JPH02219214A - Formation of soi film - Google Patents

Formation of soi film

Info

Publication number
JPH02219214A
JPH02219214A JP4127689A JP4127689A JPH02219214A JP H02219214 A JPH02219214 A JP H02219214A JP 4127689 A JP4127689 A JP 4127689A JP 4127689 A JP4127689 A JP 4127689A JP H02219214 A JPH02219214 A JP H02219214A
Authority
JP
Japan
Prior art keywords
film
thin film
exposed surface
amorphous silicon
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4127689A
Other languages
Japanese (ja)
Other versions
JP2762097B2 (en
Inventor
Kiyoshi Yoneda
清 米田
Junichi Sano
純一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1041276A priority Critical patent/JP2762097B2/en
Publication of JPH02219214A publication Critical patent/JPH02219214A/en
Application granted granted Critical
Publication of JP2762097B2 publication Critical patent/JP2762097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make it possible to produce an SOI film having desirable flatness by implanting inert dopant ions into the surface part of a first amorphous silicon (a-Si) thin film and thereafter converting the amorphous silicon thin film present over the exposed surface into monocrystals by vertical solid phase epitaxy (V-SPE) to provide a seed section. CONSTITUTION:An insulating film is formed on a monocrystal silicon substrate and a monocrystal silicon film is grown on the insulating film to provide an SOI(Silicon On Insulator) film. For this purpose, inert dopant ions can be implanted into the surface part of a first a-Si thin film 11 so that the surface of the film 11 is converted into microcrystals to suppress progress of V-SPE. Accordingly, the a-Si thin film 11 present over the exposed surface 10 may be converted into monocrystals by V-SPE to form a seed section 12 after that, without causing the seed section 12 to swell up. According to this method, the resulting SOI film has superior flatness and it becomes possible to produce a three-dimensional circuit element having a desirable laminated structure consisting or two or more layers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶シリコン基板とに絶縁膜を形成し、さ
らにこの絶縁膜上に単結晶シリコン膜を成長させてSO
I C5ilicon On In5ulator)膜
を形成するSOI膜の形成方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention involves forming an insulating film on a single-crystal silicon substrate, and further growing a single-crystal silicon film on this insulating film.
The present invention relates to a method for forming an SOI film for forming an IC5 silicon on injector film.

〔従来の技術〕[Conventional technology]

一般に、SOI膜は、集積回路の高速化、高密度化を図
れるだけでなく、ソフトエラーやラッチアップを防ぐこ
とが可能であり、信頼性の向上を図れるという優れた特
徴を有するため、集積回路。
In general, SOI films have excellent features such as not only increasing the speed and density of integrated circuits, but also preventing soft errors and latch-ups, and improving reliability. .

特に3次元回路素子の材料として注目され、近年盛んに
研究開発が進められている。
It has attracted particular attention as a material for three-dimensional circuit elements, and has been actively researched and developed in recent years.

ところで、このようなSOI膜を形成する技術として、
例えば結晶性絶縁膜上に単結晶シリコンを気相エピタキ
シャル成長させる方法やレーザアニルによる再結晶化法
或いは固相エピタキシャル成長(以下SPEという)法
などがあり、このうちSPE法は、比較的低温でSOI
膜の形成が可能であるため、3次元回路素子の形成技術
として研究が行われている。
By the way, as a technique for forming such an SOI film,
For example, there are methods such as vapor phase epitaxial growth of single crystal silicon on a crystalline insulating film, recrystallization method using laser annealing, and solid phase epitaxial growth (hereinafter referred to as SPE).
Since it is possible to form a film, research is being conducted as a technology for forming three-dimensional circuit elements.

そして、このSPE法によりSOX膜を形成する方法を
簡単に説明すると、単結晶シリコン基板(以下Si基板
という)上に絶縁膜として例えば酸化シリコン[510
2)膜を形成し、このS io2膜の一部を除去してS
i基板に露出面を形成し、5iOz膜上及びこの露出面
上に非晶質シリコン(以下a−5iという)薄膜を形成
したのち、約600℃でアニールし、露出面上では縦方
向の5PE(以下V−5PEという)。
To briefly explain the method of forming a SOX film by this SPE method, an insulating film is formed on a single crystal silicon substrate (hereinafter referred to as a Si substrate) using, for example, silicon oxide [510
2) Form a film and remove a part of this S io2 film to
After forming an exposed surface on the i-substrate and forming an amorphous silicon (hereinafter referred to as a-5i) thin film on the 5iOz film and this exposed surface, it is annealed at about 600°C, and 5PE is formed in the vertical direction on the exposed surface. (hereinafter referred to as V-5PE).

S i02膜上では横方向の5PE(以下L−3PEと
いう)により、a−3i薄膜を単結晶化し、SOX膜を
形成するものである。
On the Si02 film, the a-3i thin film is single crystallized by lateral 5PE (hereinafter referred to as L-3PE) to form a SOX film.

しかし、この場合、V−5PEがSi基板の露出面をシ
ートとして進行し、このときS ioz膜とSi基板の
露出面との段差が大きいため、この段差部分で残留応力
が発生し、S iOzとsl’の界面に歪が生じ、L−
3PEのファセットが形成されて成長が妨げられ、十分
なL−8PE距離が得られないという不都合が生じる。
However, in this case, V-5PE advances as a sheet on the exposed surface of the Si substrate, and at this time, since there is a large step difference between the SiOz film and the exposed surface of the Si substrate, residual stress is generated at this step portion, and the SiOz Strain occurs at the interface between and sl', and L-
The formation of 3PE facets impedes growth, resulting in the inconvenience that a sufficient L-8PE distance cannot be obtained.

そこで従来、このような不都合を解消する手法として、
81基板の露出面上に単結晶Siのシートを予め形成す
る方法が提案されており、この方法(こよるSOX膜の
形成は第4図に示す手順によってなされる。
Conventionally, as a method to resolve this inconvenience,
A method has been proposed in which a sheet of single-crystal Si is previously formed on the exposed surface of a 81 substrate, and this method (formation of the SOX film is performed by the procedure shown in FIG. 4).

即ち、第4図(a)に示すように、51基板ill上に
3102膜(2)をパターン形成し、Si基板f1+の
露出面(3)を形成し、同図(b)に示すように、51
02膜(2)上及び露出面(3)上にa−5i薄膜(4
)を形成し、同図(C)に示すように、1〜1.5時間
程度のアニールを行い、露出面(3)上のa−8i薄膜
(4)をV−3pF、により単結晶化してシート部(5
)を形成したのち、同図(d) iこ示すようにa−5
1薄膜(4)を選択エツチングにより除去する。
That is, as shown in FIG. 4(a), a 3102 film (2) is patterned on the 51 substrate ill to form the exposed surface (3) of the Si substrate f1+, and as shown in FIG. , 51
02 film (2) and the exposed surface (3).
), and as shown in the same figure (C), annealing was performed for about 1 to 1.5 hours, and the a-8i thin film (4) on the exposed surface (3) was made into a single crystal at V-3 pF. and the seat part (5
), then form a-5 as shown in Figure (d) i.
1 thin film (4) is removed by selective etching.

つぎに、第4図(e)に示すように、S iOz膜(2
)上及びシート部(5)上にa−5i薄膜(6)を形成
し、同図(f)に示すように、このa−5l薄膜(6)
に活性不純物であるリンCP) kイオン注入したのち
、同図(g)に示すように、アニールを行ってa−31
薄膜(6)をL−8PEにより単結晶化し、単結晶S1
薄膜(以下C−5l薄膜という) (6)’を形成し、
SOX膜を形成する。
Next, as shown in FIG. 4(e), a SiOz film (2
) and on the sheet part (5), and as shown in FIG.
After implanting phosphorus (CP)k ions, which are active impurities, into a-31, annealing is performed as shown in Figure (g).
The thin film (6) was single-crystalized using L-8PE to form a single crystal S1.
forming a thin film (hereinafter referred to as C-5l thin film) (6)';
Form a SOX film.

このように、Si基板(1)の露出面(3)上に予め単
結晶Siのシート部(5)を形成することによって、5
iOz膜(2)が数μmと厚い場合であっても、V−8
PE工程で従来のような残留応力が発生することがなく
、L−5PEのファセットの形成も抑えられ、L−5P
E距離の拡大を図ることができ、大面積のc−5i薄膜
(6)′を得ることが可能となる。
In this way, by forming the single crystal Si sheet portion (5) in advance on the exposed surface (3) of the Si substrate (1), the 5
Even if the iOz film (2) is several μm thick, V-8
There is no residual stress generated in the PE process, and the formation of facets on L-5PE is suppressed.
The E distance can be increased, and a c-5i thin film (6)' with a large area can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の場合、Si基板(1〕の露出面+31上のa−5
i薄膜(4)をV−5PHにより単結晶化してシート部
(5)を形成するため、シート部(5)のS iOz膜
(2)の段差部上に凸状の盛り上がりが生じ、この盛り
上がりによってSol膜の平坦性が損われ、積層構造の
3次元回路素子を作製する上で大きな支障となり、良好
な素子を作製することができないという問題点がある。
In the conventional case, a-5 on the exposed surface +31 of the Si substrate (1)
Since the i-thin film (4) is single-crystalized using V-5PH to form the sheet portion (5), a convex bulge is formed on the stepped portion of the SiOz film (2) in the sheet portion (5). This impairs the flatness of the Sol film, which becomes a major hindrance in producing a three-dimensional circuit element with a laminated structure, and there is a problem that a good element cannot be produced.

本発明は、前記の点に留意してなされ、平坦性の優れた
501膜を形成できるようにし、良好な3次元回路素子
の作製を可能にすることを目的とする。
The present invention has been made with the above points in mind, and an object of the present invention is to make it possible to form a 501 film with excellent flatness and to make it possible to manufacture a good three-dimensional circuit element.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明のSOX膜の形成方
法では、単結晶シリコン基板とに絶縁膜を形成し、前記
絶縁膜の一部を除去して前記基板に露出面を形成し、前
記絶縁膜上及び前記露出面上に第1の非晶質シリコン薄
膜を形成し、前記第1の非晶質シリコン薄膜の表層部に
アルゴン、ネオン、酸素、窒素などの不活性不純物をイ
オン注入したのち、前記露出面上の前記第1の非晶質シ
リコン薄膜を固相エピタキシャル成長法をこより単結晶
化し、前記露出面上に単結晶シリコンのシート部を形成
し、選択エツチングにより前記シート部を残して前記第
1の非晶質シリコン薄膜を除去し、前記絶縁膜上及び前
記シート部上に%2の非晶質シリコン薄膜を形成し、前
記第2の非晶質シリコン薄膜にリンをイオン注入したの
ち、前記第2の非晶質シリコン薄膜を固相エピタキシャ
ル成長法により単結晶化することを特徴としている。
In order to achieve the above object, in the method for forming an SOX film of the present invention, an insulating film is formed on a single crystal silicon substrate, a part of the insulating film is removed to form an exposed surface on the substrate, and the A first amorphous silicon thin film was formed on the insulating film and the exposed surface, and inert impurities such as argon, neon, oxygen, and nitrogen were ion-implanted into the surface layer of the first amorphous silicon thin film. Thereafter, the first amorphous silicon thin film on the exposed surface is made into a single crystal by solid phase epitaxial growth, a sheet portion of single crystal silicon is formed on the exposed surface, and the sheet portion is left by selective etching. %2 amorphous silicon thin film is formed on the insulating film and the sheet portion, and ion implantation of phosphorus into the second amorphous silicon thin film is performed. After that, the second amorphous silicon thin film is made into a single crystal by solid phase epitaxial growth.

〔作用〕[Effect]

以上のような構成において、第1の非晶質シリコン薄膜
の表層部にアルゴン、ネオン、酸素、窒素などの不活性
不純物をイオン注入したのち、露出面上の第1の非晶質
シリコン薄膜をV−3PEにより単結晶化してシート部
を形成したため、シト部に従来のような盛り上がりの生
じることが防止され、平坦性の優れたSOI膜が形成さ
れる。
In the above structure, after inert impurities such as argon, neon, oxygen, nitrogen, etc. are ion-implanted into the surface layer of the first amorphous silicon thin film, the first amorphous silicon thin film on the exposed surface is implanted. Since the sheet portion is formed by single crystallization using V-3PE, the formation of a bulge in the sheet portion as in the conventional case is prevented, and an SOI film with excellent flatness is formed.

ところで、非晶質シリコンに不活性不純物をイオン注入
すると、例えばJournal of Applied
Physics 、 Vol ・43 、 No −1
0,0ctorber 1977、P4241−424
6において、非晶質シリコンのアニールの際、再結晶化
率の抑制効果が得られることが報告され、Journa
l of Vacuum 5cience Techn
ology 、 1515)。
By the way, when inert impurities are ion-implanted into amorphous silicon, for example, Journal of Applied
Physics, Vol.43, No-1
0,0ctorber 1977, P4241-424
6, it was reported that the recrystallization rate could be suppressed during annealing of amorphous silicon, and Journal
l of Vacuum 5science Techn
ology, 1515).

5ept、10ct、 1978 、 P1656−1
661では、不活性不純物のイオン注入によって、a−
3lの注入領域中に気泡の存在が認められ、600°C
のアニールを行っても、注入領域中では約200大のS
iの微結晶粒の堆積が見られるだけで、再結晶化が強く
抑制されることが報告されている。
5ept, 10ct, 1978, P1656-1
In 661, a-
The presence of air bubbles was observed in the injection area of 3 liters, and the temperature at 600°C
Even after annealing, about 200 S
It has been reported that recrystallization is strongly suppressed when only the accumulation of microcrystalline grains of i is observed.

これらの結果から、不活性不純物のイオン注入によって
、第1の非晶質シリコン薄膜の表層部が微結晶化し、そ
の後アニールによって単結晶化しても、露出面上の第1
の非晶質シリコン薄膜の上方への単結晶化の進行が微結
晶の表層部によって抑えられるため、露出面上の単結晶
シリコンのシト部の盛り上がりの防止が可能となる。
From these results, even if the surface layer of the first amorphous silicon thin film is microcrystalized by ion implantation of inert impurities and then made into a single crystal by annealing, the first amorphous silicon thin film on the exposed surface is
Since the progress of single crystallization upward of the amorphous silicon thin film is suppressed by the microcrystalline surface layer, it is possible to prevent the swell of the single crystal silicon on the exposed surface.

〔実施例〕〔Example〕

実施例についてi1図ないし第3図を参照して説明する
An embodiment will be described with reference to FIGS. i1 to 3.

まず、第1図(a)に示すように、第4図の場合と同様
に、(100) Sl基板(7)上に、ウェット法によ
り絶縁膜としての厚さ1μmのS ioz膜(8)を形
成し、これを(100)方向にパターニングし、溝(9
)を形成して31基板(7)の露出面(10)を形成す
る。
First, as shown in FIG. 1(a), as in the case of FIG. 4, a 1 μm thick SiOZ film (8) as an insulating film is deposited on a (100) Sl substrate (7) by a wet method. is formed and patterned in the (100) direction to form a groove (9
) to form the exposed surface (10) of the 31 substrate (7).

つぎに、5 X 1O−7Torrの高真空中でsi基
板(7)ヲ800°Cに加熱し、1503CCM、分圧
55mTo r rのArガスを通流し、31基板(7
)に−50Vの直流バイアスをかけ、1 a、56 M
Hz s 70’Wの高周波を印加しテArイオンを生
成し、ArイオンのスパッタリングによりSi基板i7
) 、 5i02膜(8)の表面を5分間クリーニング
し、その後Arガス、高周波、直流バイアスを止め、S
i基板(7)を550°Cまで降温し、5iH4(モノ
シラン)ガスを200SCCMの流量で流し、第1図(
1))に示すように、5i02膜(8)上及び露出面皿
上に第1の非晶質シリコン薄膜(以下第1のa−3i薄
膜という)(11)を堆積形成する。
Next, the Si substrate (7) was heated to 800°C in a high vacuum of 5 x 10-7 Torr, and Ar gas of 1503 CCM and partial pressure of 55 mTorr was passed through it to form 31 substrates (7).
) with a DC bias of -50 V, 1 a, 56 M
A high frequency of Hz s 70'W is applied to generate TeAr ions, and the Si substrate i7 is sputtered by Ar ions.
), the surface of the 5i02 film (8) was cleaned for 5 minutes, then Ar gas, high frequency, and DC bias were stopped, and S
The temperature of the i-substrate (7) was lowered to 550°C, and 5iH4 (monosilane) gas was flowed at a flow rate of 200SCCM.
As shown in 1)), a first amorphous silicon thin film (hereinafter referred to as the first a-3i thin film) (11) is deposited on the 5i02 film (8) and the exposed surface plate.

なお、S iH4ガスの分圧を6”rorrとし、堆積
速度を200人/minで、1時間の堆積を行い、厚さ
1.2μmの第1のa−5i薄膜(1すを形成する。
Incidentally, the partial pressure of SiH4 gas was set to 6''rorr, and the deposition was performed for 1 hour at a deposition rate of 200 people/min to form the first a-5i thin film (1 layer) with a thickness of 1.2 μm.

そして、第1図(c)に示すように、第1のa−5i薄
膜(1りの表層部にArのイオン注入を行い、このとき
のイオン注入条件は、 ところで、Arイオンの注入深さは第2図に示すようを
こなり、ピーク濃度はほぼ3×1020(cln−3)
であり、第1のa−3i薄膜(II)の表面から約35
0OAの深さまでほぼ均一に注入されることがわかる。
Then, as shown in FIG. 1(c), Ar ions were implanted into the surface layer of the first a-5i thin film (1), and the ion implantation conditions at this time were as follows: is as shown in Figure 2, and the peak concentration is approximately 3 x 1020 (cln-3).
and about 35 mm from the surface of the first a-3i thin film (II)
It can be seen that the implantation is almost uniform to a depth of 0OA.

つぎに、Arイオンの注入後、N2雰囲気中において約
600°Cで2時間のアニールを行い、第1図(d)に
示すように、露出面(10)上の第1のa−8i薄膜(
11)をV−8PHにより単結晶化し、露出面(IO)
上に単結晶Siのシート部(12)を形成する。
Next, after implanting Ar ions, annealing is performed at approximately 600°C for 2 hours in a N2 atmosphere, and as shown in FIG. 1(d), the first a-8i thin film on the exposed surface (10) is (
11) was single-crystalized using V-8PH, and the exposed surface (IO)
A sheet portion (12) of single crystal Si is formed on top.

このとき、アニール時間とV−8PE距離との関係は第
3図(こ示すようになり、2時間のアニールで0.9μ
mのV−3PE距離が得られる。
At this time, the relationship between the annealing time and the V-8PE distance is shown in Figure 3 (shown here).
A V-3PE distance of m is obtained.

さらに、V−5PEの終了後、酢酸 フッ酸 硝酸、水
−160: 70 : 4.5 、10の割合のエツチ
ング液ヲ用い、約10分間のエツチングにより、第1図
(e)に示すように、S io2膜(8)上の第1のa
−5i薄膜(11)及びArイオン注注入−を除去し、
充分に洗浄したのち、同図(a)のArイオンのスパッ
タクリーニングと同じ条件でクリーニングを行い、その
後同図(f)に示すように、550°Cの基板温度で8
102膜(8)上及びシト部(12)上に厚さ3000
 ’hの第2の非晶質シリコン薄膜(以下第2のa−8
i薄膜という) (+3)を形成する。
Furthermore, after V-5PE was completed, etching was performed for about 10 minutes using an etching solution of acetic acid, hydrofluoric acid, nitric acid, and water in a ratio of 160:70:4.5 and 10, as shown in Figure 1(e). , the first a on the S io2 film (8)
-Remove the 5i thin film (11) and Ar ion implantation,
After thorough cleaning, cleaning was performed under the same conditions as the Ar ion sputter cleaning shown in (a) of the same figure, and then, as shown in (f) of the same figure, the substrate temperature was 850°C.
102 thickness on the membrane (8) and on the seat part (12)
'h second amorphous silicon thin film (hereinafter referred to as second a-8
(referred to as i thin film) (+3) is formed.

つぎに、第1図(g)に示すように、第2のと51薄膜
(13)に活性不純物であるPをイオン注入し、こので
あり、その後600℃でアニールを行い、同図(h)に
示すように、第2のa−8i薄膜θ3)をL−8PHに
より単結晶化して単結晶S1薄膜(以下c−3i薄膜と
いう) (14+を形成し、soi膜を形成する。
Next, as shown in FIG. 1(g), ions of P, which is an active impurity, are implanted into the second thin film (13), and then annealing is performed at 600°C. ), the second a-8i thin film θ3) is single crystallized by L-8PH to form a single crystal S1 thin film (hereinafter referred to as c-3i thin film) (14+) to form a soi film.

このように、第1のa−3i薄膜(11)の表層部に不
活性不純物をイオン注入することをこより、@1のa−
si薄膜(11)の表層部が微結晶化し、この表層部に
よってV−3PHの進行を抑えることができるため、そ
の後露出面(10)上の第1のa−8i薄膜(1りをV
−3PEにより単結晶化してシート部(12)を形成し
ても、シト部(12)に従来のような盛り上がりが生じ
ることを防止でき、従来より平坦性の優れたSOI膜を
形成することができ、2層以上の積層構造の良好な3次
元回路素子の作製が可能になる。
In this way, by ion-implanting inert impurities into the surface layer of the first a-3i thin film (11), the a-3i
The surface layer of the Si thin film (11) becomes microcrystalline, and this surface layer can suppress the progression of V-3PH.
-Even if the sheet portion (12) is formed by single crystallization using 3PE, it is possible to prevent the formation of a bulge in the sheet portion (12) as in the conventional method, and it is possible to form an SOI film with better flatness than in the past. This makes it possible to fabricate a three-dimensional circuit element with a good laminated structure of two or more layers.

また、露出面(10j上に予め平坦なシート部(12)
を形成するため、従来の場合と同様、残留応力の発生を
FJ止でき、L−3PEのファセットの形成を抑制でき
、L−5PE距離の拡大を図ることが可能となり、例え
ば1μmの厚さのS io2膜(8)上に形成したC−
3i薄膜(14)のL−3PE距離として、従来と同程
度の20μmを達成することができ、大面積のc−5i
薄膜(I4)の形成が可能となる。
In addition, a flat sheet portion (12) is provided on the exposed surface (10j).
As in the conventional case, it is possible to prevent the generation of residual stress in the FJ, suppress the formation of L-3PE facets, and increase the L-5PE distance. C- formed on the Sio2 film (8)
The L-3PE distance of the 3i thin film (14) can be achieved at 20 μm, which is similar to the conventional method, and the large area c-5i
Formation of a thin film (I4) becomes possible.

〔発明の効果〕〔Effect of the invention〕

本発明は、以北説明したように構成されているので、以
下に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

第1の非晶質シリコン薄膜の表層部にアルゴン。Argon is applied to the surface layer of the first amorphous silicon thin film.

ネオン、酸素、窒素などの不活性不純物をイオン注入し
たのち、露出面上の第1の非晶質シリコン薄膜をV−5
PEにより単結晶化してシート部を形成したため、シー
ト部(こ従来のような盛りとがりが生じることを防止で
き、平坦性の優れたSol膜を形成することができ、2
層以上の積層構造の良好な3次元回路素子を作製するこ
とが可能となる。
After ion-implanting inert impurities such as neon, oxygen, and nitrogen, the first amorphous silicon thin film on the exposed surface was heated to V-5.
Since the sheet portion is formed by single crystallization using PE, it is possible to prevent the formation of a bulge as in the conventional sheet portion, and it is possible to form a Sol film with excellent flatness.
It becomes possible to produce a three-dimensional circuit element with a good laminated structure of layers or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし%3図は本発明のSOI膜の形成方法の1
実施例を示し、第1図(a)〜(h)は形成工程を示す
断面図、第2図は注入深さとAr+濃度との関係図、第
3図はアニール時間とV−5PE距離との関係図、第4
図(a)〜(g)は従来例の形成工程を示す断面図であ
る。 (7)−・51基板、+8) −S I02膜、(10
)・露出面、(ll)−第1のa−8i薄膜、(121
シート部、(+3)−第2のa−5i薄膜、(14)・
・・c−5i薄膜。
Figures 1 to 3 show a method of forming an SOI film according to the present invention.
Examples are shown, and FIGS. 1(a) to (h) are cross-sectional views showing the formation process, FIG. 2 is a relationship between implantation depth and Ar+ concentration, and FIG. 3 is a relationship between annealing time and V-5PE distance. Relationship diagram, 4th
Figures (a) to (g) are cross-sectional views showing the forming process of a conventional example. (7) -・51 substrate, +8) -S I02 film, (10
)・Exposed surface, (ll)-first a-8i thin film, (121
Sheet part, (+3)-second a-5i thin film, (14)・
...c-5i thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)単結晶シリコン基板上に絶縁膜を形成し、前記絶
縁膜の一部を除去して前記基板に露出面を形成し、前記
絶縁膜上及び前記露出面上に第1の非晶質シリコン薄膜
を形成し、前記第1の非晶質シリコン薄膜の表層部にア
ルゴン、ネオン、酸素、窒素などの不活性不純物をイオ
ン注入したのち、前記露出面上の前記第1の非晶質シリ
コン薄膜を固相エピタキシャル成長法により単結晶化し
、前記露出面上に単結晶シリコンのシート部を形成し、
選択エッチングにより前記シート部を残して前記第1の
非晶質シリコン薄膜を除去し、前記絶縁膜上及び前記シ
ート部上に第2の非晶質シリコン薄膜を形成し、前記第
2の非晶質シリコン薄膜にリンをイオン注入したのち、
前記第2の非晶質シリコン薄膜を固相エピタキシャル成
長法により単結晶化することを特徴とするSOI膜の形
成方法。
(1) An insulating film is formed on a single crystal silicon substrate, a part of the insulating film is removed to form an exposed surface on the substrate, and a first amorphous layer is formed on the insulating film and the exposed surface. After forming a silicon thin film and implanting ions of inert impurities such as argon, neon, oxygen, and nitrogen into the surface layer of the first amorphous silicon thin film, the first amorphous silicon on the exposed surface is Single crystallizing the thin film by a solid phase epitaxial growth method, forming a sheet portion of single crystal silicon on the exposed surface,
The first amorphous silicon thin film is removed by selective etching leaving the sheet portion, a second amorphous silicon thin film is formed on the insulating film and the sheet portion, and the second amorphous silicon thin film is removed by selective etching. After ion-implanting phosphorus into a thin silicon film,
A method for forming an SOI film, characterized in that the second amorphous silicon thin film is made into a single crystal by solid phase epitaxial growth.
JP1041276A 1989-02-20 1989-02-20 Method for forming SOI film Expired - Fee Related JP2762097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041276A JP2762097B2 (en) 1989-02-20 1989-02-20 Method for forming SOI film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041276A JP2762097B2 (en) 1989-02-20 1989-02-20 Method for forming SOI film

Publications (2)

Publication Number Publication Date
JPH02219214A true JPH02219214A (en) 1990-08-31
JP2762097B2 JP2762097B2 (en) 1998-06-04

Family

ID=12603922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041276A Expired - Fee Related JP2762097B2 (en) 1989-02-20 1989-02-20 Method for forming SOI film

Country Status (1)

Country Link
JP (1) JP2762097B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152018A (en) * 1984-01-20 1985-08-10 Agency Of Ind Science & Technol Manufacture of semiconductor thin film crystal layer
JPS6158879A (en) * 1984-08-29 1986-03-26 Nec Corp Preparation of silicon thin film crystal
JPS62239520A (en) * 1986-04-11 1987-10-20 Nec Corp Formation of soi film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152018A (en) * 1984-01-20 1985-08-10 Agency Of Ind Science & Technol Manufacture of semiconductor thin film crystal layer
JPS6158879A (en) * 1984-08-29 1986-03-26 Nec Corp Preparation of silicon thin film crystal
JPS62239520A (en) * 1986-04-11 1987-10-20 Nec Corp Formation of soi film

Also Published As

Publication number Publication date
JP2762097B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2608351B2 (en) Semiconductor member and method of manufacturing semiconductor member
US5767020A (en) Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
JPH05175469A (en) Manufacture method of semiconductor base material
JP2994837B2 (en) Semiconductor substrate flattening method, semiconductor substrate manufacturing method, and semiconductor substrate
US7910455B2 (en) Method for producing SOI wafer
US6254794B1 (en) Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
JPH02191320A (en) Crystal product and its manufacture
JPH0475649B2 (en)
JPH02219214A (en) Formation of soi film
JPH04346418A (en) Manufacture of semiconductor substrate
JP3347354B2 (en) Etching method and method of manufacturing semiconductor substrate
JP2762103B2 (en) Method for forming SOI film
JP2756320B2 (en) Crystal formation method
JP2755653B2 (en) Method of forming SOI structure
JPH04206932A (en) Semiconductor device and manufacture thereof
JPH0324719A (en) Forming method of single crystal film and crystal products
JP2698147B2 (en) Method of forming SOI structure
JPH02105517A (en) Manufacture of semiconductor device
JPS59134819A (en) Manufacture of semiconductor substrate
JPS61295624A (en) Manufacture of semiconductor device
JPH0258248A (en) Manufacture of semiconductor device
JP2664460B2 (en) SOI thin manufacturing method
JPH02302024A (en) Solid epitaxial growth
JP2793241B2 (en) SOI formation method
JPH05335234A (en) Manufacture of semiconductor substrate

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees