JP2507580B2 - Insulator pollution amount measuring method and device - Google Patents

Insulator pollution amount measuring method and device

Info

Publication number
JP2507580B2
JP2507580B2 JP1040482A JP4048289A JP2507580B2 JP 2507580 B2 JP2507580 B2 JP 2507580B2 JP 1040482 A JP1040482 A JP 1040482A JP 4048289 A JP4048289 A JP 4048289A JP 2507580 B2 JP2507580 B2 JP 2507580B2
Authority
JP
Japan
Prior art keywords
measured
standard sample
insulator
fluorescent
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1040482A
Other languages
Japanese (ja)
Other versions
JPH02218947A (en
Inventor
章 生川
智 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP1040482A priority Critical patent/JP2507580B2/en
Publication of JPH02218947A publication Critical patent/JPH02218947A/en
Application granted granted Critical
Publication of JP2507580B2 publication Critical patent/JP2507580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Insulators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は主として懸垂碍子や長幹碍子等の各種碍子
の表面に付着した塩分、硫化物、硫酸塩、石膏、あるい
はセメント等の汚損物の測定時に使用される標準試料に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention mainly relates to pollutants such as salt, sulfide, sulfate, gypsum, or cement adhered to the surface of various insulators such as suspension insulators and long stem insulators. The present invention relates to a standard sample used for measurement.

[従来の技術] 送電線の碍子の塩害事故等を未然に防止するため、碍
子に付着した汚損物を等価塩分付着密度として正確に把
握することが重要である。
[Prior Art] In order to prevent accidents such as salt damage to the insulator of a power transmission line, it is important to accurately grasp the contaminant attached to the insulator as the equivalent salt attachment density.

クロムやチタン等をターゲットとするX線管球からの
一次線を碍子に照射し、付着している汚損物から発生す
る螢光X線強度から汚損量を求めいわゆるX線による汚
損度測定方式は、第1に碍子に非接触で汚損量が測定で
きること、第2に碍子の雨洗効果を正確に掴むことがで
き、累積汚損量が測定できること、第3に測定精度が高
く、かつ測定時間が短いことの3つの理由で理想的な碍
子の汚損量測定方式である。このX線方式による汚損測
定は複数の標準試料群を用いて、被測定元素濃度と蛍光
X線強度との相関を示す直線状の検量線を用いて行うこ
とが考えられる。
The so-called X-ray pollution degree measurement method is one in which the insulator is irradiated with a primary ray from an X-ray tube targeting chromium, titanium, etc., and the amount of contamination is obtained from the intensity of fluorescent X-rays generated from the attached contaminants. First, the amount of contamination can be measured without contacting the insulator, secondly, the rain washing effect of the insulator can be accurately grasped, and the accumulated amount of contamination can be measured. Thirdly, the measurement accuracy is high and the measurement time is long. It is an ideal insulator fouling amount measurement method for three reasons. It is conceivable that the pollution measurement by the X-ray method is performed using a plurality of standard sample groups and a linear calibration curve showing the correlation between the concentration of the element to be measured and the fluorescent X-ray intensity.

ところが、検量線の求め方に問題があったので、精度
の良い汚損測定ができないということが分かった。
However, there was a problem in how to obtain the calibration curve, and it was found that accurate stain measurement could not be performed.

この発明の目的は碍子の汚損量を精度良く測定するこ
とができる碍子汚損量測定方法及びその装置を提供する
ことにある。
An object of the present invention is to provide an insulator pollution amount measuring method and an apparatus therefor capable of accurately measuring the pollution amount of an insulator.

[課題を解決するための手段] 請求項1記載の発明は、上記目的を達成するため、被
測定元素を含有するとともに、その元素含有量が段階的
に異なる元素含有標準試料群にX線を照射して、各試料
の蛍光X線強度を測定する第1の行程と、 前記元素含有標準試料と同材質の基材よりなり前記元
素を含有しない非含有標準試料にX線を照射して、その
蛍光X線強度を測定する第2の行程と、 前記第1の行程で得られた複数の蛍光X線強度から第
2の行程で得られた蛍光X線強度をそれぞれ減算して得
られた複数の蛍光X線強度から標準試料の元素含有量と
蛍光X線度との相関を示す第1の検量線を求める第3の
行程と、 被測定碍子の表面に元素を付着し、該表面にX線を照
射して、その蛍光X線強度と元素濃度との相関を示す第
2の検量線を求める第4の行程と、 前記第1及び第2の検量線に基づいて被測定碍子の表
面の元素濃度と標準試料の元素含有量との相関を示す第
3の検量線を求める第5の行程と、 被測定碍子の測定点にX線を照射して、測定点の蛍光
X線強度を測定し、このX線強度から第1の検量線を使
用して標準試料の元素含有量を演算する第6の行程と、 前記第3の検量線に基づいて、第6の行程で得られた
前記標準試料の元素含有量から被測定碍子の測定点にお
ける元素濃度を求める第7の行程と、 を具備している。
[Means for Solving the Problem] In order to achieve the above object, the invention according to claim 1 applies X-rays to an element-containing standard sample group that contains an element to be measured and the element content of which differs stepwise. The first step of irradiating and measuring the fluorescent X-ray intensity of each sample, and irradiating the non-containing standard sample which is made of a base material of the same material as the element-containing standard sample and does not contain the element with X-rays, It was obtained by subtracting the fluorescent X-ray intensity obtained in the second step from the second step of measuring the fluorescent X-ray intensity and the plurality of fluorescent X-ray intensities obtained in the first step. The third step of obtaining the first calibration curve showing the correlation between the element content of the standard sample and the fluorescent X-ray degree from a plurality of fluorescent X-ray intensities, and the element is attached to the surface of the insulator to be measured, A second calibration curve showing the correlation between the fluorescent X-ray intensity and the element concentration is irradiated with X-rays. A fourth step to be obtained and a fifth step to obtain a third calibration curve showing the correlation between the element concentration on the surface of the insulator to be measured and the element content of the standard sample based on the first and second calibration curves And irradiate the measuring point of the insulator to be measured with X-rays, measure the fluorescent X-ray intensity at the measuring point, and calculate the element content of the standard sample from this X-ray intensity using the first calibration curve. A sixth step, and a seventh step of obtaining the element concentration at the measurement point of the insulator to be measured from the element content of the standard sample obtained in the sixth step based on the third calibration curve, It has.

又、請求項2記載の発明では、請求項1において、前
記第6の行程及び第7の行程に代えて、 元素を付着していない被測定碍子と同材質の標準試料
のみのX線強度を求める第6の行程と、 被測定碍子の測定点にX線を照射して、測定点の蛍光
X線強度を測定し、このX線強度から第6の行程で得ら
れたX線強度を減算し、この減算蛍光X強度から第1の
検量線を使用して標準試料の元素含有量を演算する第7
の行程と、 前記第3の検量線に基づいて、第7の行程で得られた
前記標準試料の元素含有量から被測定碍子の測定点にお
ける元素濃度を求める第8の行程とを具備している。
Also, in the invention of claim 2, in place of the sixth step and the seventh step in claim 1, the X-ray intensity of only a standard sample of the same material as the insulator to be measured to which no element is attached is The sixth step to be obtained and the measurement point of the insulator to be measured are irradiated with X-rays, the fluorescent X-ray intensity at the measurement point is measured, and the X-ray intensity obtained in the sixth step is subtracted from this X-ray intensity. Then, the element content of the standard sample is calculated from the subtracted fluorescence X intensity using the first calibration curve.
And the eighth step of obtaining the element concentration at the measurement point of the insulator to be measured from the element content of the standard sample obtained in the seventh step based on the third calibration curve. There is.

又、請求項3記載の発明では、前記目的を達成するた
め、被測定元素を含有するとともに、その元素含有量が
段階的に異なる複数の元素含有標準試料と、前記元素含
有標準試料と同材質の基材よりなり前記元素を含有しな
い非含有標準試料と、元素を付着していない被測定碍子
と同材質の標準試料と、前記各標準試料にX線を照射し
て蛍光X線強度を測定する蛍光X線強度測定装置と、前
記各標準試料及び被測定碍子から検出された各蛍光X線
強度と、各標準試料中の被測定元素濃度とに基づいて作
成された第1〜第3の検量線により被測定碍子の測定点
における元素濃度を演算する制御装置とを備えている。
Further, in the invention according to claim 3, in order to achieve the above object, a plurality of element-containing standard samples containing the element to be measured and the element contents of which are different stepwise, and the same material as the element-containing standard sample The standard sample which is made of the above base material and does not contain the above element, the standard sample which has the same material as the insulator to which the element is not attached, and the above standard samples are irradiated with X-rays to measure the fluorescent X-ray intensity. The fluorescent X-ray intensity measuring device, the fluorescent X-ray intensities detected from the standard samples and the insulators to be measured, and the concentration of the element to be measured in each standard sample. And a control device for calculating the element concentration at the measurement point of the insulator to be measured by a calibration curve.

請求項3記載の発明において、前記元素含有標準試
料、非含有標準試料及び被測定碍子と同材質の標準試料
を、回転可能な取付ディスクに取付けるとよい。
In the invention described in claim 3, the element-containing standard sample, the non-containing standard sample, and the standard sample of the same material as the insulator to be measured may be mounted on a rotatable mounting disk.

