to the temperature during GaAs growth.

シリサイドの材料としては、Ti以外にも種々の高融点
金属1例えばZr、V、Ta、Mo、W+Co、Ir等
が使用可能である。また、シリサイドの形成法もここで
述べた以外に、例えばSiと高融点金属とを同時または
交互に蒸着あるいはスパッタにより形成する方法、Si
基板上に高融点金属を堆積し、高温処理によりSiと高
融点金属とを反応させシリサイドを形成する方法等が、
使用するSi基板の厚さ、後の化合物半導体結晶膜の形
成工程、半導体装置の製造工程に応じて選ぶことが可能
である。
As the silicide material, other than Ti, various high melting point metals 1 such as Zr, V, Ta, Mo, W+Co, Ir, etc. can be used. In addition to the methods described here, there are also methods for forming silicide, such as a method of forming Si and a high-melting point metal simultaneously or alternately by vapor deposition or sputtering,
Methods include depositing a high melting point metal on a substrate and causing Si to react with the high melting point metal through high temperature treatment to form silicide.
It can be selected depending on the thickness of the Si substrate used, the subsequent formation process of the compound semiconductor crystal film, and the manufacturing process of the semiconductor device.

〔発明の効果〕〔Effect of the invention〕

以上にように1本発明によれば1反りを有しないm−v
族化合物半導体単結晶エピタキシャル層をSi基板表面
上に有する半導体基板を経済的に製作することができ、
かつ、大型GaAs/Siウェハを用いた各種半導体装
置の製造工程での作業を容易にし、製造歩留りを向上さ
せることができる。
As described above, according to the present invention, m-v having no warpage
A semiconductor substrate having a group compound semiconductor single crystal epitaxial layer on the surface of a Si substrate can be manufactured economically,
In addition, it is possible to facilitate operations in the manufacturing process of various semiconductor devices using large GaAs/Si wafers and improve manufacturing yields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するウェハ断面を示す
図で、(a)はSiウェハの裏面にシリサイド膜を堆積
した状態のウェハ、(b)はこのウェハ表面上にGaA
sをエピタキシャル成長させた状態のウェハ、(c)は
GaAs成長後の室温でのウェハの断面を示す図、第2
図は本発明の一実施例の半導体基板形成法を採用して得
られる半導体基板の構造を説明するウェハ断面を示す図
、第3図は従来技術を説明するために示したウェハ断面
図、第4図はウェハ裏面にシリサイド膜を堆積し。 シンターしたウェハの室温での断面を示す図である。 符号の説明 1・・・Si基板 2・・・シリサイド膜 3a・・・非晶質GaAs層 3b・・・GaAsエピタキシャル層
FIG. 1 is a cross-sectional view of a wafer explaining an embodiment of the present invention, in which (a) is a wafer with a silicide film deposited on the back surface of the Si wafer, and (b) is a wafer with a GaA film deposited on the front surface of the wafer.
(c) is a cross-sectional view of the wafer at room temperature after GaAs growth;
3 is a wafer cross-sectional view for explaining the structure of a semiconductor substrate obtained by employing the semiconductor substrate forming method of one embodiment of the present invention; FIG. 3 is a wafer cross-sectional view for explaining the prior art; Figure 4 shows a silicide film deposited on the backside of the wafer. FIG. 3 is a diagram showing a cross section of a sintered wafer at room temperature. Explanation of symbols 1...Si substrate 2...Silicide film 3a...Amorphous GaAs layer 3b...GaAs epitaxial layer

Claims (1)

【特許請求の範囲】[Claims] 1、単結晶シリコン基板上にIII−V族化合物半導体単
結晶エピタキシャル層を形成してなる半導体基板の形成
法において、(イ)上記エピタキシャル層を形成しよう
とする単結晶シリコン基板の表面に対して向き合う裏面
上に、高融点金属とシリコンとの化合物であるシリサイ
ドの薄層を形成する工程と、(ロ)しかる後、単結晶シ
リコン基板の表面上にIII−V族化合物半導体単結晶エ
ピタキシャル層を形成する工程とを含むことを特徴とす
る半導体基板の形成法。
1. In a method for forming a semiconductor substrate in which a III-V group compound semiconductor single crystal epitaxial layer is formed on a single crystal silicon substrate, (a) on the surface of the single crystal silicon substrate on which the epitaxial layer is to be formed; A step of forming a thin layer of silicide, which is a compound of a high melting point metal and silicon, on the opposing back surfaces, and (b) thereafter, forming a III-V group compound semiconductor single crystal epitaxial layer on the surface of the single crystal silicon substrate. 1. A method for forming a semiconductor substrate, the method comprising: forming a semiconductor substrate.
JP3927789A 1989-02-21 1989-02-21 Formation of semiconductor substrate Pending JPH02220431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3927789A JPH02220431A (en) 1989-02-21 1989-02-21 Formation of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3927789A JPH02220431A (en) 1989-02-21 1989-02-21 Formation of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH02220431A true JPH02220431A (en) 1990-09-03

Family

ID=12548673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3927789A Pending JPH02220431A (en) 1989-02-21 1989-02-21 Formation of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH02220431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295889A (en) * 2008-06-06 2009-12-17 Sumco Corp Curvature deciding method of semiconductor wafer and manufacturing method of wafer with film
JP2020181965A (en) * 2019-04-26 2020-11-05 富士電機株式会社 Method for manufacturing semiconductor substrate, and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295889A (en) * 2008-06-06 2009-12-17 Sumco Corp Curvature deciding method of semiconductor wafer and manufacturing method of wafer with film
JP2020181965A (en) * 2019-04-26 2020-11-05 富士電機株式会社 Method for manufacturing semiconductor substrate, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
TWI736554B (en) Manufacturing method of SiC composite substrate
JPS5983997A (en) Formation of hetero structure containing epitaxial multi-component material
JP2004331453A (en) Group iii-v compound crystal and its producing method
JPH0948694A (en) Method for forming diamond single crystal film
US5364468A (en) Method for the growth of epitaxial metal-insulator-metal-semiconductor structures
US5753040A (en) Method for the growth of epitaxial metal-insulator-metal-semiconductor structures
JP2003218031A (en) Method of manufacturing semiconductor wafer
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JPH02220431A (en) Formation of semiconductor substrate
TW200907124A (en) Method for forming group-III nitride semiconductor epilayer on silicon substrate
JP4559586B2 (en) Single crystal thin film material
JP3779831B2 (en) Method of crystal growth of nitride III-V compound semiconductor and laminated structure of semiconductor obtained by the method
JPH04298020A (en) Manufacture of silicon thin film crystal
JP3551106B2 (en) Method for producing single crystal SiC
WO2020175971A1 (en) High purity piezoelectric thin film and method of manufacturing element using same thin film
KR102556712B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
JP3133136B2 (en) Manufacturing method of ternary compound semiconductor thin film
JP2580143B2 (en) Method for manufacturing article having heteroepitaxial structure
JPS63236308A (en) Method for growing compound semiconductor
KR102227213B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
TWI844930B (en) Bonded substrate and method of manufacturing the same
WO2023037838A1 (en) Method for manufacturing nitride semiconductor substrate
KR102315908B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
JP2001064096A (en) SINGLE CRYSTAL SiC COMPOSITE MATERIAL FOR PRODUCING SEMICONDUCTOR DEVICE AND ITS PRODUCTION
JP2001244199A (en) METHOD OF FORMING beta-IRON SILICIDE LAYER