JPH02217758A - Control device for refrigeratin machine - Google Patents

Control device for refrigeratin machine

Info

Publication number
JPH02217758A
JPH02217758A JP3690989A JP3690989A JPH02217758A JP H02217758 A JPH02217758 A JP H02217758A JP 3690989 A JP3690989 A JP 3690989A JP 3690989 A JP3690989 A JP 3690989A JP H02217758 A JPH02217758 A JP H02217758A
Authority
JP
Japan
Prior art keywords
refrigeration cycle
valve
refrigerant
accumulator
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3690989A
Other languages
Japanese (ja)
Inventor
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3690989A priority Critical patent/JPH02217758A/en
Publication of JPH02217758A publication Critical patent/JPH02217758A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To greatly increase cooling capability by providing a refrigerant bypass circuit which leads refrigerant from a first refrigeration cycle heat exchanger through a second refrigeration cycle accumulation type heat transfer device to a first refrigeration cycle accumulator. CONSTITUTION:A bypass circuit 19 is provided which leads refrigerant from a portion between an outdoor heat exchanger 4 of a first refrigeratic cycle unit A1 and a first on-off valve 13 through a second on-off valve 18 and an accumulator type heat transfer device 17 of a second refrigeration cycle unit A2 to an accumulator 12 of the first refrigeration cycle unit A1. When there is a requirement beyond the capability of a compressor 2 of the first refrigeration cycle unit A1 in cooling operation of the first refrigeration cycle unit A1, the first on-off valve 13 is closed and the second on-off valve 18 is opened for intersystem heat transfer by the accumulation type heat transfer device 19.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、二系統の冷凍サイクルを備えた冷凍機械の
制御装置、特に冷房能力の大幅な増加を図った冷凍機械
の制御装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a control device for a refrigeration machine equipped with two refrigeration cycles, and particularly to a control device for a refrigeration machine that significantly increases cooling capacity. be.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭63−213755号公報に示さ
れた従来の冷凍サイクルの制御装置を備えた空気調和機
を示す図である。この空気調和機は、室外ユニットAと
複数の室内ユニットBI。
FIG. 4 is a diagram showing an air conditioner equipped with a conventional refrigeration cycle control device disclosed in, for example, Japanese Unexamined Patent Publication No. 63-213755. This air conditioner includes an outdoor unit A and multiple indoor units BI.

B2 、B:+ 、B4に分けられており、二つの冷媒
循環系統1a、lbを有している。室外ユ2ニットAは
二つの冷媒循環系統1a、Ibに対応して2分割されて
おり、各々に圧縮機2a、2b、四方弁3a、3b及び
室外熱交換器(蒸発器)4a。
It is divided into B2, B:+, and B4, and has two refrigerant circulation systems 1a and lb. The outdoor unit 2 A is divided into two parts corresponding to the two refrigerant circulation systems 1a and Ib, each having compressors 2a and 2b, four-way valves 3a and 3b, and an outdoor heat exchanger (evaporator) 4a.

4bが設けられ、ごわらが冷媒配管で接続されている。4b is provided, and the straw is connected with a refrigerant pipe.

そして、各々の室外熱交換器4a、4bの上流側には別
の熱交換15a、5bが介装されており、圧縮機2a、
2bからの冷媒を開閉弁8a、8bを介して他方の冷媒
循環系統!a。
Further, another heat exchanger 15a, 5b is interposed on the upstream side of each outdoor heat exchanger 4a, 4b, and the compressor 2a,
The refrigerant from 2b is passed through the on-off valves 8a and 8b to the other refrigerant circulation system! a.

1bの熱交換器5a、5bに導き、ここで熱交換を行っ
た後膨張機構7a、7bを通して室外熱交換器4a、4
bに導くようになっており、その冷媒回路8a、8bに
よって熱移動装置9a、9bが構成されている。
1b to heat exchangers 5a, 5b, where heat exchange is performed, and then passed through expansion mechanisms 7a, 7b to outdoor heat exchangers 4a, 4.
The refrigerant circuits 8a and 8b constitute heat transfer devices 9a and 9b.

また、各室内ユニットB、〜B4にはそれぞれ室内熱交
換器(凝縮器)10及び膨張機構11が設けられている
Further, each of the indoor units B, to B4 is provided with an indoor heat exchanger (condenser) 10 and an expansion mechanism 11, respectively.