[作用] 請求項1記載の発明では、前記第1の行程で得られた
複数の蛍光X線強度から第2の行程で得られた蛍光X線
強度をそれぞれ減算して得られた複数の蛍光X線強度か
ら第1の検量線を求める第3の行程により、第1の検量
線が精度よく作成される。もし、この減算を行わない場
合には、元素の含有量の少ない領域において、検量線の
傾きが緩やかになり、測定精度が低下する。しかも、0.
1重量%以下の低濃度の元素量の測定が困難となる。
[Operation] In the invention according to claim 1, a plurality of fluorescences obtained by subtracting the fluorescence X-ray intensities obtained in the second step from the plurality of fluorescence X-ray intensities obtained in the first step, respectively. The first calibration curve is accurately created by the third step of obtaining the first calibration curve from the X-ray intensity. If this subtraction is not carried out, the slope of the calibration curve becomes gentle in the region where the element content is small, and the measurement accuracy decreases. Moreover, 0.
It becomes difficult to measure the amount of element at a low concentration of 1% by weight or less.

又、請求項2記載の発明では、被測定碍子の測定点に
X線を照射して、測定点の蛍光X線強度を測定し、この
X線強度から第8の行程で得られたX線強度を減算し、
この減算蛍光X線強度から第1の検量線を使用して標準
試料の元素含有量を演算するので、被測定碍子から発生
した蛍光X線強度が精度良く測定される。
Further, in the invention according to claim 2, the measuring point of the insulator to be measured is irradiated with X-rays, the fluorescent X-ray intensity at the measuring point is measured, and the X-ray obtained from the X-ray intensity in the eighth step. Subtract the intensity,
Since the element content of the standard sample is calculated from the subtracted fluorescent X-ray intensity using the first calibration curve, the fluorescent X-ray intensity generated from the insulator to be measured can be accurately measured.

[実施例] 以下、この発明の一実施例を第1図〜第5図に基づい
て説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

この実施例では主成分であるアルカリ金属酸化物とし
て四硼酸リチウム(四硼酸ナトリウムでもよい)を使用
し、この四硼酸リチウムと塩化ナトリウムをほぼ0.01〜
14重量%混合し、これらを加熱して攪拌溶融した後、所
定の成形型内に注入して、第1図に示すように円板状に
成形し、硼酸アルカリ系ガラス成形体を成形し塩素含有
量の異なる標準試料1〜3とする。
In this embodiment, lithium tetraborate (or sodium tetraborate may be used) is used as the main component of the alkali metal oxide, and the lithium tetraborate and sodium chloride are mixed in an amount of about 0.01-
Mix 14% by weight, heat and stir to melt them, then inject them into a specified mold and mold them into a disk shape as shown in Fig. 1 to mold an alkali borate glass molded product and chlorine. Standard samples 1 to 3 having different contents are used.

前記四硼酸リチウムあるいは四硼酸ナトリウムは化合
物として市販されているが、これに代えて、無水硼酸に
対し炭酸リチウムあるいは炭酸ナトリウムを混合した
後、これに塩化ナトリウムをほぼ0.01〜14重量%混合
し、これらを加熱して攪拌溶融してもよい。又、塩化ナ
トリウムの代わりに塩化カリウム等他の塩化物を添加し
てもよい。
The lithium tetraborate or sodium tetraborate is commercially available as a compound, but instead of this, after mixing lithium carbonate or sodium carbonate with anhydrous boric acid, and then mixing sodium chloride in approximately 0.01 to 14% by weight, These may be heated and stirred and melted. Further, other chlorides such as potassium chloride may be added instead of sodium chloride.

このようにして製造した標準試料1〜3は、塩害地域
等に設置した碍子の付着塩分濃度測定時にX線発生装置
のX線照射管からX線を照射して検量線を作成するのに
使用されるのであるが、硼酸アルカリ系ガラスであるた
め、水分や温度変化等の気象条件により組成が変化する
ことはほとんどなく、かつX線を照射しても組成変形し
ないので、長期間に亘って安定性を有するものである。
The standard samples 1 to 3 produced in this way are used to create a calibration curve by irradiating X-rays from the X-ray irradiating tube of the X-ray generator when measuring the attached salt content of insulators installed in salt-damaged areas. However, since it is an alkali borate glass, its composition hardly changes due to weather conditions such as moisture and temperature changes, and the composition does not change even when irradiated with X-rays. It has stability.

次に、碍子の汚損量を測定する場合の前記標準試料1
〜3の使用方法について説明する。
Next, the standard sample 1 for measuring the amount of fouling of insulators
How to use ~ 3 will be described.

最初に、塩素濃度の異なる複数の標準試料1〜3以外
に、塩素を含有しない標準試料4及び表面が汚損されて
いない碍子と同じ磁器よりなる標準試料5を用意する。
First, in addition to a plurality of standard samples 1 to 3 having different chlorine concentrations, a standard sample 4 containing no chlorine and a standard sample 5 made of the same porcelain as the insulator whose surface is not contaminated are prepared.

これらの各標準試料1〜5を第2図に示すように取付
ディスク6に嵌合固定し、図示しない回転支持装置によ
り支持する。
Each of these standard samples 1 to 5 is fitted and fixed to the mounting disk 6 as shown in FIG. 2, and supported by a rotation supporting device (not shown).

次に、標準試料1〜5にX線発生装置のX線照射管7
から一次X線を順次照射して、その螢光X線を検出器8
により検出し、各標準試料1〜5の螢光X線強度M1〜M5
を測定する。そして、前記螢光X線強度M1〜M3から塩素
を含有しない標準試料4の螢光X線強度M4をそれぞれ減
算し、第3図に示すように標準試料1〜3の塩素含有量
と螢光X線強度M1〜M3(Kcps)との各データをプロット
し、これを基に最小二乗法を用い検量線H1を作成し、こ
の検量線H1を方程式として制御装置のメモリ(図示略)
に記憶する。なお、第3図においては6個の標準試料か
ら得られたデータがプロットされている。又、第3図に
示す標準試料の塩素含有量を示す検量線H1において、も
し塩素を含有しない標準試料4の測定値を減算しない場
合には、同図に二点鎖線で示すように塩素含有量の少い
領域において、検量線H1の傾きは緩かになり測定精度が
低下する。しかも、0.1重量%以下の低濃度の塩素量の
測定が困難となる。
Next, for the standard samples 1 to 5, the X-ray irradiation tube 7 of the X-ray generator is used.
The primary X-rays are sequentially emitted from the detector and the fluorescent X-rays are detected by the detector 8
Fluorescence X-ray intensity M1 to M5 of each standard sample 1 to 5 detected by
To measure. Then, the fluorescent X-ray intensities M4 of the standard sample 4 not containing chlorine are subtracted from the fluorescent X-ray intensities M1 to M3, respectively, and the chlorine content and the fluorescence of the standard samples 1 to 3 are subtracted as shown in FIG. Plot each data with X-ray intensities M1 to M3 (Kcps), create a calibration curve H1 using the least squares method based on this, and use this calibration curve H1 as an equation in the memory (not shown) of the controller.
To memorize. In FIG. 3, data obtained from 6 standard samples are plotted. Further, in the calibration curve H1 showing the chlorine content of the standard sample shown in FIG. 3, if the measurement value of the standard sample 4 not containing chlorine is not subtracted, the chlorine content as shown by the chain double-dashed line in the figure is shown. In the region where the amount is small, the slope of the calibration curve H1 becomes gentle and the measurement accuracy decreases. Moreover, it becomes difficult to measure the chlorine content at a low concentration of 0.1% by weight or less.

一方、第4図に示すように磁器表面の塩素濃度と螢光
X線強度との関係は、磁器表面に塩分を付着させた試料
を作成し、この試料を螢光X線強度を前述した検量線H1
の作成時期と同時期に測定し、これを検量線H2として作
成しておくことができる。
On the other hand, as shown in FIG. 4, the relationship between the chlorine concentration on the porcelain surface and the fluorescence X-ray intensity was determined by preparing a sample with salt attached to the porcelain surface, and measuring the fluorescence X-ray intensity of this sample using the above-mentioned calibration. Line H1
Measurement can be made at the same time as the preparation time, and this can be prepared as a calibration curve H2.

従って、第3図に示す検量線H1と第4図に示す検量線
H2とを螢光X線強度をパラメータとして第5図に示すよ
うに一つの検量線H3に合成し、磁器表面の塩素濃度及び
標準試料の塩素含有量の関係を示す検量線H3を方程式と
して制御装置のメモリに記憶する。
Therefore, the calibration curve H1 shown in FIG. 3 and the calibration curve shown in FIG.
H2 and H2 are combined into a single calibration curve H3 as shown in Fig. 5 using the fluorescent X-ray intensity as a parameter, and the calibration curve H3 showing the relationship between the chlorine concentration on the porcelain surface and the chlorine content of the standard sample is controlled using an equation. Store in device memory.

この検量線H3の作成時期から所定期間が経過して被測
定碍子の汚損量を測定する場合には、まず、前記標準試
料1〜5に再びX線を照射して、前記検量線H1の作成と
同様にして検量線H1を作成し、これを方程式として制御
装置のメモリに記憶する。この動作を行う理由はX線測
定装置自体が経時変化することにより、標準試料1〜3
の塩素含有量が変化しなくても、その螢光X線強度M1′
〜M3′が第3図に一点鎖線で示すように低下して検量線
H1′となるからである。
When a predetermined period has elapsed from the time when the calibration curve H3 was created and the contamination amount of the insulator to be measured was measured, first, the standard samples 1 to 5 were irradiated again with X-rays to create the calibration curve H1. A calibration curve H1 is created in the same manner as above, and this is stored as an equation in the memory of the control device. The reason why this operation is performed is that the X-ray measuring apparatus itself changes with time,
Fluorescent X-ray intensity M1 'even if the chlorine content of
~ M3 'decreases as shown by the one-dot chain line in Fig. 3 and the calibration curve
This is because it becomes H1 '.

さらに、前記検量線H1′の作成と同期して、被測定碍
子の表面にX線を照射して、各測定点P1〜Pnの螢光X線
強度M1〜Mnを測定し、この強度M1〜Mnから塩素を付着し
てない磁器のみの標準試料5のX線強度M5を減算し、こ
の減算された螢光X線強度M1′〜Mn′から第3図の検量
線H1′を使用して制御装置により標準試料の塩素含有量
R1〜Rnを演算する。前記標準試料5を作成する目的は、
被測定碍子から発生した螢光X線強度がより正確になる
ように実際のX線強度M1〜Mnから標準試料5のX線強度
M5をそれぞれ減算して、測定精度を向上するためであ
る。
Further, in synchronization with the preparation of the calibration curve H1 ′, the surface of the insulator to be measured is irradiated with X-rays, and the fluorescent X-ray intensities M1 to Mn at the respective measurement points P1 to Pn are measured. The X-ray intensity M5 of the standard sample 5 containing only porcelain without chlorine is subtracted from Mn, and the fluorescent X-ray intensities M1 ′ to Mn ′ thus subtracted are used to obtain the calibration curve H1 ′ shown in FIG. Chlorine content of standard sample by control device
Calculate R1 to Rn. The purpose of preparing the standard sample 5 is to
X-ray intensity of the standard sample 5 from the actual X-ray intensity M1 to Mn so that the fluorescence X-ray intensity generated from the measured insulator becomes more accurate.
This is because the measurement accuracy is improved by subtracting M5 from each.

さらに、制御装置により、そのメモリに予め記憶され
た第5図に示す検量線H3の方程式に基づいて、制御装置
により前記塩素含有量R1〜Rnから被測定碍子の各測定点
P1〜Pnにおける塩素濃度T1〜Tnを演算する。
Further, based on the equation of the calibration curve H3 shown in FIG. 5 stored in advance in the memory by the control device, the control device measures the chlorine content R1 to Rn from each measurement point of the insulator.
The chlorine concentrations T1 to Tn in P1 to Pn are calculated.

そして、前記塩素濃度T1〜Tnが演算されると、この値
から塩分量W1〜Wnが制御装置により演算される。塩化ナ
トリウム(NaCl)の原子量をEとし、塩素の原子量をF
とすると、塩分量W1〜Wnは、制御装置のメモリに記憶さ
れた次の式により演算される。
When the chlorine concentrations T1 to Tn are calculated, the salinity amounts W1 to Wn are calculated from this value by the control device. Let E be the atomic weight of sodium chloride (NaCl) and F be the atomic weight of chlorine.
Then, the salinity amounts W1 to Wn are calculated by the following equations stored in the memory of the control device.

W1〜Wn=T1〜Tn×(E/F) このようにして得られた被測定碍子の塩分量W1〜Wnか
ら単位面積あたりの塩分付着密度を求めることができる
ので、被測定碍子がどの程度汚損されているかを知るこ
とが可能となる。
W1 ~ Wn = T1 ~ Tn × (E / F) Since the salt adhesion density per unit area can be obtained from the salt content W1 ~ Wn of the measured insulator thus obtained, how much the measured insulator is It is possible to know if it is soiled.

又、この発明は次のように具体化することも可能であ
る。
The present invention can also be embodied as follows.

(1)前記実施例では標準試料1〜3により塩素濃度含
有量のみを測定するようにしたが、例えば第6図に示す
ように硫黄含有量と螢光X線強度との検量線を作成する
ための硫黄分析用標準試料を作成してもよい。
(1) In the above example, only the chlorine concentration content was measured with the standard samples 1 to 3, but for example, as shown in FIG. 6, a calibration curve of the sulfur content and the fluorescence X-ray intensity is created. A standard sample for sulfur analysis may be prepared.

又、第7図に示すように螢光X線強度と弗素含有量と
の関係を示す検量線を作成するための弗素定量分析用の
標準試料としてもよい。
Further, as shown in FIG. 7, it may be used as a standard sample for quantitative fluorine analysis for preparing a calibration curve showing the relationship between the fluorescent X-ray intensity and the fluorine content.

さらに、図示しないが蛍光X線強度とカルシウム含有
量との関係を示す検量線を作成するための標準試料を作
成したり、さらには塩素、硫黄、弗素及びカルシウムの
うち少くとも2種類以上均一に混合して標準試料とする
等、この発明の趣旨から逸脱しない範囲で任意に構成を
変更して具体化してもよい。
Further, although not shown, a standard sample for preparing a calibration curve showing the relationship between the fluorescent X-ray intensity and the calcium content is prepared, and further, at least two kinds of chlorine, sulfur, fluorine and calcium are uniformly prepared. The composition may be arbitrarily modified and embodied, for example, by mixing them to form a standard sample without departing from the spirit of the present invention.

(2)前記実施例では円盤状の標準試料1〜4を成形し
たが、この形状を測定面が平面状をなす三角形、四角形
等の任意の形状にすること。
(2) In the above embodiment, the disk-shaped standard samples 1 to 4 were molded, but the shape should be an arbitrary shape such as a triangle or a quadrangle whose measurement surface is flat.

(3)前記実施例では碍子の汚損量の測定用標準試料と
して説明したが、これ以外に例えばコンクリート、岩
石、高分子フィルム、樹脂ガラス等の塩素分や硫黄分等
を測定するための標準試料として使用してもよい。
(3) In the above-mentioned embodiment, the standard sample for measuring the amount of fouling of the insulator was explained, but in addition to this, a standard sample for measuring chlorine content, sulfur content, etc. of concrete, rock, polymer film, resin glass, etc. May be used as.

(4)被測定碍子の汚損量を測定する場合、用いる被測
定元素を含有する標準試料は1個以上でよく、個数が多
くなるほど測定精度がよい。ただし被測定元素を含有す
る標準試料が1個の場合、検量線H1′は前記の方法で得
られた測定値とH1の傾きを用いて作成する。
(4) When measuring the amount of contamination of the insulator to be measured, the number of standard samples containing the element to be measured used may be one or more, and the greater the number, the better the measurement accuracy. However, when there is only one standard sample containing the element to be measured, the calibration curve H1 'is created using the measured value obtained by the above method and the slope of H1.

[発明の効果] 以上詳述したように、この発明は被測定碍子の表面の
汚損量を精度良く測定することができる効果がある。
[Effects of the Invention] As described in detail above, the present invention has the effect of accurately measuring the amount of contamination on the surface of the insulator to be measured.

【図面の簡単な説明】[Brief description of drawings]

第1図は標準試料の斜視図、第2図は標準試料を取付デ
ィスクに嵌合した状態を示す斜視図、第3図は螢光X線
強度と標準試料の塩素含有量との関係を示す検量線グラ
フ、第4図は螢光X線強度と磁器表面の塩素濃度との関
係を示す検量線グラフ、第5図は第3図及び第4図の検
量線に基づいて作成した塩素含有量と塩素濃度との関係
を示す検量線グラフ、第6図は螢光X線強度と硫黄含有
量との関係を示す検量線グラフ、第7図は螢光X線強度
と弗素含有量との関係を示す検量線グラフである。 1〜5……標準試料、6……取付ディスク、7……X線
照射管、8……検出器、H1〜H3……検量線。
1 is a perspective view of a standard sample, FIG. 2 is a perspective view showing a state in which the standard sample is fitted to a mounting disk, and FIG. 3 shows the relationship between the fluorescence X-ray intensity and the chlorine content of the standard sample. Calibration curve graph, FIG. 4 is a calibration curve graph showing the relationship between the fluorescence X-ray intensity and the chlorine concentration on the porcelain surface, and FIG. 5 is the chlorine content created based on the calibration curves of FIGS. 3 and 4. Calibration curve graph showing the relationship between chlorine concentration and chlorine concentration, FIG. 6 is a calibration curve graph showing the relationship between fluorescent X-ray intensity and sulfur content, and FIG. 7 is the relationship between fluorescent X-ray intensity and fluorine content. It is a calibration curve graph which shows. 1-5 ... Standard sample, 6 ... Mounting disk, 7 ... X-ray irradiation tube, 8 ... Detector, H1 to H3 ... Calibration curve.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定元素を含有するとともに、その元素
含有量が段階的に異なる元素含有標準試料群にX線を照
射して、各試料の蛍光X線強度を測定する第1の行程
と、 前記元素含有標準試料と同材質の基材よりなり前記元素
を含有しない非含有標準試料にX線を照射して、その蛍
光X線強度を測定する第2の行程と、 前記第1の行程で得られた複数の蛍光X線強度から第2
の行程で得られた蛍光X線強度をそれぞれ減算して得ら
れた複数の蛍光X線強度から標準試料の元素含有量と蛍
光X線強度との相関を示す第1の検量線を求める第3の
行程と、 被測定碍子の表面に元素を付着し、該表面にX線を照射
して、その蛍光X線強度と元素濃度との相関を示す第2
の検量線を求める第4の行程と、 前記第1及び第2の検量線に基づいて被測定碍子の表面
の元素濃度と標準試料の元素含有量との相関を示す第3
の検量線を求める第5の行程と、 被測定碍子の測定点にX線を照射して、測定点の蛍光X
線強度を測定し、この蛍光X線強度から第1の検量線を
使用して標準試料の元素含有量を演算する第6の行程
と、 前記第3の検量線に基づいて、第6の行程で得られた前
記標準試料の元素含有量から被測定碍子の測定点におけ
る元素濃度を求める第7の行程と、 を具備する碍子汚損量測定方法。
1. A first step of measuring the fluorescent X-ray intensity of each sample by irradiating an element-containing standard sample group containing an element to be measured and the element content of which varies stepwise with X-rays. A second step of irradiating an X-ray to a non-containing standard sample made of a base material of the same material as the element-containing standard sample and not containing the element, and measuring the fluorescent X-ray intensity, the first step From the multiple X-ray fluorescence intensities obtained in
A first calibration curve showing the correlation between the elemental content of the standard sample and the fluorescent X-ray intensity is obtained from a plurality of fluorescent X-ray intensities obtained by subtracting the fluorescent X-ray intensities obtained in And the step of attaching an element to the surface of the insulator to be measured, irradiating the surface with X-rays, and showing the correlation between the fluorescent X-ray intensity and the element concentration.
And a third step of obtaining a correlation between the element concentration on the surface of the insulator to be measured and the element content of the standard sample based on the first and second calibration curves.
5th step of obtaining the calibration curve of X, and the measurement point of the insulator to be measured is irradiated with X-rays, and fluorescence X of the measurement point is measured.
A sixth step of measuring the line intensity and calculating the element content of the standard sample from the fluorescent X-ray intensity using the first calibration curve, and the sixth step based on the third calibration curve. A seventh step of obtaining the element concentration at the measuring point of the insulator to be measured from the element content of the standard sample obtained in (4),
【請求項2】請求項1において、前記第6の行程及び第
7の行程に代えて、 元素を付着していない被測定碍子と同材質の標準試料の
みのX線強度を求める第6の行程と、 被測定碍子の測定点にX線を照射して、測定点の蛍光X
線強度を測定し、このX線強度から第6の行程で得られ
たX線強度を減算し、この減算蛍光X強度から第1の検
量線を使用して標準試料の元素含有量を演算する第7の
行程と、 前記第3の検量線に基づいて、第7の行程で得られた前
記標準試料の元素含有量から被測定碍子の測定点におけ
る元素濃度を求める第8の行程と、 を具備する碍子汚損量測定方法。
2. The sixth step of obtaining the X-ray intensity of only a standard sample made of the same material as the insulator to be measured, which does not adhere to the element, in place of the sixth step and the seventh step. And irradiate the measurement point of the insulator to be measured with X-rays, and measure the fluorescence X of the measurement point.
The line intensity is measured, the X-ray intensity obtained in the sixth step is subtracted from this X-ray intensity, and the element content of the standard sample is calculated from this subtracted fluorescence X intensity using the first calibration curve. A seventh step, and an eighth step of obtaining the element concentration at the measurement point of the insulator to be measured from the element content of the standard sample obtained in the seventh step based on the third calibration curve, A method for measuring the amount of insulator fouling provided.
【請求項3】被測定元素を含有するとともに、その元素
含有量が段階的に異なる複数の元素含有標準試料と、 前記元素含有標準試料と同材質の基材よりなり前記元素
を含有しない非含有標準試料と、 元素を付着していない被測定碍子と同材質の標準試料
と、 前記各標準試料にX線を照射して蛍光X線強度を測定す
る蛍光X線強度測定装置と、 前記各標準試料及び被測定碍子から検出された各蛍光X
線強度と、各標準試料中の被測定元素濃度とに基づいて
作成された第1〜第3の検量線により被測定碍子の測定
点における元素濃度を演算する制御装置と、 を備えた碍子汚損量測定装置。
3. A plurality of element-containing standard samples that contain an element to be measured and whose element contents differ stepwise, and a base material made of the same material as the element-containing standard sample, which does not contain the element. A standard sample, a standard sample of the same material as the insulator to be measured which is not attached with an element, a fluorescent X-ray intensity measuring device for irradiating each of the standard samples with X-rays to measure the fluorescent X-ray intensity, and each of the standards. Each fluorescence X detected from the sample and the insulator to be measured
An insulator fouling comprising: a controller that calculates the element concentration at the measurement point of the insulator to be measured by the first to third calibration curves created based on the line strength and the concentration of the element to be measured in each standard sample. Quantity measuring device.
【請求項4】前記元素含有標準試料、非含有標準試料及
び被測定碍子と同材質の標準試料は、回転可能な取付デ
ィスクに取付られている請求項3記載の碍子汚損量測定
装置。
4. The insulator pollution amount measuring device according to claim 3, wherein the element-containing standard sample, non-containing standard sample and standard sample made of the same material as the insulator to be measured are mounted on a rotatable mounting disk.
JP1040482A 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device Expired - Fee Related JP2507580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040482A JP2507580B2 (en) 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040482A JP2507580B2 (en) 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device

Publications (2)

Publication Number Publication Date
JPH02218947A JPH02218947A (en) 1990-08-31
JP2507580B2 true JP2507580B2 (en) 1996-06-12

Family

ID=12581825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040482A Expired - Fee Related JP2507580B2 (en) 1989-02-20 1989-02-20 Insulator pollution amount measuring method and device

Country Status (1)

Country Link
JP (1) JP2507580B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449278B1 (en) * 2001-09-21 2004-09-18 스톨베르그 앤드 삼일 주식회사 Method of analysing a fluorine content in a mold flux using fluorescent x-rays
CN103837559B (en) * 2014-02-26 2016-04-27 南京航空航天大学 The quick sulphur meter of many target scans formula
CN109490348A (en) * 2019-01-21 2019-03-19 长沙开元仪器有限公司 XRF detector and standard specimen calibrating installation for XRF detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599052A (en) * 1979-01-24 1980-07-28 Horiba Ltd Production of solid standard test piece used in measuring device of sulfur and chlorine with fluorescent x-ray
JPS5713343A (en) * 1980-06-30 1982-01-23 Nisshin Steel Co Ltd Manufacture of glass bead specimen for fluorescent x-ray analysis
JPS5931439A (en) * 1982-08-16 1984-02-20 Kawasaki Steel Corp Preparation of standard sample of glass bead for optical x-ray analysis

Also Published As

Publication number Publication date
JPH02218947A (en) 1990-08-31

Similar Documents

Publication Publication Date Title
Tagger et al. Radiopacity of endodontic sealers: development of a new method for direct measurement
Alderete et al. Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis
Carvalho et al. Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence
KR0171081B1 (en) Apparatus and method for measuring physical characteristics of materials
JP2507580B2 (en) Insulator pollution amount measuring method and device
Margolis et al. Certification by the Karl Fischer method of the water content in SRM 2890, Water Saturated 1-Octanol, and the analysis of associated interlaboratory bias in the measurement process
Berg et al. Water dynamics in glass ionomer cements
Schweizer et al. Preparation and characterization of calibration standards for bone density determination by micro-computed tomography
JP3527955B2 (en) X-ray fluorescence analyzer
Mukamil et al. Lead-borate glass system doped with Sm3+ ions for the X-ray shielding applications
Miller Self-absorption corrections for gamma ray spectral measurements of 210Pb in environmental samples
Skinner Overestimate of stalagmitic calcite ESR dates due to laboratory heating
Alvarenga et al. Structure and dynamics of molten aluminium and gallium trihalides: II. Raman spectroscopy and ab initio calculations
Zheng et al. Visualization and quantification of water penetration in cement pastes with different crack sizes
JP5869872B2 (en) Measuring method of porosity
Pineda et al. Cation-ratio differences in rock patina on hornfels and chalcedony using thick target PIXE
JP7366801B2 (en) Method for estimating the strength of cement-improved soil
Hadley et al. Distribution of fluoride in glass ionomer cement determined using SIMS
JPH0754305B2 (en) Insulator pollution amount measurement method
De Josselin de Jong et al. Determination of mineral changes in human dental enamel by longitudinal microradiography and scanning optical monitoring and their correlation with chemical analysis
Fricker et al. The effects of temperature on the setting of glass ionomer (polyalkenoate) cements
Brink et al. The enthalpy of formation of strontium monoxide
Phogat et al. Comparative evaluation of efficiency of serum IGF-1, hand-wrist radiographs, and cervical vertebrae as skeletal maturity indicator
Hautojärvi et al. Crystallization of Li2O SiO2 glass studied by positron annihilation
JPH05322810A (en) X-ray fluorescence analyzing method using glass bead

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees