JPH02219234A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02219234A
JPH02219234A JP3973189A JP3973189A JPH02219234A JP H02219234 A JPH02219234 A JP H02219234A JP 3973189 A JP3973189 A JP 3973189A JP 3973189 A JP3973189 A JP 3973189A JP H02219234 A JPH02219234 A JP H02219234A
Authority
JP
Japan
Prior art keywords
emitter
collector
sigex
base
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3973189A
Other languages
Japanese (ja)
Inventor
Takeshi Takaishi
高石 武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3973189A priority Critical patent/JPH02219234A/en
Publication of JPH02219234A publication Critical patent/JPH02219234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To realize high speed operation by forming a base layer composed of second conductivity type compound SiGex (0<x<10) composed of silicon Si and germanium Ge, on an emitter region composed of first conductivity type single crystal silicon, and forming a collector composed of first conductivity type SiGex on the base layer. CONSTITUTION:On an emitter layer 102 of an N-type single crystal silicon film epitaxially grown on a silicon substrate 101, a base layer 103 of P-type polycrystalline SiGex (0<x<10) composed of silicon Si and germanium Ge doped with high concentration is formed by plasma CVD method, and then an insulating layer 105 is formed on the surface. After a window for forming an emitter is opened in the insulating layer 105, a collector layer 104 of N-type polycrystalline SiGex is formed by the same way se the base layer; a collector is formed by etching; a collector electrode 106, a base electrode 107, and an emitter electrode 108 are formed. Thereby a circuit of high speed and high performance can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特に電流増幅率が高く、高
速性に優れたベテロ接合を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a betero junction with a high current amplification factor and excellent high speed performance.

〔従来の技術〕[Conventional technology]

トランジスタにおいて、近年ますますその高速性が要求
され、ベース領域よりもバンドギャップの広いエミツタ
層を有するいわゆるヘテロ接合トランジスタが注目され
ている。
2. Description of the Related Art In recent years, there has been an increasing demand for high-speed transistors, and so-called heterojunction transistors having an emitter layer with a wider bandgap than a base region are attracting attention.

このトランジスタは、npn型で考えると、ベースから
エミッタへ注入される正孔が価電子帯の大きな障壁によ
ってブロックされ、そのためエミッタの注入効率が高く
なる。また、ベース不純物濃度を高くすることができる
ので、ベース抵抗を低減でき、高速化することができる
Considering this transistor as an npn type transistor, holes injected from the base to the emitter are blocked by a large barrier in the valence band, so that the emitter injection efficiency becomes high. Furthermore, since the base impurity concentration can be increased, the base resistance can be reduced and the speed can be increased.

従来、ヘテロ接合トランジスタはGaAsを中心とする
化合物半導体で構成されているが、コストが高く、製造
技術が不完全なことから、工業生産性は低く普及にはも
う一歩である。
Conventionally, heterojunction transistors have been made of compound semiconductors mainly made of GaAs, but their industrial productivity is low due to their high cost and imperfect manufacturing technology, making it difficult for them to become widespread.

これに対して、最近シリコンを母体とするヘテロ接合ト
ランジスタの研究が盛んになってきている。第4図はへ
テロ接合の格子定数の違いを小さくするためにエミッタ
403及び413に5iCy化合物(yの値がベース領
域402及び412から遠ざかるにつれて小さい)を用
いた例である。
In contrast, research on heterojunction transistors using silicon as a matrix has recently become active. FIG. 4 is an example in which a 5iCy compound (the value of y decreases as the distance from the base regions 402 and 412 increases) is used for the emitters 403 and 413 in order to reduce the difference in lattice constant of the heterojunction.

(特公昭59−10651)シリコンを母体とすること
によって現有の量産製造工程との適合性も良好であり、
また微細加工技術を適用し高速化等の性能向上が実現で
きる。
(Special Publication No. 59-10651) By using silicon as the base material, it is compatible with the existing mass production manufacturing process.
In addition, by applying microfabrication technology, performance improvements such as speeding up can be achieved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、シリコンのキャリア移動度はGaAs化合物に
比べて非常に小さいため、5iCyエミツタを用いただ
けでは十分な高速化とは言えない。
However, since the carrier mobility of silicon is much lower than that of GaAs compounds, it cannot be said that the use of a 5iCy emitter alone will achieve a sufficient speedup.

また、エミッタとベースの間のへテロ接合における格子
不整合が存在するために、接合界面におけるキャリアの
再結合による電流が無視できない。
Furthermore, since there is a lattice mismatch in the heterojunction between the emitter and the base, current due to carrier recombination at the junction interface cannot be ignored.

従って、理論から予測された電気特性を得ることができ
ない。加えて、5iCy化合物はキャリアの移動度が低
いために大きな寄生抵抗がついてしまい、高速動作は難
しい。
Therefore, the electrical properties predicted from theory cannot be obtained. In addition, 5iCy compounds have low carrier mobility and therefore have large parasitic resistance, making high-speed operation difficult.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、 (1)第一導電型の単結晶シリコンから成るエミッタ領
域上に、シリコンSiとゲルマニウムGeから成る第二
導電型の化合物SiGexから成るベース層を形成し、
さらにその上に第一導電型の化合物SiGexから成る
コレクタを形成することによって作製されることを特徴
とする。
The semiconductor device of the present invention includes: (1) forming a base layer made of a second conductivity type compound SiGex made of silicon Si and germanium Ge on an emitter region made of first conductivity type single crystal silicon;
Furthermore, it is characterized in that it is manufactured by forming a collector made of a first conductivity type compound SiGex thereon.

(2)第一項において、上記SiGexのXの値がエミ
ッタ領域から遠ざかるにつれて大きいことを特徴とする
(2) The first item is characterized in that the value of X of the SiGex increases as the distance from the emitter region increases.

〔実施例〕〔Example〕

第1図は本発明の半導体装置をnpn型へテロ接合トラ
ンジスタに応用した実施例を示す断面図である。101
は高濃度にドープしたn型シリコン基板、102はシリ
コン基板上にエピタキシャル成長させたn型単結晶シリ
コン膜によるエミツタ層である。102のエミツタ層上
に高濃度にドープしたp型の多結晶SiGexのベース
層103をプラズマCVD法によって形成した後、表面
に絶縁層105を形成する。絶縁N105にエミッタ形
成用の窓を開けた後、n型の多結晶SiGexのコレク
タ層104をベース層と同様の方法で形成し、コレクタ
をエツチングにより形成し、コレクタ電極106、ベー
ス電極107、エミッタ電極108を形成する。
FIG. 1 is a sectional view showing an embodiment in which the semiconductor device of the present invention is applied to an npn type heterojunction transistor. 101
102 is a heavily doped n-type silicon substrate, and 102 is an emitter layer made of an n-type single crystal silicon film epitaxially grown on the silicon substrate. After forming a base layer 103 of heavily doped p-type polycrystalline SiGex on the emitter layer 102 by plasma CVD, an insulating layer 105 is formed on the surface. After opening a window for emitter formation in the insulating N105, a collector layer 104 of n-type polycrystalline SiGex is formed in the same manner as the base layer, and the collector is formed by etching, and the collector electrode 106, base electrode 107, and emitter Electrode 108 is formed.

第2図(a)は第1図のへテロ接合トランジスタのバン
ド図である。ベース202及びコレクタ203のSiG
ex化合物のゲルマニウム混合比Xは第2図(b)のよ
うになっている。エミッタ・ベースのへテロ接合を傾斜
接合にするだけでなく、ベース領域のX値に傾斜をつけ
ることによってベースを走行する電子を加速し、トラン
ジスタの良好な高周波特性を得ることができる。ベース
°エミッタ部の格子整合のミスマツチを最小にするため
に、ベース層のコレクタ側の端で炭素混合比Xを0にす
るのが望ましい。また、ベース・コレクタ接合において
も同様の理由からX値を連続的に変化させるのが望まし
い。
FIG. 2(a) is a band diagram of the heterojunction transistor of FIG. 1. SiG of base 202 and collector 203
The germanium mixing ratio X of the ex compound is as shown in FIG. 2(b). In addition to making the emitter-base heterojunction a graded junction, by making the X value of the base region graded, electrons traveling through the base can be accelerated and good high-frequency characteristics of the transistor can be obtained. In order to minimize the lattice matching mismatch between the base and the emitter sections, it is desirable that the carbon mixing ratio X be zero at the collector end of the base layer. Furthermore, for the same reason, it is desirable to continuously change the X value in the base-collector junction.

ベース・エミツタ層は微結晶や非晶質のような非単結晶
SiGex化合物で良く、また、形成方法も減圧CVD
法、常圧CVD法、スパッタ法等でも良い。
The base/emitter layer may be made of a non-single crystal SiGex compound such as microcrystalline or amorphous, and the formation method is also low pressure CVD.
method, normal pressure CVD method, sputtering method, etc. may be used.

ベースに非晶質SiGex化合物を用いた場合には、エ
ミッタ側の端でX=Oとしてもエミッタ部とのバンドギ
ャップの大きさがかなり異なるが、ベース層を高濃度に
ドープすることによってバンドギャップが小さくなり、
ベース・エミッタ間のバンドの段差が緩和され、ベース
抵抗が下がることから高速化に良好な結果を示す。
When an amorphous SiGex compound is used as the base, the size of the band gap is quite different from that of the emitter even if X=O at the end of the emitter side, but by doping the base layer with a high concentration, the band gap can be increased. becomes smaller,
The step difference in the band between the base and emitter is alleviated and the base resistance is lowered, resulting in good results for speeding up.

第1図のように、基板側がエミッタである構造はECL
(Emitter  Coupled  Logic)
回路やCML(Current  M。
As shown in Figure 1, the structure where the emitter is on the substrate side is an ECL
(Emitter Coupled Logic)
Circuits and CML (Current M.

de  Logic)回路に好適である。第3図は本発
明を用いてCML回路を製作した実施例である。本発明
を用いることによって、従来よりも一層高速(高性能)
な回路を作製することが可能となる。
It is suitable for de Logic) circuits. FIG. 3 shows an example in which a CML circuit was manufactured using the present invention. By using the present invention, higher speed (higher performance) than before
This makes it possible to create a circuit with a wide range of functions.

また、絶縁基板もしくは絶縁層上に本発明の半導体装置
を形成することによって、液晶パネル等の画像デバイス
等、さらに多くのデバイスへの応用が可能となり、その
上三欣元デバイスへの応用も可能となる。絶縁基板もし
くは絶縁層上に本発明の半導体装置を形成する場合には
、先に述べた実施例(第1図)のようなコレクタトップ
型ばかりでなく、エミッタトップ型、さらには横型のバ
イポーラトランジスタの形成が可能となり、−層広い応
用が可能となる。
Furthermore, by forming the semiconductor device of the present invention on an insulating substrate or an insulating layer, it can be applied to many more devices such as image devices such as liquid crystal panels, and it can also be applied to three-dimensional devices. becomes. When forming the semiconductor device of the present invention on an insulating substrate or an insulating layer, it is possible to use not only a collector top type bipolar transistor as in the above-mentioned embodiment (FIG. 1), but also an emitter top type or even a lateral type bipolar transistor. This makes it possible to form a wide range of applications.

本発明の半導体装置と0M03回路を組合せることによ
って高性能BiCMO3()IBT−0MO8)回路を
作製することが可能である。その際に現有のシリコンプ
ロセス(加工、製膜等)が使えるのは大きな利点である
By combining the semiconductor device of the present invention and the 0M03 circuit, it is possible to fabricate a high performance BiCMO3()IBT-0MO8) circuit. A major advantage is that existing silicon processes (processing, film formation, etc.) can be used in this case.

以上、npn型のへテロ接合トランジスタの実施例を示
したが、pnp型のへテロ接合トランジスタに応用した
場合にも同様の効果が得られる。
Although an embodiment of an npn-type heterojunction transistor has been described above, similar effects can be obtained when applied to a pnp-type heterojunction transistor.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によるSiGexがら成る傾
斜ベース及びナロウギャップコレクタを有するヘテロ接
合バイポーラトランジスタにおいては、相対的ワイドギ
ャップなエミッタを有することから得られる高増幅率、
高速及び良好な高周波特性をさらに改善することが可能
となる。また、現有の量産製造コニ程との適合性も良好
である。
As described above, in the heterojunction bipolar transistor made of SiGex according to the present invention and having a sloped base and a narrow gap collector, a high amplification factor obtained by having a relatively wide gap emitter,
It becomes possible to further improve high speed and good high frequency characteristics. It is also highly compatible with existing mass-produced manufacturing processes.

SiGexはキャリア移動度が高く、格子定数もSiに
近い(x=9:  5iGe9で5.63人、Siで5
.431人)ので、5iCy (0<y<1)を用いた
場合より高性能なトランジスタを実現できる。
SiGex has high carrier mobility and a lattice constant close to Si (x = 9: 5.63 for 5iGe9, 5 for Si
.. 431 people), it is possible to realize a transistor with higher performance than when using 5iCy (0<y<1).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置を応用したnpn型トラン
ジスタの実施例を示す断面図。 第2図(a)は第1図の実施例におけるバンド図。第2
図(b)は第1図の実施例におけるゲルマニウム混合比
Xの値を示す図。 第3図は本発明の半導体装置を用いてCML回路を作製
した実施例を示す図。 第4図(a)は従来例を示す断面図。第4図(b)は従
来例のバンド図。 102・・・エミッタ 103・・・ベース 104・・・コレクタ 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 上柳雅誉 化1名 「 〜101 第1図 (b) 第4図
FIG. 1 is a sectional view showing an embodiment of an npn type transistor to which the semiconductor device of the present invention is applied. FIG. 2(a) is a band diagram in the embodiment of FIG. 1. Second
Figure (b) is a diagram showing the value of the germanium mixing ratio X in the embodiment of Figure 1. FIG. 3 is a diagram showing an example in which a CML circuit was manufactured using the semiconductor device of the present invention. FIG. 4(a) is a sectional view showing a conventional example. FIG. 4(b) is a band diagram of a conventional example. 102...Emitter 103...Base 104...Collector and above Applicant Seiko Epson Co., Ltd. Agent Patent attorney Masayoshi Ueyanagi 1 person ~101 Figure 1 (b) Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)第一導電型の単結晶シリコンから成るエミッタ領
域上に、シリコンSiとゲルマニウムGeから成る第二
導電型の化合物SiGe_x(0<x<10)から成る
ベース層を形成し、さらにその上に第一導電型の化合物
SiGe_xから成るコレクタを形成することによって
作製されることを特徴とする半導体装置。
(1) A base layer made of a second conductivity type compound SiGe_x (0<x<10) made of silicon Si and germanium Ge is formed on the emitter region made of single crystal silicon of the first conductivity type, and then A semiconductor device characterized in that it is manufactured by forming a collector made of a first conductivity type compound SiGe_x on a semiconductor device.
(2)上記SiGe_xのxの値がエミッタ領域から遠
ざかるにつれて大きいことを特徴とする請求項1記載の
半導体装置。
(2) The semiconductor device according to claim 1, wherein the value of x of the SiGe_x increases as the distance from the emitter region increases.
JP3973189A 1989-02-20 1989-02-20 Semiconductor device Pending JPH02219234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3973189A JPH02219234A (en) 1989-02-20 1989-02-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3973189A JPH02219234A (en) 1989-02-20 1989-02-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02219234A true JPH02219234A (en) 1990-08-31

Family

ID=12561118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3973189A Pending JPH02219234A (en) 1989-02-20 1989-02-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02219234A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177025A (en) * 1992-01-24 1993-01-05 Hewlett-Packard Company Method of fabricating an ultra-thin active region for high speed semiconductor devices
US6690068B2 (en) 2000-06-12 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors and semiconductor device
US6703265B2 (en) * 2000-08-02 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6787807B2 (en) 2000-06-19 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6828587B2 (en) 2000-06-19 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177025A (en) * 1992-01-24 1993-01-05 Hewlett-Packard Company Method of fabricating an ultra-thin active region for high speed semiconductor devices
US6690068B2 (en) 2000-06-12 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors and semiconductor device
US7307282B2 (en) 2000-06-12 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors and semiconductor device
US6787807B2 (en) 2000-06-19 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6828587B2 (en) 2000-06-19 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6956235B2 (en) 2000-06-19 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6703265B2 (en) * 2000-08-02 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7034337B2 (en) 2000-08-02 2006-04-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7368335B2 (en) 2000-08-02 2008-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2644022B2 (en) Heterojunction bipolar npn transistor
EP0541971B1 (en) A graded bandgap single-crystal emitter heterojunction bipolar transistor
US5426316A (en) Triple heterojunction bipolar transistor
EP0445475B1 (en) Heterojunction bipolar transistor
US5028973A (en) Bipolar transistor with high efficient emitter
CN108630748A (en) Whole plane Terahertz composite strain Si/SiGe heterojunction bipolar transistors and preparation method
JP2600485B2 (en) Semiconductor device
US6876060B2 (en) Complimentary bipolar transistor
JPH02219234A (en) Semiconductor device
JP2001068479A (en) Hetero-bipolar transistor and its manufacture
KR20050054976A (en) Bipolar transistor having a base region with a constant bandgap layer and a graded bandgap layer
CN109830528A (en) Germanium silicium HBT device and manufacturing method
Izawa et al. AlGaAs/GaAs heterojunction bipolar transistors
US11195940B2 (en) High-voltage terahertz strained SiGe/InGaP heterojunction bipolar transistor and preparation method thereof
JPH047096B2 (en)
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
US5315135A (en) Semiconductor device having I2 L gate with heterojunction
JP2801646B2 (en) Heterojunction bipolar transistor
US5523594A (en) Heterojunction bipolar transistor
JP3183882B2 (en) Heterojunction bipolar transistor
KR940010914B1 (en) Manufacturing method of si hetero-junction bipolar transistor using ge collector
JPH01296664A (en) Heterojunction type device
JPH03125476A (en) Hetero junction bipolar transistor
JPH02240932A (en) Manufacture of semiconductor device
JPH02170540A (en) Semiconductor device