次に動作について説明する。Next, the operation will be explained.

暖房運転時には、圧縮機2a、2bの冷媒が順次西方弁
3a、3b、室内熱交換@10、膨張機構11及び室外
熱交換器4a、4bを通って再び圧縮512a、2bに
循環され、各室内ユニットB、〜B4を配置した部屋の
暖房が行われる。また、冷房運転時には四方弁3a、3
bが切り換えられ、冷媒の流れが逆になり、各部屋の冷
房が行われる。ここで、二つの冷媒循環系統1a、lb
の間には、一方の冷媒循環系統1aまたは1bの室外熱
交換器4aまたは4bの上流側に配置された熱交換i5
aまたは5bと、他方の冷媒循環系統1aまたは1bの
圧縮機2aまたは2bからの冷媒を上記熱交換15aま
たは5bに流通させた後に膨張機構73または7bを経
て該他方の冷媒循環系統1aまたは1bの室外熱交換器
4aまたは4bの上流側に戻す冷媒回路8aまたは8b
と、該冷媒回路8aまたは8bに配置された開閉弁6a
または6bとからなる熱移動装置9aまたは9bが備え
られており、上記一方の冷媒循環系統1aまたは1bの
圧縮機2aまたは2bの最大能力具1の能力が要求され
た時には、上記開閉弁6aまたは6bが開かれる。これ
により、他方の冷媒循環系統1aまたは1bの暖房能力
が増加される。
During heating operation, the refrigerant in the compressors 2a and 2b is circulated through the west valves 3a and 3b, the indoor heat exchange @10, the expansion mechanism 11, and the outdoor heat exchangers 4a and 4b again to the compressors 512a and 2b, and The rooms in which the units B, to B4 are arranged are heated. Also, during cooling operation, the four-way valves 3a and 3
b is switched, the flow of refrigerant is reversed, and each room is cooled. Here, two refrigerant circulation systems 1a, lb
In between, there is a heat exchanger i5 arranged upstream of the outdoor heat exchanger 4a or 4b of one refrigerant circulation system 1a or 1b.
a or 5b, and the refrigerant from the compressor 2a or 2b of the other refrigerant circulation system 1a or 1b is passed through the heat exchanger 15a or 5b and then passed through the expansion mechanism 73 or 7b to the other refrigerant circulation system 1a or 1b. A refrigerant circuit 8a or 8b that returns to the upstream side of the outdoor heat exchanger 4a or 4b.
and an on-off valve 6a disposed in the refrigerant circuit 8a or 8b.
or 6b is provided, and when the capacity of the maximum capacity device 1 of the compressor 2a or 2b of the one refrigerant circulation system 1a or 1b is required, the on-off valve 6a or 6b is opened. Thereby, the heating capacity of the other refrigerant circulation system 1a or 1b is increased.

(発明が解決しようとする課題) しかしながら、上記のような冷凍機械の制御装置にあつ
ては、一方の冷凍循環系統の圧縮機から吐出された高温
ガス冷媒と他方の冷媒循環系統の蒸発器(室外熱交換器
)の入口付近の低圧冷媒との間で熱移動を行うことにな
るので、他方の蒸発器内の冷媒はかわき度が大きいとこ
ろを利用することになり、従って蒸発器内の熱伝達率の
小さいところで利用することになり、冷凍サイクルの効
率が下がるという問題点があり、冷房運転時に冷房能力
の増加が期待できないという問題点があった。
(Problem to be Solved by the Invention) However, in the control device for a refrigeration machine as described above, the high temperature gas refrigerant discharged from the compressor of one refrigeration circulation system and the evaporator of the other refrigerant circulation system ( Since heat is transferred between the low-pressure refrigerant near the inlet of the outdoor heat exchanger), the refrigerant in the other evaporator is used where it has a high degree of freshness, and therefore the heat inside the evaporator is There is a problem in that the efficiency of the refrigeration cycle decreases because it is used where the transmission rate is low, and an increase in cooling capacity cannot be expected during cooling operation.

この発明は、このような問題点を解決するためになされ
たもので、冷凍サイクルの効率が良く、冷房運転時に冷
房能力の大幅な増加を図ることが可能な冷凍機械の制御
装置を得ることを目的としている。
This invention was made to solve these problems, and aims to provide a control device for a refrigeration machine that has a high efficiency refrigeration cycle and can significantly increase cooling capacity during cooling operation. The purpose is

〔!!列を解決するための手段〕[! ! Means for resolving columns]

この発明に係る冷711機減の制御装置は、圧縮機、四
゛方弁、室外熱交換器及びアキュムレータを順次冷媒配
管で接続した第1の冷凍サイクルと、圧縮機、凝縮器、
膨張機構及びアキュムレータ式熱移動装置を順次冷媒配
管で接続した第2の冷凍サイクルの二系統の冷凍サイク
ルを備えた冷凍機械の制御装置であって、上記第1の冷
凍サイクルの室外熱交換器の後流側に第1の開t11弁
を設け、その室外熱交換器と第1の開閉弁との間から第
2の開閉弁及び上記第2の冷凍サイクルのアキュムレー
タ式熱移動装置を通して第1の冷凍サイクルのアキュム
レータに冷媒を導くバイパス回路を設け、第1の7fJ
凍サイクルの冷房運転時に該第1の冷凍サイクルの圧縮
機の能力以上の要求があった時には、上記第1の!A1
1弁を閉じて第2の開閉弁を開き、上記アキュムレータ
式熱移動装置で系統間熱移動させるように構成したもの
である。
A control device for reducing refrigeration by 711 units according to the present invention includes a first refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, and an accumulator are sequentially connected by refrigerant piping, a compressor, a condenser,
A control device for a refrigeration machine equipped with two refrigeration cycles, a second refrigeration cycle in which an expansion mechanism and an accumulator type heat transfer device are sequentially connected by refrigerant piping, the control device comprising: an outdoor heat exchanger of the first refrigeration cycle; A first opening T11 valve is provided on the downstream side, and the first opening T11 valve is provided between the outdoor heat exchanger and the first opening/closing valve through the second opening/closing valve and the accumulator type heat transfer device of the second refrigeration cycle. A bypass circuit is provided to guide the refrigerant to the accumulator of the refrigeration cycle, and the first 7fJ
During cooling operation of the refrigeration cycle, when there is a demand that exceeds the capacity of the compressor of the first refrigeration cycle, the first ! A1
One valve is closed, the second on-off valve is opened, and the accumulator type heat transfer device is configured to transfer heat between systems.

(作用〕 この発明の冷凍機械の制御装置においては、第1の冷凍
サイクルの熱交換器から第2の冷凍サイクルのアキュム
レータ式熱移動装置を通して第1の冷凍サイクルのアキ
ュムレータに導く冷媒のバイパス回路が設けられており
、第1の冷凍サイクルの冷房運転時に圧縮機の能力を越
えると上記バイパス回路に冷媒が流れて第2の冷凍サイ
クルのアキュムレータ式熱移動装置で系統間熱移動が行
われる。
(Operation) In the refrigeration machine control device of the present invention, a bypass circuit for guiding refrigerant from the heat exchanger of the first refrigeration cycle to the accumulator of the first refrigeration cycle through the accumulator type heat transfer device of the second refrigeration cycle is provided. When the capacity of the compressor is exceeded during cooling operation of the first refrigeration cycle, the refrigerant flows into the bypass circuit, and inter-system heat transfer is performed in the accumulator type heat transfer device of the second refrigeration cycle.

(実施例〕 第1図はこの発明の一実施例を示す構成図であり、空気
調和機の冷媒回路を示している。この空気調和機は、室
外ユニットA及び複数の室内ユニットBから構成ざわ、
室外ユニットAは第1の冷凍サイクルユニットA、と補
助の第2の冷凍サイクルユニットA、の二系統を有して
いる。
(Embodiment) Fig. 1 is a block diagram showing an embodiment of the present invention, showing a refrigerant circuit of an air conditioner.This air conditioner is composed of an outdoor unit A and a plurality of indoor units B. ,
The outdoor unit A has two systems: a first refrigeration cycle unit A and an auxiliary second refrigeration cycle unit A.

上記第1の冷凍サイクルユニットA1には、圧縮機2.
四方弁3.室外熱交換器4及び高低圧間の熱交換を行う
アキュムレータ12が備えられ、また室外熱交換器4の
後流側には第1の開閉弁13が設けられている。そして
、こわらが順次冷媒配管で接続されている。第2の冷凍
サイクルユニットA2には、圧縮機14.凝縮器15.
膨張機構16及びアキュムレータ式熱移動装置17が備
えられており、これらが順次冷媒配管で接続されている
。そして、上記第1の冷凍サイクルユニッl−A 、の
室外熱交換器4と第1の開閉弁!3との間から第2の開
閉弁18及び第2の冷凍サイクルユニットA2のアキュ
ムレータ式熱移動装置17を通して第1の冷凍サイクル
ユニットA、のアキュムレータ12に冷媒を導くバイパ
ス回路19が設けられており、第1の冷凍サイクルユニ
ットAIの冷房運転時に該第1の冷凍サイクルユニット
A1の圧縮la2の能力以上の要求があった時には、上
記第1の開閉弁13を閉じて第2の開閉弁18を開き、
上記アキュムレータ式熱移動装W117で系統間熱移動
させるように構成さゎている。また、各室内ユニットB
には室内熱交換器10及び膨張機構11が備えられてお
り、これらは室外ユニットAと冷媒配管によって接続ぎ
わでいる。
The first refrigeration cycle unit A1 includes a compressor 2.
Four-way valve 3. An outdoor heat exchanger 4 and an accumulator 12 for exchanging heat between high and low pressures are provided, and a first on-off valve 13 is provided on the downstream side of the outdoor heat exchanger 4. The stiffeners are successively connected by refrigerant piping. The second refrigeration cycle unit A2 includes a compressor 14. Condenser 15.
An expansion mechanism 16 and an accumulator type heat transfer device 17 are provided, and these are sequentially connected by refrigerant piping. And the outdoor heat exchanger 4 and the first on-off valve of the first refrigeration cycle unit l-A! A bypass circuit 19 is provided that guides the refrigerant from between the refrigerant 3 and the accumulator 12 of the first refrigeration cycle unit A through the second on-off valve 18 and the accumulator type heat transfer device 17 of the second refrigeration cycle unit A2. During the cooling operation of the first refrigeration cycle unit AI, when there is a demand for the compression la2 of the first refrigeration cycle unit A1 or higher, the first on-off valve 13 is closed and the second on-off valve 18 is closed. Open,
The accumulator type heat transfer device W117 is configured to transfer heat between systems. In addition, each indoor unit B
is equipped with an indoor heat exchanger 10 and an expansion mechanism 11, which are connected to the outdoor unit A through refrigerant piping.

次に動作について説明する。Next, the operation will be explained.

暖房運転と冷房運転とで四方弁3が切り換えられ、冷媒
の流わが逆になり、室内ユニットBを配置した各部屋の
冷暖房が行われる。その際、第1の冷凍サイクルユニッ
トA、の通常の冷房運転時には、圧縮Ia2から吐出さ
れた冷媒は順次四方弁3、室外熱交換器4.第1の開閉
弁13.アキュムレータ12.膨張機構11及び室内熱
交換器IOを通って再び四方弁3.アキュムレータ12
、圧縮機2の順に流れる。第2図はこの冷媒回路のそリ
ニル線図を示したもので、第1図の各部a〜eにおける
冷媒の圧力P (kg/am2)とエンタルピーH(k
cal/kg)の関係を示している。この第2図のc−
d間とf−d間は同一のエンタルピー差であることを示
しており、これはアキュムレータ12で高低圧間の熱交
換を行うことによって得られる効果であり、冷房能力と
して蒸発器(室外熱交!!I!34)に利用されるエン
タルピー差はe−f間のエンタルピー差となる。
The four-way valve 3 is switched between heating operation and cooling operation, the flow of the refrigerant is reversed, and each room in which the indoor unit B is arranged is heated and cooled. At that time, during normal cooling operation of the first refrigeration cycle unit A, the refrigerant discharged from the compression Ia2 is sequentially transferred to the four-way valve 3, the outdoor heat exchanger 4. First on-off valve 13. Accumulator 12. Through the expansion mechanism 11 and the indoor heat exchanger IO, the four-way valve 3. Accumulator 12
, compressor 2 in this order. Figure 2 shows a solinir diagram of this refrigerant circuit, showing the refrigerant pressure P (kg/am2) and enthalpy H (k
cal/kg). c- in this figure 2
This shows that the enthalpy difference between d and f is the same, and this is an effect obtained by exchanging heat between high and low pressures in the accumulator 12. The enthalpy difference used in !!I!34) is the enthalpy difference between e and f.

ここで、上記第1の冷凍サイクルユニットA。Here, the first refrigeration cycle unit A.

の冷房運転時に、室内ユニットB側で冷房負荷が増大し
て圧縮機2の能力が不足した時、つまり圧縮機2の最大
能力を越える能力の要求があった時には、第!の開閉弁
13が閉じて第2の開FA′#−18が開くと共に、補
助の第2の冷凍サイクルユニットA2が運転される。こ
れにより、室外熱交換器4を通った冷媒がアキュムレー
タ式熱移動装置17に導かれ、ここで二系統間の熱移動
が行われて室内ユニットBに導かれる。すなわち、第1
の冷凍サイクルユニットA1の冷房運転中の冷媒配管の
高圧液冷媒が熱交換可能に第2の冷凍サイクルユニット
A2の熱移動装置17を通過し、その後光の冷凍サイク
ルに戻され、再び蒸発器(室外熱交換器4)に循環させ
られる。このため、サブクールが大きくとられ、冷房能
力に利用される蒸発器出入口のエンタルピー差が大きく
とられ、冷房能力が大幅に増加する。
During cooling operation, when the cooling load increases on the indoor unit B side and the capacity of the compressor 2 becomes insufficient, that is, when there is a request for a capacity exceeding the maximum capacity of the compressor 2, when the capacity of the compressor 2 exceeds the maximum capacity. The opening/closing valve 13 is closed and the second opening FA'#-18 is opened, and the auxiliary second refrigeration cycle unit A2 is operated. As a result, the refrigerant that has passed through the outdoor heat exchanger 4 is guided to the accumulator type heat transfer device 17, where heat transfer between the two systems is performed and then guided to the indoor unit B. That is, the first
The high-pressure liquid refrigerant in the refrigerant piping of the second refrigeration cycle unit A1 during cooling operation passes through the heat transfer device 17 of the second refrigeration cycle unit A2 in a heat-exchanging manner, and is then returned to the optical refrigeration cycle, and is returned to the evaporator ( It is circulated to the outdoor heat exchanger 4). For this reason, a large amount of subcooling is achieved, and a large enthalpy difference between the entrance and exit of the evaporator, which is used for cooling capacity, is set, and the cooling capacity is greatly increased.

第3図は上記補助冷凍サイクル運転時のモリエル線図を
示したもので、第3図(a)は第1の冷凍サイクルユニ
ットA、の動き、第3図(b)は第2の冷凍サイクルユ
ニットA2の動きをそれぞれ示している。この第3図で
示されるように、c−d間の高圧側の冷媒と補助冷凍サ
イクルのd’−a’間の低圧側の冷媒との間で系統間熱
移動が行われるため、冷房に利用できるエンタルピー差
はe−f(f=a)間のエンタルピー差となり、大幅な
冷房能力の増加が期待できる。また、室内熱交換器10
へ搬送されるd点の冷媒はサブクールの大きくとれた液
冷媒となるので、圧損1階高差等による圧力降下が発生
しても、常にフラッシュガスの発生もなく、膨張機構1
1を通して冷媒が各室内熱交換器lOに円滑に分配され
る。
Fig. 3 shows Mollier diagrams during operation of the auxiliary refrigeration cycle, in which Fig. 3(a) shows the movement of the first refrigeration cycle unit A, and Fig. 3(b) shows the movement of the second refrigeration cycle. The movements of unit A2 are shown respectively. As shown in Fig. 3, inter-system heat transfer occurs between the refrigerant on the high pressure side between c and d and the refrigerant on the low pressure side between d' and a' of the auxiliary refrigeration cycle. The usable enthalpy difference is the enthalpy difference between e and f (f=a), and a significant increase in cooling capacity can be expected. In addition, the indoor heat exchanger 10
The refrigerant at point d, which is transported to the expansion mechanism 1, is a liquid refrigerant with a large subcool.
1 through which the refrigerant is smoothly distributed to each indoor heat exchanger lO.

このように、第1の冷凍サイクルの晶圧液冷媒と補助の
第2の冷凍サイクルの低圧二相冷媒との間で熱交換を行
うようにしたので5冷房運転時に蒸発器(室外熱交換器
)内の熱伝達率の高い、かわき度の小さいところを利用
することができ、冷凍サイクルの効率が向上する。
In this way, heat exchange is performed between the crystalline pressure liquid refrigerant in the first refrigeration cycle and the low-pressure two-phase refrigerant in the auxiliary second refrigeration cycle. ) can be used to improve the efficiency of the refrigeration cycle.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明のよれば、第1の冷凍サイクル
の室外熱交換器の後流側に第1の開閉弁を設け、その室
外熱交換器と第1の開閉弁との間から第2の開閉弁及び
第2の冷凍サイクルのアキュムレータ式熱移動装置を通
して第1の冷凍サイクルのアキュムレータに冷媒を導く
バイパス回路を設け、第1の冷凍サイクルの冷房運転時
に該′s1の冷凍サイクルの圧縮機の能力以上の要求が
あった時には、上記第1の開閉弁を閉じて第2の開閉弁
を開き、上記アキュムレータ式熱移動装置で系統間熱移
動させるようにしたため、冷凍サイクルの効率が向上し
、冷房運転時の冷房能力の大幅な増加を図ることができ
るという効果がある。
As described above, according to the present invention, the first on-off valve is provided on the downstream side of the outdoor heat exchanger of the first refrigeration cycle, and the first on-off valve is provided between the outdoor heat exchanger and the first on-off valve. A bypass circuit is provided to guide the refrigerant to the accumulator of the first refrigeration cycle through the on-off valve of 2 and the accumulator type heat transfer device of the second refrigeration cycle, and the compression of the refrigeration cycle of 's1 is performed during the cooling operation of the first refrigeration cycle. When a demand exceeds the capacity of the machine, the first on-off valve is closed and the second on-off valve is opened to transfer heat between systems using the accumulator type heat transfer device, improving the efficiency of the refrigeration cycle. However, there is an effect that the cooling capacity during cooling operation can be significantly increased.

【図面の簡単な説明】 第1図はこの発明の一実施例を示す構成図、第2図は第
1図の冷媒回路の通常の冷房運転時におけるそリニル線
図、第3図(a)、(b)は′s1図の冷媒回路の補助
冷凍サイクル運転時におけるモリエル線図、第4図は従
来例を示す構成図である。 A −−−−−室外ユニット A、−−−−−・第1の冷凍サイクルユニットA、−−
−−・第2の冷凍サイクルユニットB −−−−一室内
ユニット 2・−・・・圧縮機 3−−−−−四方弁 4・・・−室外熱交換器 !0・・・・−室内熱交換器 11−−−−膨張機構 12・・・・・・アキュムレータ 13・−・・・第1の開閉弁 14−−−圧縮機 15−−−−凝縮器 1.6−・・・・・駐張機構 17・・・・・・アキュムレータ式熱移動装置18・−
・・・第2の開閉弁 19−−−−−−バイパス回路 なお1図中同一符号は同一または相当部分を示す。
[Brief Description of the Drawings] Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a solenoid diagram of the refrigerant circuit shown in Fig. 1 during normal cooling operation, and Fig. 3 (a). , (b) is a Mollier diagram of the refrigerant circuit shown in FIG. A -------Outdoor unit A, -----・First refrigeration cycle unit A, --
--- Second refrigeration cycle unit B --- One indoor unit 2 --- Compressor 3 --- Four-way valve 4 --- Outdoor heat exchanger! 0...-Indoor heat exchanger 11--Expansion mechanism 12...Accumulator 13--First on-off valve 14--Compressor 15--Condenser 1 .6-... Parking mechanism 17... Accumulator type heat transfer device 18-
. . . Second on-off valve 19 --- Bypass circuit Note that the same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外熱交換器及びアキュムレータを順
次冷媒配管で接続した第1の冷凍サイクルと、圧縮機、
凝縮器、膨張機構及びアキュムレータ式熱移動装置を順
次冷媒配管で接続した第2の冷凍サイクルの二系統の冷
凍サイクルを備えた冷凍機械の制御装置であって、上記
第1の冷凍サイクルの室外熱交換器の後流側に第1の開
閉弁を設け、その室外熱交換器と第1の開閉弁との間か
ら第2の開閉弁及び上記第2の冷凍サイクルのアキュム
レータ式熱移動装置を通して第1の冷凍サイクルのアキ
ュムレータに冷媒を導くバイパス回路を設け、第1の冷
凍サイクルの冷房運転時に該第1の冷凍サイクルの圧縮
機の能力以上の要求があった時には、上記第1の開閉弁
を閉じて第2の開閉弁を開き、上記アキュムレータ式熱
移動装置で系統間熱移動させることを特徴とする冷凍機
械の制御装置。
A first refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, and an accumulator are sequentially connected by refrigerant piping, a compressor,
A control device for a refrigeration machine equipped with two systems of refrigeration cycles, a second refrigeration cycle in which a condenser, an expansion mechanism, and an accumulator type heat transfer device are sequentially connected by refrigerant piping, the controller controlling the outdoor heat of the first refrigeration cycle. A first on-off valve is provided on the downstream side of the exchanger, and a second on-off valve is provided between the outdoor heat exchanger and the first on-off valve through the second on-off valve and the accumulator type heat transfer device of the second refrigeration cycle. A bypass circuit is provided to guide the refrigerant to the accumulator of the first refrigeration cycle, and when the demand exceeds the capacity of the compressor of the first refrigeration cycle during cooling operation of the first refrigeration cycle, the first on-off valve is turned on. A control device for a refrigeration machine, characterized in that the accumulator-type heat transfer device transfers heat between systems by closing the first on-off valve and opening a second on-off valve.
JP3690989A 1989-02-16 1989-02-16 Control device for refrigeratin machine Pending JPH02217758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3690989A JPH02217758A (en) 1989-02-16 1989-02-16 Control device for refrigeratin machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3690989A JPH02217758A (en) 1989-02-16 1989-02-16 Control device for refrigeratin machine

Publications (1)

Publication Number Publication Date
JPH02217758A true JPH02217758A (en) 1990-08-30

Family

ID=12482905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3690989A Pending JPH02217758A (en) 1989-02-16 1989-02-16 Control device for refrigeratin machine

Country Status (1)

Country Link
JP (1) JPH02217758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266963B1 (en) 1999-10-05 2001-07-31 The Coca-Cola Company Apparatus using stirling cooler system and methods of use
US6272867B1 (en) 1999-09-22 2001-08-14 The Coca-Cola Company Apparatus using stirling cooler system and methods of use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272867B1 (en) 1999-09-22 2001-08-14 The Coca-Cola Company Apparatus using stirling cooler system and methods of use
US6347523B1 (en) 1999-09-22 2002-02-19 The Coca-Cola Company Apparatus using stirling cooler system and methods of use
US6266963B1 (en) 1999-10-05 2001-07-31 The Coca-Cola Company Apparatus using stirling cooler system and methods of use

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
KR20040050477A (en) An air-condition system
JPH0711366B2 (en) Air conditioner
US6038873A (en) Air conditioner capable of controlling an amount of bypassed refrigerant according to a temperature of circulating refrigerant
JP3969381B2 (en) Multi-room air conditioner
JPH0420764A (en) Air conditioner
JPH02217758A (en) Control device for refrigeratin machine
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JP2817816B2 (en) Multi-room air conditioner
JPH06257874A (en) Heat pump type air-conditioning machine
JP2000154941A (en) Refrigerator
JP2705044B2 (en) Air conditioner
US20220214056A1 (en) Air conditioner
JP2653749B2 (en) Heat pump package
JPH0926219A (en) Cooling/heating apparatus for many rooms
JPH04217759A (en) Multiroom type air-conditioner
KR100612092B1 (en) Air-conditioner
JPH02118365A (en) Air conditioner
JP2524382B2 (en) Air conditioner
JPH0886529A (en) Air conditioner
JPH10141815A (en) Air conditioner
JP3569546B2 (en) Air conditioner
KR100243055B1 (en) Heating/cooling device of a separable air conditioner
JPH0621727B2 (en) Air conditioner
JPH0325256A (en) Multi-room type air conditioner