JPH02219218A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH02219218A
JPH02219218A JP1041275A JP4127589A JPH02219218A JP H02219218 A JPH02219218 A JP H02219218A JP 1041275 A JP1041275 A JP 1041275A JP 4127589 A JP4127589 A JP 4127589A JP H02219218 A JPH02219218 A JP H02219218A
Authority
JP
Japan
Prior art keywords
auxiliary
plasma
thin film
magnetic field
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1041275A
Other languages
Japanese (ja)
Other versions
JP2732281B2 (en
Inventor
Kunimoto Ninomiya
国基 二宮
Masato Nishikuni
西国 昌人
Shinya Tsuda
津田 信哉
Shoichi Nakano
中野 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1041275A priority Critical patent/JP2732281B2/en
Publication of JPH02219218A publication Critical patent/JPH02219218A/en
Application granted granted Critical
Publication of JP2732281B2 publication Critical patent/JP2732281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enable a thin film to be formed with a uniform thickness by providing an auxiliary magnetic field creating means between anode and cathode and fluctuating a plasma by means of a auxiliary electric or magnetic field created thereby. CONSTITUTION:Voltages of opposite polarities are applied to auxiliary electrodes 6a and 6b, respectively, by an auxiliary power supply 7 constituting an auxiliary field creating means together with the auxiliary electrodes 6a and 6b arranged on the opposite sides between a cathode 1 and an anode 2, while the polarities of the voltages are reversed periodically. Thereby, an auxiliary electric field is produced between the auxiliary electrodes 6a and 6b in direction perpendicular to a high-frequency field, the direction of the auxiliary field being reversed periodically. A plasma between the cathode and anode 1 and 2 is fluctuated by this auxiliary field. Accordingly, a period of time for which a high density region of the plasma is in contact with a substrate 3 is made uniform and, therefore, ununiformity in distance between the substrate 3 and the plasma is eliminated. Accordingly to this method, a thin film having a uniform thickness can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池、薄膜トランジスタなどに用いる非
晶質半導体薄膜や絶縁体薄膜等の薄膜形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming thin films such as amorphous semiconductor thin films and insulator thin films used in solar cells, thin film transistors, and the like.

〔従来の技術〕[Conventional technology]

一般は、a −S iなどの非晶質半導体薄膜やsiN
Generally, amorphous semiconductor thin films such as a-Si and siN are used.
.

S i02などの絶縁体薄膜を形成する手法として、平
行平板型RFグロー放電によるプラズマCVD法がよく
知られているが、成膜速度の点において問題があるため
、例えば特開昭57−197875号公報(HOIL 
31104)に記載のように、RFグロー放電法に磁界
を併用したいわゆるマグネトロン放電法により、成膜速
度の向上を図ることが考えられている。
The plasma CVD method using parallel plate RF glow discharge is well known as a method for forming insulator thin films such as Si02, but it has problems in terms of film formation speed, so for example, Japanese Patent Laid-Open No. 197875/1983 Public bulletin (HOIL)
31104), it has been considered to improve the film forming rate by using a so-called magnetron discharge method in which a magnetic field is used in combination with an RF glow discharge method.

ところで、このマグネトロン放電法による薄膜形成は、
第10図に示すような装置により行われ、この装置は次
のように構成されている。
By the way, thin film formation using this magnetron discharge method is
This is carried out using an apparatus as shown in FIG. 10, and this apparatus is constructed as follows.

即ち、第10図において、(1) 、 (2)は反応ガ
スが供給された図外の反応チャンバ内に平行に配設され
た平・板状のカソード電極及びアノード電極(以下単に
カソード(1)、アノード(2)という)、(3)はア
ノード(2)に取り付けられた薄膜形成用基板、(4)
は高周波電源であり、一方の出方端子がアノード(2)
とともにアースされ、他方の出力端子がカソード(1)
に接続されている。
That is, in FIG. 10, (1) and (2) are flat/plate-shaped cathode electrodes and anode electrodes (hereinafter simply referred to as cathodes (1) ), anode (2)), (3) a thin film forming substrate attached to the anode (2), (4)
is a high frequency power supply, and one output terminal is an anode (2)
and the other output terminal is the cathode (1).
It is connected to the.

(5a)、 (5b)は円環状磁石及び円柱状磁石であ
り、カソード(1)の下側に設けられ、両磁石(5a)
 。
(5a) and (5b) are annular magnets and cylindrical magnets, which are provided below the cathode (1), and both magnets (5a)
.

(5b)の形成磁界により、反応ガスのプラズマがカソ
ード(1ン、アノード(2)間に閉じ込められる。
The plasma of the reactant gas is confined between the cathode (1) and the anode (2) by the magnetic field formed in (5b).

そして、電源(4)による高周波電圧がカソード(1)
、アノード(2)間に印加され、反応チャンバ内に供給
された反応ガスがグロー放電によりプラズマ化され、基
板(3)上にプラズマ化した反応ガス成分が堆積し、基
板(3)上に薄膜が形成される。
Then, the high frequency voltage from the power supply (4) is applied to the cathode (1).
The reaction gas applied between the anodes (2) and supplied into the reaction chamber is turned into plasma by glow discharge, and the plasmanized reaction gas components are deposited on the substrate (3), forming a thin film on the substrate (3). is formed.

このとき、磁石(5a)、(5b)の形成磁界によって
プラズマを閉じ込めることができるため、プラズマの高
密度化が図れ、従来のRFグロー放電法よりも成膜速度
を向上することができる。
At this time, since the plasma can be confined by the magnetic fields formed by the magnets (5a) and (5b), the density of the plasma can be increased, and the film formation rate can be improved compared to the conventional RF glow discharge method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の場合、第10図中の矢印に示すような磁界によっ
てプラズマが閉じ込められるため、断面的に2個のプラ
ズマの瘤が生じ、閉じ込められたプラズマと基板(3)
との距離が均一(こならず、基板(3)上に形成される
薄膜の膜厚が均一にならないという問題点がある。
In the conventional case, since the plasma is confined by the magnetic field as shown by the arrow in Fig. 10, two lumps of plasma are generated in the cross section, and the trapped plasma and the substrate (3)
There is a problem that the distance between the substrate (3) is not uniform, and the thickness of the thin film formed on the substrate (3) is not uniform.

本発明は、前記の点に留意してなされ、形成される薄膜
の膜厚を均一にできるようにすることを目的とする。
The present invention has been made with the above points in mind, and an object of the present invention is to make it possible to make the thickness of the formed thin film uniform.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、平板状のカソード電極及び
アノード電極を平行に配設し、前記アノード電極に薄膜
形成用基板を取り付け、前記両電極間(こ高周波電界を
形成して該高周波電界により反応ガスのプラズマを生成
し、前記カソード電極の外側に設けた磁石の形成磁界に
より前記プラズマを前記両電極間に閉じ込め、前記基板
上をこプラズマ化した前記反応ガス成分からなる薄膜を
形成する薄膜形成方法において、本発明では、前記両電
極間に補助電界又は補助磁界を形成する形成手段を設け
、前記補助電界又は補助磁界により前記プラズマを揺動
することを特徴としている。
In order to achieve the above object, a flat cathode electrode and an anode electrode are arranged in parallel, a thin film forming substrate is attached to the anode electrode, and a high frequency electric field is formed between the two electrodes. A thin film that generates a plasma of a reactive gas, confines the plasma between the two electrodes by a magnetic field formed by a magnet provided outside the cathode electrode, and forms a thin film of the reactive gas component turned into plasma on the substrate. In the forming method of the present invention, a forming means for forming an auxiliary electric field or an auxiliary magnetic field is provided between the two electrodes, and the plasma is oscillated by the auxiliary electric field or the auxiliary magnetic field.

〔作用〕[Effect]

以上のような構成において、形成手段による補助電界又
は補助磁界により、両電極間に閉じ込められたプラズマ
を揺動するため、プラズマの高密度領域が基板に接する
時間が均一化され、基板とプラズマとの距離の不均一性
が解消され、形成される薄膜の膜厚の均一化が図れる。
In the above configuration, since the plasma confined between the two electrodes is oscillated by the auxiliary electric field or auxiliary magnetic field produced by the forming means, the time during which the high-density region of the plasma is in contact with the substrate is made uniform, and the interaction between the substrate and the plasma is made uniform. This eliminates the non-uniformity of the distance between the two, and the thickness of the formed thin film can be made uniform.

〔実施例〕〔Example〕

実施例について第1図ないし第9図を参照して説明する
Examples will be described with reference to FIGS. 1 to 9.

(実施例1) 実施例1について第1図ないし第4図を参照して説明す
る。
(Example 1) Example 1 will be described with reference to FIGS. 1 to 4.

形成装置の概略を示す第1図において、第10図と同一
記号は同−若しくは相当するものを示し、(6a)、(
6b)は平板状の補助電極であり、カソード(1)、ア
ノード(2)間の両側部にそれぞれ配設され、両補助電
極(6a)、(6b)とともに形成手段を構成する補助
電源(7)により、両補助電極(6a)、(6b)に周
期的(こ極性反転する互いに逆極性の電圧が印加され、
両補助電極(6a)、(6b)間に高周波電界に直交す
る方向で、かつ周期的に向きの反転する補助電界が形成
され、この補助電界によりカソード(1ン。
In FIG. 1 showing the outline of the forming apparatus, the same symbols as in FIG. 10 indicate the same or equivalent ones, and (6a), (
6b) is a flat plate-shaped auxiliary electrode, which is disposed on both sides between the cathode (1) and the anode (2), and is connected to an auxiliary power source (7) that constitutes a forming means together with both auxiliary electrodes (6a) and (6b). ), voltages of mutually opposite polarity are periodically applied to both the auxiliary electrodes (6a) and (6b).
An auxiliary electric field is formed between the two auxiliary electrodes (6a) and (6b) in a direction perpendicular to the high-frequency electric field and whose direction is periodically reversed.

アノード(2)間のプラズマが揺動される。The plasma between the anodes (2) is oscillated.

そして、磁石(5a)、(5b)による静磁界によって
閉じ込められたプラズマをこのように揺動することによ
り、プラズマの高密度領域の基板(3)に接する時間が
均一化されるため、基板(3)とプラズマとの距離の不
均一性が解消され、基板(3)上に形成される薄膜の膜
厚の均一化を図ることができる。
By oscillating the plasma confined by the static magnetic field of the magnets (5a) and (5b) in this way, the time in which the plasma is in contact with the substrate (3) in the high-density region is equalized, so that the plasma ( The non-uniformity in the distance between the substrate (3) and the plasma is eliminated, and the thickness of the thin film formed on the substrate (3) can be made uniform.

ところで、補助電極(6a)、(6b)に印加する交流
電圧及びその周波数の最適条件を求めるために、電圧及
び周波数それぞれと膜厚のばらつきとの関係を調べたと
ころ、それぞれ第2図及び第3図に示すようになり、膜
厚のばらつきが5%までを均一性良好とすると、第2図
から補助電極(6a)、(6b)に印加する交流電圧の
最適条件は50V〜500■であり、第3図からその周
波数の最適条件は0−5Hz〜500KHzであること
がわかる。
By the way, in order to find the optimal conditions for the AC voltage and its frequency to be applied to the auxiliary electrodes (6a) and (6b), we investigated the relationship between the voltage and frequency, and the variation in film thickness. As shown in Figure 3, if the film thickness variation is 5% or less, good uniformity is considered, then from Figure 2, the optimal conditions for the AC voltage applied to the auxiliary electrodes (6a) and (6b) are 50V to 500V. It can be seen from FIG. 3 that the optimum frequency condition is 0-5 Hz to 500 KHz.

このとき、印加電圧が50V以下ではプラズマが十分に
揺動しないため、膜厚の不均一性が解消されるには至ら
ず、500V以上の場合には、補助電極(6a)、(6
b)とカソード(1)、アノード(2)或いは反応チャ
ンバとの間で異常放電が生じるため、膜厚のばらつきが
大きくなる。
At this time, if the applied voltage is less than 50V, the plasma will not oscillate sufficiently, so the non-uniformity of the film thickness will not be eliminated.If the applied voltage is more than 500V, the auxiliary electrodes (6a), (6
Since abnormal discharge occurs between b) and the cathode (1), the anode (2), or the reaction chamber, variations in film thickness become large.

一方、周波数が0.5Hz以下ではやはりプラズマの揺
動が不十分であり、500KHz以上の場合にはプラズ
マが追従して揺動できなくなる。
On the other hand, if the frequency is 0.5 Hz or less, the plasma oscillation is still insufficient, and if the frequency is 500 KHz or more, the plasma follows and becomes unable to oscillate.

従って、補助電源(7)により両補助電極(6a)、(
6b)に、周波数0.5Hz〜500KHz ”’Q 
、 50V〜500V (7)交流電圧を印加すればよ
い。
Therefore, both auxiliary electrodes (6a), (
6b), frequency 0.5Hz ~ 500KHz "'Q
, 50V to 500V (7) AC voltage may be applied.

つぎに、補助電極(6a)、(6b)にそれぞれ第4図
(a)、Φ)に示すような波形の電圧を印加して形成し
たa −S iの薄膜と、従来法により形成したa−8
iの薄膜との膜厚の分布の比較を行ったところ、第5図
に示すようになり、同図中の実線が形成手段によ゛る補
助電界がある場合、破線が従来法の場合をそれぞれ示し
ており、同図の結果から、従来法による薄膜の膜厚のば
らつきがほぼ±20%であるのに対し、補助電界による
プラズマの揺動によって膜厚のばらつきは約±2.5%
まで抑制され、極めて均一性の高い薄膜が得られること
がわかる。
Next, a thin film of a-Si was formed by applying a voltage with a waveform as shown in FIG. 4(a) and Φ) to the auxiliary electrodes (6a) and (6b), respectively, and a -8
A comparison of the film thickness distribution with the thin film of i was made as shown in Figure 5, where the solid line indicates the case where there is an auxiliary electric field due to the forming means, and the broken line indicates the case with the conventional method. From the results shown in the figure, the variation in film thickness of the thin film by the conventional method is approximately ±20%, whereas the variation in film thickness due to the fluctuation of the plasma due to the auxiliary electric field is approximately ±2.5%.
It can be seen that a thin film with extremely high uniformity can be obtained.

なお、第5図の横軸はカソード(υの一端を基準とした
ときの距離を表わしており、ここで従来法と共通する薄
膜形成条件は、基板温度200C,RFパワー100W
、圧力Oa ITorr 、 SiH4ガス流量2゜S
CCM 、磁石(5a)、(5b)の最大磁界強度15
0Gaussである。
The horizontal axis in Fig. 5 represents the distance from one end of the cathode (υ), and the thin film forming conditions common to the conventional method are a substrate temperature of 200 C and an RF power of 100 W.
, pressure Oa ITorr, SiH4 gas flow rate 2°S
CCM, maximum magnetic field strength of magnets (5a), (5b) 15
It is 0 Gauss.

このように、実施例1によると、補助電源(7)にヨリ
両補助電極(6a)、(6b) ニ周波数0 、5Hz
〜500KHz、 50V〜500V(7)交流電圧を
印加し、カソード(1)。
In this way, according to the first embodiment, both the auxiliary electrodes (6a) and (6b) are connected to the auxiliary power source (7) at two frequencies of 0 and 5Hz.
~500KHz, 50V~500V (7) Apply AC voltage to the cathode (1).

アノード(2)間に補助電界を形成し、この補助電界に
よりプラズマを揺動するため、基板(3)とプラズマと
の距離の不均一性を解消することができ、基板(3)上
に極めて膜厚の均一な薄膜を形成することができる。
Since an auxiliary electric field is formed between the anodes (2) and the plasma is oscillated by this auxiliary electric field, it is possible to eliminate unevenness in the distance between the substrate (3) and the plasma. A thin film with uniform thickness can be formed.

(実施例2及び実施例3) つぎに、実施例2及び実施例3について第6図及び第7
図をそれぞれ参照して説明する。
(Example 2 and Example 3) Next, regarding Example 2 and Example 3, FIGS.
This will be explained with reference to the figures.

実施例2として、第1図の補助電極(6a)、 (6b
)に代え、第6図に示すようなメツシュ電極(8a)。
As Example 2, the auxiliary electrodes (6a) and (6b
), a mesh electrode (8a) as shown in FIG.

(8b)を設けてもよく、実施例3として、第7図(こ
示すように複数個の小さな電極素体(9)により補助電
極(10a) 、 (10b)をそれぞれ構成してもよ
く、いずれも実施例1と同等の効果を得ることができ、
適宜補助電極の形状を選択すればよい。
(8b) may be provided, and as a third embodiment, the auxiliary electrodes (10a) and (10b) may each be configured by a plurality of small electrode bodies (9) as shown in FIG. In either case, the same effect as in Example 1 can be obtained,
The shape of the auxiliary electrode may be selected as appropriate.

(実施例4) さら【こ、実施例4について第8図及び第9図を参照し
て説明する。
(Example 4) Example 4 will be described with reference to FIGS. 8 and 9.

第8図において、第1図と同一記号は同−若しくは相当
するものを示し、(Lla)、(llb)はカソード(
1ン、アノード(2)間の左側に設けられた互いに逆極
性の2個の第1の電磁石、(12a)、 (12b)は
カソード(1)、アノード(2)間の右側に設けられた
互いに逆極性の2個の第2の電磁石であり、図外の電源
により、第1の電磁石(Lla)、(llb)と第2の
電磁石(12a)、(12b)とが交互に通電され、カ
ソード(1)、アノード(2)間に第1の電磁石(Ll
a)、(1lb)による補助磁界及び第2の電磁石(1
2a) 、(12b)による補助磁界が交互に形成され
る。
In FIG. 8, the same symbols as in FIG. 1 indicate the same or equivalent ones, and (Lla) and (llb) are the cathode (
Two first electromagnets (12a) and (12b) of opposite polarity are installed on the left side between the cathode (1) and the anode (2). The first electromagnets (Lla), (llb) and the second electromagnets (12a), (12b) are alternately energized by a power supply not shown, which are two second electromagnets with opposite polarities. A first electromagnet (Ll) is placed between the cathode (1) and anode (2).
a), an auxiliary magnetic field by (1lb) and a second electromagnet (1lb)
2a) and (12b) are formed alternately.

このとき、第8図において、補助磁界の紙面に垂直な方
向への幅が少なくともカソード(1)、アノード(2)
の幅と同程度になるように、各電磁石(lla)、(l
lb)、(12a)、(12b)の形状等を設定してお
く。
At this time, in FIG. 8, the width of the auxiliary magnetic field in the direction perpendicular to the paper surface is at least at the cathode (1) and the anode (2).
The width of each electromagnet (lla), (l
lb), (12a), and (12b) are set in advance.

そして、第8図に示すように、第1の電磁石(1la)
 、 (itb )が通電されて図示のような補助磁界
Baが形成されると、磁石(5a)、(5b)にょる主
磁界Bmによって閉じ込められたプラズマが補助磁界B
aに引き寄せられ、プラズマが左側へ移動スル。
Then, as shown in FIG. 8, the first electromagnet (1la)
, (itb) is energized to form an auxiliary magnetic field Ba as shown in the figure, the plasma confined by the main magnetic field Bm of the magnets (5a) and (5b) is energized by the auxiliary magnetic field B.
Attracted by a, the plasma moves to the left.

つぎに、第2の電磁石(12a)、(12b)が通電さ
れて同様の補助磁界Bbが形成されると、プラズマが補
助磁界Bbに引き寄せられ、プラズマが右側へ移動し、
これらの繰り返しによってプラズマが左右方向に揺動す
る。
Next, when the second electromagnets (12a) and (12b) are energized and a similar auxiliary magnetic field Bb is formed, the plasma is attracted to the auxiliary magnetic field Bb, and the plasma moves to the right.
These repetitions cause the plasma to oscillate in the left and right directions.

その結果、実施例1と同様に、基板(3)とプラズマと
の距離の不均一性を解消することができ、基板(3)上
の薄膜の膜厚の均一化を図ることができる。
As a result, as in Example 1, non-uniformity in the distance between the substrate (3) and the plasma can be eliminated, and the thickness of the thin film on the substrate (3) can be made uniform.

ところで、第1及び第2の電磁石(1la)、(1lb
)、(12a)、(12b)による補助磁界の磁界強度
の最適条件を求めるために、磁界強度と膜厚のばらつき
との関係を調べたところ第9図に示すようになり、膜厚
のばらつきが5%までを均一性良好とすると、第9図か
ら補助磁界の磁界強度の最適条件は5゜G aus s
以上であることがわかる。
By the way, the first and second electromagnets (1la), (1lb
), (12a), and (12b), we investigated the relationship between magnetic field strength and film thickness variation, and found that the relationship between magnetic field strength and film thickness variation is as shown in Figure 9. Assuming that the uniformity is good up to 5%, the optimum condition for the magnetic field strength of the auxiliary magnetic field is 5° Gauss from Fig. 9.
It turns out that this is all.

一方、第1の電磁石(lla)、(llb)と第2の電
磁石(12a) 、 (12b)の切り換え周波数と膜
厚のばらつきの関係についても調べたところ、前記した
第8図と同様の結果となり、0.5Hz〜500KHz
の周波数が適当であることがわかった。
On the other hand, we also investigated the relationship between the switching frequency and film thickness variations of the first electromagnets (lla), (llb) and the second electromagnets (12a), (12b), and the results were similar to those shown in Fig. 8 above. So, 0.5Hz ~ 500KHz
The frequency was found to be appropriate.

なお、複数個の電磁石素体をカソード(υ、アノード(
2)の幅と同程度にわたって所定間隔で配列し、各電磁
石(lla)、(llb)、(12a)、(12b)そ
れぞれを形成してもよい。
In addition, multiple electromagnetic elements are connected to the cathode (υ) and the anode (
The electromagnets (lla), (llb), (12a), and (12b) may be formed by arranging the electromagnets at predetermined intervals over the same width as 2).

また、形成手段の構成は、前記各実施例に限るものでな
いのは勿論である。
Furthermore, it goes without saying that the configuration of the forming means is not limited to those of the embodiments described above.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

形成手段による補助′直昇又は補助磁界により、カソー
ド電極、アノード電極間に閉じ込められたプラズマを揺
動するため、基板とプラズマとの距離の不均一性が解消
され、従来よりも膜厚の均一な薄膜を形成することがで
きる。
Since the plasma confined between the cathode and anode electrodes is oscillated by the auxiliary direct rise or auxiliary magnetic field provided by the forming means, unevenness in the distance between the substrate and the plasma is eliminated, resulting in a more uniform film thickness than before. A thin film can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第9図は本発明の薄膜形成方法の実施例を
示し、第1図ないし第5図は実施例1を示し、第1図は
概略図、第2図及び第3図は補助電極への印加電圧及び
その周波数それぞれと膜厚のばらつきとの関係図、第4
 r (a) 、 (b)は補助電極への印加電圧の波
形図、第5図は基板上の薄膜の膜厚分布を示す図、第6
図及び第7図はそれぞれ実施例2及び3の概略図、第8
図及び第9図は実施例4の形成装置の概略図及び磁界強
度と膜厚のばらつきとの関係図、第10図は従来例の概
略図である。 (1)−・・カソード電極、(2)・・・アノード電極
、(3)・・・薄膜形成用基板、(5a ) 、 (5
b )−磁石、(6a)、(6b)。 (10a)、(10b)−補助電極、(7)・・・補助
電源、(8a)、 (8b)・・・メツシュ電極、(t
ta)、(ttb)・・・第1の電磁石、(12a)、
(12b)−第2の電磁石。
1 to 9 show examples of the thin film forming method of the present invention, FIGS. 1 to 5 show Example 1, FIG. 1 is a schematic diagram, and FIGS. 2 and 3 are auxiliary diagrams. Relationship diagram between the voltage applied to the electrode, each of its frequencies, and the variation in film thickness, 4th
r (a) and (b) are waveform diagrams of the voltage applied to the auxiliary electrode, Figure 5 is a diagram showing the film thickness distribution of the thin film on the substrate, and Figure 6 is a diagram showing the thickness distribution of the thin film on the substrate.
7 and 7 are schematic diagrams of Examples 2 and 3, respectively.
9 and 9 are a schematic diagram of the forming apparatus of Example 4 and a diagram of the relationship between magnetic field strength and film thickness variation, and FIG. 10 is a schematic diagram of a conventional example. (1) - Cathode electrode, (2) Anode electrode, (3) Thin film forming substrate, (5a), (5
b) - magnets, (6a), (6b). (10a), (10b) - auxiliary electrode, (7)... auxiliary power supply, (8a), (8b)... mesh electrode, (t
ta), (ttb)...first electromagnet, (12a),
(12b) - Second electromagnet.

Claims (1)

【特許請求の範囲】[Claims] 1平板状のカソード電極及びアノード電極を平行に配設
し、前記アノード電極に薄膜形成用基板を取り付け、前
記両電極間に高周波電界を形成して該高周波電界により
反応ガスのプラズマを生成し、前記カソード電極の外側
に設けた磁石の形成磁界により前記プラズマを前記両電
極間に閉じ込め、前記基板上にプラズマ化した前記反応
ガス成分からなる薄膜を形成する薄膜形成方法において
、前記両電極間に補助電界又は補助磁界を形成する形成
手段を設け、前記補助電界又は補助磁界により前記プラ
ズマを揺動することを特徴とする薄膜形成方法。
1. A flat cathode electrode and an anode electrode are arranged in parallel, a thin film forming substrate is attached to the anode electrode, a high frequency electric field is formed between the two electrodes, and a plasma of a reactive gas is generated by the high frequency electric field, In the thin film forming method, the plasma is confined between the two electrodes by a forming magnetic field of a magnet provided outside the cathode electrode, and a thin film made of the reactant gas component turned into plasma is formed on the substrate. A method for forming a thin film, characterized in that a forming means for forming an auxiliary electric field or an auxiliary magnetic field is provided, and the plasma is oscillated by the auxiliary electric field or the auxiliary magnetic field.
JP1041275A 1989-02-20 1989-02-20 Thin film formation method Expired - Fee Related JP2732281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041275A JP2732281B2 (en) 1989-02-20 1989-02-20 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041275A JP2732281B2 (en) 1989-02-20 1989-02-20 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH02219218A true JPH02219218A (en) 1990-08-31
JP2732281B2 JP2732281B2 (en) 1998-03-25

Family

ID=12603895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041275A Expired - Fee Related JP2732281B2 (en) 1989-02-20 1989-02-20 Thin film formation method

Country Status (1)

Country Link
JP (1) JP2732281B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055768A (en) * 2001-06-07 2003-02-26 Ulvac Japan Ltd Film deposition method and film deposition apparatus
JP2008527634A (en) * 2004-12-30 2008-07-24 ラム リサーチ コーポレーション Electrically enhance plasma confinement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105420B1 (en) * 2010-02-03 2012-01-17 성균관대학교산학협력단 Apparatus and method for treating substrate using plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055768A (en) * 2001-06-07 2003-02-26 Ulvac Japan Ltd Film deposition method and film deposition apparatus
JP2008527634A (en) * 2004-12-30 2008-07-24 ラム リサーチ コーポレーション Electrically enhance plasma confinement

Also Published As

Publication number Publication date
JP2732281B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
KR100436072B1 (en) Device for Fabricating Film for Plasma-Forming Thin Film
EP0824604B1 (en) Apparatus for reducing arcing during sputtering
KR101164047B1 (en) Sputtering apparatus
TWI550118B (en) Magnetron sputtering device, magnetron sputtering device control method and film forming method
US20080317965A1 (en) Plasma processing apparatus and method
US20140220361A1 (en) Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10559452B2 (en) Plasma device driven by multiple-phase alternating or pulsed electrical current
JPWO2005121394A1 (en) Magnetron sputtering method and magnetron sputtering apparatus
EP2368257A2 (en) Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith
JPH05148644A (en) Sputtering apparatus
CN110050325B (en) Sputter deposition source, sputter deposition apparatus having the same, and method of depositing a layer on a substrate
JP2785442B2 (en) Plasma CVD equipment
US20110247995A1 (en) Dry etching method and dry etching apparatus
US20150214010A1 (en) Plasma enhanced chemical vapor deposition device
JPH02219218A (en) Formation of thin film
JP2004115841A (en) Magnetron sputtering electrode, film deposition system, and film deposition method
JPH09217171A (en) Manufacture of ito transparent conductive film
JPH03162583A (en) Vacuum process device
JPS62170475A (en) Plasma treatment device
KR20110122456A (en) Apparatus and method for manufacturing liquid crystal display device
US20130213798A1 (en) Magnetron sputtering device, method for controlling magnetron sputtering device, and film forming method
JP2007162100A (en) Sputtering film deposition method
KR100911327B1 (en) Plasma generator
JPH07243039A (en) Dc-magnetron reactive sputtering method
JPH0425017A (en) Vacuum film formation equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees