JPH02218947A - Standard sample for analyzing element - Google Patents

Standard sample for analyzing element

Info

Publication number
JPH02218947A
JPH02218947A JP1040482A JP4048289A JPH02218947A JP H02218947 A JPH02218947 A JP H02218947A JP 1040482 A JP1040482 A JP 1040482A JP 4048289 A JP4048289 A JP 4048289A JP H02218947 A JPH02218947 A JP H02218947A
Authority
JP
Japan
Prior art keywords
chlorine
sulfur
fluorine
standard sample
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1040482A
Other languages
Japanese (ja)
Other versions
JP2507580B2 (en
Inventor
Akira Ubukawa
生川 章
Satoshi Morikawa
森川 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1040482A priority Critical patent/JP2507580B2/en
Publication of JPH02218947A publication Critical patent/JPH02218947A/en
Application granted granted Critical
Publication of JP2507580B2 publication Critical patent/JP2507580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable use for a long period by using a molded body of boric alkali glass mainly containing alkali metallic oxide and boric acid and additionally containing chlorine, sulfur and fluorine. CONSTITUTION:A molded body of boric alkali glass mainly containing alkali metallic oxide and boric acid and further containing 0.01 to 10wt.% of chlorine, 0.01 to 10wt.% of sulfur or 0.01 to 10wt.% of fluorine or total of chlorine, sulfur and fluorine by 0.01 to 10wt.% is used. This permits elements of chlorine, sulfur and fluorine to exist uniformly in the molded body stably for a long period without being influenced by climate conditions. Therefore when primary X-rays are radiated, the intensity of fluorescent X-rays according to the content of chlorine or the like can be correctly detected so that it can be used as standard sample for a long period thereby creating a correct calibration curve at the time of measuring contamination amount of an insulator.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は主として懸垂碍子や長幹碍子等の各種碍子の
表面に付着した塩分、硫化物、硫酸塩、石膏、あるいは
セメント等の汚損物の測定時に使用される標準試料に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is mainly concerned with the removal of contaminants such as salt, sulfide, sulfate, gypsum, or cement that adhere to the surface of various types of insulators such as suspended insulators and long-stem insulators. This relates to standard samples used during measurements.

[従来の技術] 送電線の碍子の塩害事故等を未然に防止するため、碍子
に付着した汚損物を等価塩分付着密度として正確に把握
することが重要である。
[Prior Art] In order to prevent accidents such as salt damage to insulators of power transmission lines, it is important to accurately understand the contaminants attached to insulators as equivalent salt adhesion density.

クロムやチタン等をターゲットとするX線管球からの一
次X線を碍子に照射し、付着している汚損物から発生す
る螢光X線強度から汚損量を求めるいわゆるX線による
汚損度測定方式は、第1に田子に非接触で汚損量が測定
できること、第2に碍子の雨洗効果を正確に掴むことが
でき、累積汚損Iが測定できること、第3に測定精度が
高く、かつ測定時間が短いことの3つの理由で理想的な
碍子の汚損量測定方式である。しかし、このX線方式に
よる汚損測定を正確に行うためには、標準試料が必要と
なる0例えば、海塩汚損を例にした場合、標準試料とし
ては、碍子表面に塩化ナトリウムを均一に、かつ段階的
に付着させたものを用いるのが最も望ましいが、碍子表
面に塩化ナトリウムを均一に付着させるのは非常に回能
で、又、塩化ナトリウムは潮解性を有するため保存性が
悪く長期の使用に耐えないので、この標準試料を日常の
測定で定常的に使用することはできない。
A so-called X-ray contamination measurement method in which the insulator is irradiated with primary X-rays from an X-ray tube that targets chromium, titanium, etc., and the amount of contamination is determined from the intensity of fluorescent X-rays generated from attached contaminants. Firstly, it is possible to measure the amount of contamination without contacting the insulator, secondly, it is possible to accurately grasp the rain washing effect of the insulator, and the cumulative contamination I can be measured, and thirdly, the measurement accuracy is high and the measurement time is short. This is an ideal method for measuring the amount of contamination on insulators for three reasons: the distance is short. However, in order to accurately measure contamination using this X-ray method, a standard sample is required.For example, taking sea salt contamination as an example, the standard sample would be a uniform coating of sodium chloride on the insulator surface, and It is most desirable to apply sodium chloride in stages, but it takes a lot of effort to apply sodium chloride uniformly to the insulator surface, and sodium chloride is deliquescent, so it has poor storage stability and cannot be used for long periods of time. This standard sample cannot be used regularly in daily measurements because it cannot withstand

前述した螢光X線測定方式に使用される標準試料として
は、米国国立標準局(NBS:Nat−1onal  
Bureau  of  5tand−ards)の螢
光X線分析用のものがあるが、これは金属元素用のもの
が多く、非金属元素用のものは少い0例えば、NBS標
準試料のガラス(SRM89.91等)は塩素(Cj 
)を含有しているものがあるが、その濃度が極端に低く
検藍線作成が回能で、市販の標準試料では碍子の汚損量
測定に使用することができない。
The standard sample used in the above-mentioned fluorescent X-ray measurement method is the National Bureau of Standards (NBS).
For example, the NBS standard sample glass (SRM89.91 ) is chlorine (Cj
), but its concentration is extremely low and it is difficult to prepare an indigo line, so commercially available standard samples cannot be used to measure the amount of staining on insulators.

一方、固形パラフィンに塩素、硫黄等の標準物質を撹拌
混合して固形化し、これを標準試料とする方法もあるが
、この試料も長期的な保存性や安定性に問題がある。
On the other hand, there is a method of stirring and mixing standard substances such as chlorine and sulfur with solid paraffin to solidify it and using this as a standard sample, but this sample also has problems with long-term storage and stability.

さらに、固体の塩化ナトリウムと硼酸を粉砕混合してプ
レス成形したり、あるいは塩化ナトリウムとセルロース
を粉砕混合してプレス成形し、これを標準試料とする方
法もあるが、長期間繰り返し使用した場合、測定の安定
性に問題がある。
Furthermore, there is a method of pulverizing and mixing solid sodium chloride and boric acid and press-molding, or pulverizing and mixing sodium chloride and cellulose and press-molding and using this as a standard sample, but if used repeatedly for a long period of time, There is a problem with measurement stability.

この発明の目的はX線を用いる鉤子汚損測定装置におい
て、碍子表面の塩分、硫化物、硫酸塩、石膏、あるいは
セメント等の汚損物の付着密度に換算するための長期間
安定して使用することができる標準試料を提供すること
にある。
The purpose of this invention is to stably use it for a long period of time in a forceps fouling measuring device using X-rays, in order to calculate the adhesion density of fouling substances such as salt, sulfide, sulfate, gypsum, or cement on the surface of an insulator. The goal is to provide standard samples that can

[課題を解決するための手段] この発明は上記目的を達成するため、アルカリ金属酸化
物と硼酸を主成分とし、はぼ0.01〜10重量%の塩
素、はぼ0.01〜10重量%の硫黄、又はほぼ0.0
1〜10重量%の弗素、又は塩素、硫黄及び弗素の内そ
れらの成分が合計0.01〜10重量%を含有する硼酸
アルカリ系ガラスの成形体を使用するという手段をとっ
ている。
[Means for Solving the Problems] In order to achieve the above object, the present invention contains an alkali metal oxide and boric acid as main components, approximately 0.01 to 10% by weight of chlorine, and approximately 0.01 to 10% by weight of chlorine. % sulfur, or nearly 0.0
The method is to use a molded body of alkali borate glass containing 1 to 10% by weight of fluorine, or a total of 0.01 to 10% by weight of chlorine, sulfur, and fluorine.

[作用コ この発明は上記手段をとったことにより、塩素、硫黄、
弗素の元素が水分や温度の変化等の気象条件に影響され
ることなく、長期間安定してl111酸アルカリ系ガラ
スの内部に均一に存在するため、次X線を照射した場合
に、常に塩素等の含有量に応じた螢光X線の強度が正確
に検出され、標準試料として長期間安定して使用するこ
とができ、碍子の汚損量の測定時に正確な検量線を作成
することができる。
[Operations] By taking the above-mentioned measures, this invention eliminates chlorine, sulfur,
The element fluorine is not affected by weather conditions such as changes in moisture or temperature, and exists stably and uniformly inside the l111 acid alkali glass for a long period of time, so when the next X-ray is irradiated, chlorine is always present. The intensity of fluorescent X-rays according to the content of such substances can be accurately detected, and it can be stably used as a standard sample for a long period of time, and an accurate calibration curve can be created when measuring the amount of contamination of insulators. .

[実施例] 以下、この発明の標準試料の一実施例を第1図〜第5図
に基づいて説明する。
[Example] Hereinafter, an example of the standard sample of the present invention will be described based on FIGS. 1 to 5.

この実施例では主成分であるアルカリ金属酸化物として
四硼酸リチウム(四硼酸ナトリウムでもよい)を使用し
、この四硼酸リチウムと塩化ナトリウムをほぼ0.01
〜14重量%混合し、これらを加熱して撹拌溶融した後
、所定の成形型内に注入して、第1図に示すように円板
状に成形し、硼酸アルカリ系ガラス成形体を成形し塩素
含有量の異なる標準試料1〜3とする。
In this example, lithium tetraborate (sodium tetraborate may also be used) is used as the main alkali metal oxide, and the lithium tetraborate and sodium chloride are mixed at approximately 0.01
~14% by weight was mixed, heated, stirred and melted, and then injected into a predetermined mold and formed into a disk shape as shown in Figure 1 to form an alkali borate glass molded body. Standard samples 1 to 3 have different chlorine contents.

前記四硼酸リチウムあるいは四1iIIl酸ナトリウム
は化合物として市販されているが、これに代えて、無水
硼酸に対し炭酸リチウムあるいは炭酸ナトリウムを混合
した後、これに塩化ナトリウムをほぼ0.01〜14重
1%混合し、これらを加熱して撹拌溶融してもよい、又
、塩化ナトリウムの代わりに塩化カリウム等他の塩化物
を添加してもよい。
The above-mentioned lithium tetraborate or sodium tetraborate is commercially available as a compound, but instead of this, lithium carbonate or sodium carbonate is mixed with boric anhydride, and then sodium chloride is added to the mixture at about 0.01 to 14 parts by weight. % may be mixed and heated and stirred and melted. Alternatively, other chlorides such as potassium chloride may be added instead of sodium chloride.

このようにして製造した標準試料1〜3は、塩害地域等
に設置した碍子の付着塩分濃度測定時にX線発生装置の
X線照射管からX線を照射して検量線を作成するのに使
用されるのであるが、硼酸アルカリ系ガラスであるため
、水分や温度変化等の気象条件により組成が変化するこ
とはほとんどなく、かつX線を照射しても組成変形しな
いので、長期間に亘って安定性を有するものである。
Standard samples 1 to 3 manufactured in this way are used to create a calibration curve by irradiating X-rays from the X-ray irradiation tube of the X-ray generator when measuring the concentration of salt adhering to insulators installed in salt-damaged areas. However, since it is an alkali borate glass, its composition hardly changes due to weather conditions such as moisture or temperature changes, and its composition does not change even when exposed to X-rays, so it can be used for a long period of time. It has stability.

次に、碍子の汚損量を測定する場合の前記標準試料1〜
3の使用方法について説明する。
Next, the standard samples 1 to 1 when measuring the amount of contamination of the insulator
How to use 3 will be explained.

最初に、塩素濃度の異なる複数の標準試料1〜3以外に
、塩素を含有しない標準試料4及び表面が汚損されてい
ない碍子と同じ磁器よりなる8準試料5を用意する。
First, in addition to the plurality of standard samples 1 to 3 having different chlorine concentrations, a standard sample 4 that does not contain chlorine and 8 quasi-samples 5 made of the same porcelain as the insulator whose surface is not contaminated are prepared.

これらの各標準試料1〜5を第2図に示すように取付デ
ィスク6に嵌合固定し、図示しない回転支持装置により
支持する。
Each of these standard samples 1 to 5 is fitted and fixed to a mounting disk 6 as shown in FIG. 2, and supported by a rotation support device (not shown).

次に、標準試料1〜5にX線発生装置のX線照射管7か
ら一次X線を順次照射して、その螢光X線を検出38に
より検出し、各標準試料1〜5の螢光X線強度M1〜M
5を測定する。そして、前記螢光X線強度M1〜M3か
ら塩素を含有しない標準試料4の螢光X線強度M4をそ
れぞれ減算し、第3図に示すように標準試料1〜3の塩
素含有量と螢光X線強度M1〜M3 (Kcps)との
各データをプロットし、これを基に最小二乗法を用い検
量線H1を作成し、この検量線H1を方程式として制御
装置のメモリ(図示路)に記憶する。なお、第3図にお
いては6個の標準試料から得られたデータがプロットさ
れている。又、第3図に示す標準試料の塩素含有量を示
す検量線H1において、もし塩素を含有しない標準試料
4の測定値を減算しない場合には、同図に二点銀線で示
すように塩素含有量の少い領域において、検量線H1の
傾きは緩かになり測定精度が低下する。しかも、081
重量%以下の低濃度の塩素量の測定が困難となる。
Next, the standard samples 1 to 5 are sequentially irradiated with primary X-rays from the X-ray irradiation tube 7 of the X-ray generator, and the fluorescent X-rays are detected by the detection unit 38. X-ray intensity M1-M
Measure 5. Then, the fluorescent X-ray intensity M4 of the standard sample 4 which does not contain chlorine is subtracted from the fluorescent X-ray intensities M1 to M3, and the chlorine content and fluorescence of the standard samples 1 to 3 are calculated as shown in FIG. Plot each data of X-ray intensities M1 to M3 (Kcps), create a calibration curve H1 using the least squares method based on this, and store this calibration curve H1 as an equation in the memory of the control device (path shown). do. In addition, in FIG. 3, data obtained from six standard samples are plotted. Also, in the calibration curve H1 showing the chlorine content of the standard sample shown in Figure 3, if the measured value of the standard sample 4, which does not contain chlorine, is not subtracted, the chlorine content will be reduced as shown by the two-dot silver line in the same figure. In the region where the content is low, the slope of the calibration curve H1 becomes gentle and the measurement accuracy decreases. Moreover, 081
It becomes difficult to measure the amount of chlorine at a low concentration of less than % by weight.

一方、第4図に示すように磁器表面の塩素濃度と螢光X
線強度との関係は、磁器表面に塩分を付着させた試料を
作成し、この試料の螢光X線強度を前述した検量線)I
 1の作成時期と同時期に測定し、これを検量線)(2
として作成しておくことができる。
On the other hand, as shown in Figure 4, the chlorine concentration on the porcelain surface and the fluorescence
The relationship with the radiation intensity can be determined by preparing a sample with salt attached to the surface of the porcelain, and measuring the fluorescence X-ray intensity of this sample using the above-mentioned calibration curve)
The calibration curve was measured at the same time as 1.
It can be created as .

従って、第3図に示す検量線H1と第4図に示す検量線
H2とを螢光X線強度をパラメータとして第5図に示す
ように一つの検量線H3に合成し、磁器表面の塩素濃度
及び標準試料の塩素含有量の関係を示す検量線H3を方
程式として制御装置のメモリに記憶する。
Therefore, the calibration curve H1 shown in FIG. 3 and the calibration curve H2 shown in FIG. 4 are combined into one calibration curve H3 as shown in FIG. 5 using the fluorescent X-ray intensity as a parameter, and A calibration curve H3 showing the relationship between the chlorine content and the chlorine content of the standard sample is stored in the memory of the control device as an equation.

この検量線H3の作成時期から所定期間が経過して被測
定碍子の汚損量を測定する場合には、まず、前記標準試
料1〜5に再びX線を照射して、前記検量線H1の作成
と同様にして検量線H1−を作成し、これを方程式とし
て制御装置のメモリに記憶する。この動作を行う理由は
X!l18!l定装置自体が縫装置自体ることにより、
標準試料1〜3の塩素含有量が変化しなくても、その螢
光X線強度M1−〜M3−が第3図に一点鎖線で示すよ
うに低下して検量線H1−となるからである。
When measuring the amount of contamination of the insulator to be measured after a predetermined period has elapsed from the time when the calibration curve H3 was created, first, the standard samples 1 to 5 are irradiated with X-rays again to create the calibration curve H1. A calibration curve H1- is created in the same manner as described above, and this is stored as an equation in the memory of the control device. The reason for this action is X! l18! Since the fixing device itself is the sewing device itself,
This is because even if the chlorine content of standard samples 1 to 3 does not change, their fluorescent X-ray intensities M1- to M3- decrease as shown by the dashed-dotted line in Fig. 3, resulting in the calibration curve H1-. .

さらに、前記検量線H1−の作成と同期して、被測定碍
子の表面にX線を照射して、各測定点P1〜Pnの螢光
X線強度M1〜Mnを測定し、この強度M1〜Mnから
塩素を付着してない磁器のみの標準試料5のX線強度M
5を減算し、この減算された螢光X線強度M1°〜Mn
−から第3図の検量線111゛を使用して制御装置によ
り標準試料の塩素含有iR1〜Rnを演算する。前記標
準試料5を作成する目的は、被測定碍子から発生した螢
光X線強度がより正確になるように実際のX線強度M1
〜Mnから標準試料5のX線強度M5をそれぞれ減算し
て、測定精度を向上するためである。
Furthermore, in synchronization with the creation of the calibration curve H1-, the surface of the insulator to be measured is irradiated with X-rays to measure the fluorescent X-ray intensities M1 to Mn at each measurement point P1 to Pn. X-ray intensity M of standard sample 5 made only of porcelain with no chlorine attached from Mn
5, and this subtracted fluorescent X-ray intensity M1° ~ Mn
- to chlorine contents iR1 to Rn of the standard sample are calculated by the control device using the calibration curve 111' shown in FIG. The purpose of creating the standard sample 5 is to adjust the actual X-ray intensity M1 so that the fluorescent X-ray intensity generated from the insulator to be measured is more accurate.
This is to improve measurement accuracy by subtracting the X-ray intensity M5 of the standard sample 5 from Mn.

さらに、制御装置により、そのメモリに予め記憶された
第5図に示ず検X線H3の方程式に基づいて、制御装置
により前記塩素含有JiR1〜knから被測定碍子の各
測定点P1〜Pnにおける塩素濃度T1〜Tnを演算す
る。
Furthermore, based on the equation of the detected X-ray H3 not shown in FIG. Calculate chlorine concentrations T1 to Tn.

そして、前記塩素濃度1゛1〜Tnが演算されると、こ
の値から塩分量W1〜Wnが制御装置により演算される
。塩化ナトリウム(NaC1)の原子量をEとし、塩素
の原子量をFとすると、塩分量W1〜Wnは、制御装置
のメモリに記憶された次の式により演算される。
Then, when the chlorine concentrations 1'1 to Tn are calculated, the control device calculates the salt amounts W1 to Wn from these values. When the atomic weight of sodium chloride (NaC1) is E and the atomic weight of chlorine is F, the salt amounts W1 to Wn are calculated by the following equations stored in the memory of the control device.

W1〜Wn=T1〜Tn×(E/F) 又、この発明は次のように具体化することも可能である
W1~Wn=T1~Tn×(E/F) Moreover, the present invention can also be embodied as follows.

(1)前記実施例では標準試料1〜3により塩素濃度含
有1のみを測定するようにしたが、例えば第6図に示す
ように硫黄含有量と螢光X線強度との検量線を作成する
ための硫黄分析用wA準試料を作成してもよい。
(1) In the above example, only the chlorine concentration 1 was measured using standard samples 1 to 3, but for example, a calibration curve of sulfur content and fluorescent X-ray intensity is created as shown in FIG. A wA quasi-sample for sulfur analysis may be prepared.

又、第7図に示すように螢光X線強度と弗素含有量との
関係を示す検量線を作成するための弗素定量分析用の標
準試料としてもよい。
Further, as shown in FIG. 7, it may be used as a standard sample for quantitative fluorine analysis to create a calibration curve showing the relationship between fluorescent X-ray intensity and fluorine content.

さらに、図示しないが螢光X線強度とカルシウム含有量
との関係を示す検量線を作成するための標準試料を作成
したり、さらには塩素、硫黄、弗素及びカルシウムのう
ち少くとも2種類以上均一に混合して標準試料とする等
、この発明の趣旨から逸脱しない範囲で任意に構成を変
更して具体化してもよい。
Furthermore, although not shown in the figure, standard samples for creating a calibration curve showing the relationship between fluorescent X-ray intensity and calcium content are prepared, and at least two of chlorine, sulfur, fluorine, and calcium are uniformly prepared The structure may be arbitrarily changed and embodied without departing from the spirit of the present invention, such as by mixing it with the standard sample to form a standard sample.

(2)前記実施例では円盤状の標準試料1〜4を成形し
たが、この形状を測定面が平面状をなす三角形、四角形
等の任意の形状にすること。
(2) In the above embodiments, standard samples 1 to 4 were molded in the form of discs, but the shape may be any shape such as a triangle or a quadrilateral with a planar measurement surface.

(3)前記実施例では碍子の汚損量の測定用標準試料と
して説明したが、これ以外に例えばコンクリ−、ト、岩
石、高分子フィルム、樹脂ガラス等の塩素分や硫黄分等
を測定するための態率試料として使用してもよい。
(3) In the above example, it was explained as a standard sample for measuring the amount of contamination of an insulator, but it can also be used to measure the chlorine content, sulfur content, etc. of concrete, concrete, rock, polymer film, resin glass, etc. It may be used as a state sample.

(4)被測定碍子の汚損量を測定する場合、用いる被測
定元素を含有する標準試料は1個以上でよく、個数が多
くなるほど測定精度がよい、ただし被測定元素を含有す
る標準試料が1個の場合、検量線H1−は前記の方法で
得られた測定値とH1の傾きを用いて作成する。
(4) When measuring the amount of contamination of an insulator to be measured, the number of standard samples containing the element to be measured may be one or more, and the larger the number, the better the measurement accuracy. However, the number of standard samples containing the element to be measured is one In this case, a calibration curve H1- is created using the measured values obtained by the above method and the slope of H1.

・、[発明の効果コ ・、以上詳述したように、この発明は碍子の汚損を検出
するための塩素含有量と螢光X線強度との関係、硫黄含
有量と螢光X線強度との関係あるいはカルシウム含有量
と螢光X線強度との関係を示す検量線を容易に作成する
ことができるとともに、水分や温度変化に影響されず長
期に亘って安定して使用することができる効果がある。
・, [Effects of the Invention] As detailed above, this invention has been developed to improve the relationship between chlorine content and fluorescent X-ray intensity, and the relationship between sulfur content and fluorescent X-ray intensity for detecting contamination of insulators. It is possible to easily create a calibration curve showing the relationship between calcium content and fluorescent X-ray intensity, and it can be used stably over a long period of time without being affected by moisture or temperature changes. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は標準試料の斜視図、第2図は標準試料を取付デ
ィスクに嵌合した状態を示す斜視図、第3図は螢光X線
強度と標準試料の塩素含有量との関係を示す検量線グラ
フ、第4図は螢光xi強度と磁器表面の塩素濃度との関
係を示す検量線グラフ、第5図は第3図及び第4図の検
量線に基づいて作成した塩素含有量と塩素濃度との関係
を示す検量線グラフ、第6図は螢光X線強度と硫黄含有
量との関係を示す検量線グラフ、第7図は螢光X線強度
と弗素含有量との関係を示す検量線グラフである。 1〜3・・・標準試料。 特許出願人  日本iυ子  株式会社代 理 人  
弁理士 恩EII   博宣第1図 第3図 第2ffl 標準試料の多$衆含有量 (wt%) 磁器表面の塩素濃度(mg/cmつ 硫黄含有量(wt% 第51!I 磁器表面の4t、m度(ma/cm’)0.1 1.0 (wt泊゛ 弗紫含有量 (wt%)
Figure 1 is a perspective view of the standard sample, Figure 2 is a perspective view of the standard sample fitted to the mounting disk, and Figure 3 is the relationship between fluorescent X-ray intensity and chlorine content of the standard sample. Calibration curve graph, Figure 4 is a calibration curve graph showing the relationship between fluorescence xi intensity and chlorine concentration on the surface of porcelain, and Figure 5 is a graph showing the chlorine content and chlorine content created based on the calibration curves in Figures 3 and 4. Figure 6 is a calibration curve graph showing the relationship between fluorescent X-ray intensity and sulfur content. Figure 7 is a calibration curve graph showing the relationship between fluorescent X-ray intensity and fluorine content. It is a calibration curve graph shown in FIG. 1-3...Standard sample. Patent applicant Nippon iυko Co., Ltd. Agent
Patent Attorney On EII Hironobu Figure 1 Figure 3 Figure 2ffl Mass content of standard sample (wt%) Chlorine concentration (mg/cm) on porcelain surface Sulfur content (wt%) 51!I 4t on porcelain surface, m degrees (ma/cm') 0.1 1.0 (wt purple content (wt%)

Claims (1)

【特許請求の範囲】[Claims] 1、アルカリ金属酸化物と硼酸を主成分とし、0.01
〜10重量%の塩素、0.01〜10重量%の硫黄、又
は0.01〜10重量%の弗素、又は塩素、硫黄及び弗
素の内それらの成分が合計0.01〜10重量%を含有
する硼酸アルカリ系ガラス成形体であることを特徴とす
る元素分析用標準試料。
1. Main ingredients are alkali metal oxide and boric acid, 0.01
~10% by weight of chlorine, 0.01-10% by weight of sulfur, or 0.01-10% by weight of fluorine, or a total of 0.01-10% by weight of chlorine, sulfur and fluorine. A standard sample for elemental analysis characterized by being an alkali borate glass molded body.
JP1040482A 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device Expired - Fee Related JP2507580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040482A JP2507580B2 (en) 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040482A JP2507580B2 (en) 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device

Publications (2)

Publication Number Publication Date
JPH02218947A true JPH02218947A (en) 1990-08-31
JP2507580B2 JP2507580B2 (en) 1996-06-12

Family

ID=12581825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040482A Expired - Fee Related JP2507580B2 (en) 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device

Country Status (1)

Country Link
JP (1) JP2507580B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449278B1 (en) * 2001-09-21 2004-09-18 스톨베르그 앤드 삼일 주식회사 Method of analysing a fluorine content in a mold flux using fluorescent x-rays
CN103837559A (en) * 2014-02-26 2014-06-04 南京航空航天大学 Multi-target scanning type rapid sulfur detector
CN109490348A (en) * 2019-01-21 2019-03-19 长沙开元仪器有限公司 XRF detector and standard specimen calibrating installation for XRF detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599052A (en) * 1979-01-24 1980-07-28 Horiba Ltd Production of solid standard test piece used in measuring device of sulfur and chlorine with fluorescent x-ray
JPS5713343A (en) * 1980-06-30 1982-01-23 Nisshin Steel Co Ltd Manufacture of glass bead specimen for fluorescent x-ray analysis
JPS5931439A (en) * 1982-08-16 1984-02-20 Kawasaki Steel Corp Preparation of standard sample of glass bead for optical x-ray analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599052A (en) * 1979-01-24 1980-07-28 Horiba Ltd Production of solid standard test piece used in measuring device of sulfur and chlorine with fluorescent x-ray
JPS5713343A (en) * 1980-06-30 1982-01-23 Nisshin Steel Co Ltd Manufacture of glass bead specimen for fluorescent x-ray analysis
JPS5931439A (en) * 1982-08-16 1984-02-20 Kawasaki Steel Corp Preparation of standard sample of glass bead for optical x-ray analysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449278B1 (en) * 2001-09-21 2004-09-18 스톨베르그 앤드 삼일 주식회사 Method of analysing a fluorine content in a mold flux using fluorescent x-rays
CN103837559A (en) * 2014-02-26 2014-06-04 南京航空航天大学 Multi-target scanning type rapid sulfur detector
CN109490348A (en) * 2019-01-21 2019-03-19 长沙开元仪器有限公司 XRF detector and standard specimen calibrating installation for XRF detector

Also Published As

Publication number Publication date
JP2507580B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
Ravelli et al. Unit-cell volume change as a metric of radiation damage in crystals of macromolecules
Hill et al. The extension of the Practical Salinity Scale 1978 to low salinities
Bates et al. Hydration aging of nuclear waste glass
JPH02218947A (en) Standard sample for analyzing element
Skinner Overestimate of stalagmitic calcite ESR dates due to laboratory heating
Marcus Determination of pH in highly saline waters
CN105699409A (en) Method for measuring content of barium sulfate in barite through X ray fluorescent glass sheet-melting method
Menon et al. Solubilities, solubility products and solution chemistry of lanthanon trifluoride–water systems
Eltayeb et al. Preconcentration and XRF-determination of heavy metals in hair from Sudanese populations
Coulaud et al. A new spectroscopic method for measuring ferric diffusion coefficient in gelatin-based dosimeter gels
Bouhier et al. Evaluation of several conditioning matrices for the management of radioactive metal beryllium wastes
Mustarelli et al. Carrier density and mobility in A g I− A g P O 3 glasses: A NMR study
Freund et al. Determination of the cumulative dissociation constant of tetracyanonickelate (II) ion
Olszyczka et al. The application of gamma-ray attenuation to the determination of canopy mass and canopy surfacewater storage
Takai et al. Tracer diffusion experiments on LISICON and its solid solutions by means of neutron radiography
Lundgren et al. X-ray structure of ammonium perchlorate. I. X-ray data collection and estimation of variances of the intensities
Efstathiou et al. Monte Carlo simulation for the study of error propagation in the double known addition method with ion-selective electrodes
Hussey et al. THE EFFECT OF RADIO-ACTIVE RADIATIONS AND X-RAYS ON ENZYMES: I. THE EFFECT OF RADIATIONS FROM RADIUM EMANATION ON SOLUTIONS OF TRYPSIN.
Douglass Volumetric calibration of neutron moisture probes
Cantone et al. Cadmium and titanium in human serum determined by proton nuclear activation
Inagaki et al. Characterization of water in methylcyclohexane as a certified reference material for determination of trace water content in liquids
Lao et al. Micro-PIXE–RBS methods highlighting the influence of phosphorus on the in vitro bioactivity of sol–gel derived glass particles in the SiO2–CaO–P2O5 system
Whitehouse et al. 14N nuclear magnetic resonance of some solid nitrates
Albinati et al. The Rietveld method
Voorhies et al. Anodic Chromopotentionmetry at Solid Electrodes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees