JPH02217753A - Control of refrigerant flow rate controller - Google Patents

Control of refrigerant flow rate controller

Info

Publication number
JPH02217753A
JPH02217753A JP3611589A JP3611589A JPH02217753A JP H02217753 A JPH02217753 A JP H02217753A JP 3611589 A JP3611589 A JP 3611589A JP 3611589 A JP3611589 A JP 3611589A JP H02217753 A JPH02217753 A JP H02217753A
Authority
JP
Japan
Prior art keywords
control
temperature
valve
state
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3611589A
Other languages
Japanese (ja)
Inventor
Megumi Otani
大谷 恵
Tsutomu Tanaka
努 田中
Katsuhiko Hoshi
勝彦 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3611589A priority Critical patent/JPH02217753A/en
Publication of JPH02217753A publication Critical patent/JPH02217753A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To establish satisfactory transient cooling and smoothly transfer the operation to a stationary condition by flowing a refrigerant by two-step control wherein an electric valve is first fully opened upon building up of a transient interval of re-starting of cooling and then the electric valve is automatically adjusted to a proper degree of an opening. CONSTITUTION:A stationary condition (continuous cooling operation) are assumed as a state 1, a fully closed or refrigerator interruption state a state 2, and a transient condition from the interruption to the stationary condition a state 1. In the state 1, a control signal for adjusting the degree of valve open ing is issued from a valve driving part 16 to an electric valve 3 for effecting overheating control, and in the state 2 a valve opening signal BP is issued from a valve fully closing signal generator part 20 to the valve driving part 16 for effecting temperature control for a space to be cooled. For control in the state 3, the valve is fully opened by a constant control signal until an initial change is confirmed, and at the initial stage of re-starting of the cooling rapid cooling effect is assured. Further, upon completely transferring the operation to the stationary state 1, a result of the control in the previous stationary state is referred to for building up the operation.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空気調和機、冷凍・冷蔵庫、冷凍・冷蔵ショー
ケース等の冷凍装置に適用される冷媒流量制御装置の制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of controlling a refrigerant flow rate control device applied to refrigeration devices such as air conditioners, freezers/refrigerators, and freezer/refrigerated showcases.

(ロ)従来の技術 特公昭5g−47628号公報(IPC,F25B41
106)、刊行物「冷凍」の第56巻第641号(昭和
56年3月号)第60頁〜第64頁には、電動弁の1種
である熱雷式膨張弁を使用した冷媒流量制御装置が示さ
れている。かかる冷媒流量制御装置によれば、蒸発器の
入口乃至中間部に設けた第1の温度センサと、蒸発器の
出口部に設けた第2の温度センサとからの各々の電気信
号の差に応じて電動弁の弁開度を制御する電気信号を出
力して前記電気信号の差を一定に保ち、蒸発器の過熱度
制御を略一定に保つ冷媒流量制御が行なわれている。
(b) Conventional technical patent publication No. 5g-47628 (IPC, F25B41
106), in the publication "Refrigerating", Vol. 56, No. 641 (March 1983 issue), pp. 60 to 64, there is a description of the refrigerant flow rate using a thermal lightning expansion valve, which is a type of electric valve. A control device is shown. According to such a refrigerant flow rate control device, the refrigerant flow rate control device operates according to the difference between the electric signals from the first temperature sensor provided at the inlet or intermediate portion of the evaporator and the second temperature sensor provided at the outlet portion of the evaporator. Refrigerant flow rate control is performed by outputting an electric signal to control the valve opening of the motor-operated valve to keep the difference between the electric signals constant and keeping the degree of superheating of the evaporator substantially constant.

また、上記従来技術を更に改良し、i!!動弁にょろ過
熱度制御に加え、電動弁によって被冷却空間の温度制御
を行う冷媒流量制御装置も提案されている。
In addition, the above conventional technology has been further improved, and i! ! In addition to valve-operated filtration heat control, a refrigerant flow control device has also been proposed that controls the temperature of a space to be cooled using an electric valve.

その冷却制御装置を第11図〜第13図に、又その動作
特性を第14図に示す。今、上記各回に従って説明する
と、Pは冷凍装置を示し、この冷凍装置Pは、圧縮機1
.凝縮器2.電動弁3、被冷却空間4に配置された蒸発
器5とから冷媒回w16を形成し、冷媒を圧縮、凝縮液
化、減圧(膨張)、蒸発気化させる周知のサイクルを形
成し、蒸発器5で熱交換された冷気7を送風機8で矢印
の如く循環させるa7aは吐出冷気を、7bは吸込冷気
を示している。9は前記電動弁の開閉動作を制御するマ
イクロプロセッサ−等の制御器にしてこの制御器9には
冷媒の過熱度制御用センサとして蒸発器の出口に設けら
れる蒸発器出口温度センサ10と、蒸発器の入口乃至中
間に設けられる蒸発温度センサ1.1からの検知値が電
気信号として信号ラインL1゜L2により入力し、また
被冷却空間内の冷気温度を測定する温度制御用センサと
して吐出冷気温度センサ12と吸込温度センサ13とが
設けられ、これらからの検知値も電気信号として信号ラ
インL31L4により入力している。L、は電動弁3へ
の制御信号が出力する信号ラインにして、後述するよう
な演算処理を制御器9が行って出力する。ここで制御器
9の内部構成を第12図のブロック図で説明すると、目
標値となる設定過熱度とフィードバック信号とを比較す
る第1比較部14と、調節部となる内部アルゴリズム部
15と、操作部となる弁駆動部16と、蒸発器5の温度
を検出する蒸発器温度測定部17と、被冷却空間4の温
度を検出する被冷却空間温度測定部18と、設定湿度と
被冷却空間温度とを比較する第2比較部19と、弁全開
信号発生部20とからなるものである。なお、前記電動
弁として本発明では第13図に示すパルス暉動式膨張弁
を用いており、該弁はコイル21、ロータ22、ギヤー
23、駆動シャフト24からなるパルスモータ−25と
、前記駆動シャフトにて押圧される弁部26、ベローズ
27.冷媒入口管28、冷媒出口管29からなる弁本体
30とにより構成されており、前記弁駆動部からの弁開
度調節信号(パルス信号)によって適当な過熱度を維持
するようにパルスモータ−25を駆動する。又、パルス
モータ−25の回転力は、駆動シャフト24の上下運動
に変換され、弁開度を調節する。
The cooling control device is shown in FIGS. 11 to 13, and its operating characteristics are shown in FIG. 14. Now, to explain according to each episode above, P indicates a refrigeration system, and this refrigeration system P is a compressor 1.
.. Condenser 2. A refrigerant circuit w16 is formed from the electric valve 3 and the evaporator 5 disposed in the space to be cooled 4, and a well-known cycle is formed in which the refrigerant is compressed, condensed and liquefied, decompressed (expanded), and evaporated. The heat-exchanged cool air 7 is circulated by the blower 8 as shown by the arrow. A7a indicates the discharged cold air, and 7b indicates the sucked cold air. Reference numeral 9 denotes a controller such as a microprocessor for controlling the opening/closing operation of the electric valve, and the controller 9 includes an evaporator outlet temperature sensor 10 provided at the outlet of the evaporator as a sensor for controlling the degree of superheating of the refrigerant; The detected value from the evaporation temperature sensor 1.1 installed at the inlet or the middle of the container is input as an electrical signal through signal lines L1 and L2, and the discharge cold air temperature is also used as a temperature control sensor to measure the temperature of the cold air in the space to be cooled. A sensor 12 and a suction temperature sensor 13 are provided, and detected values from these are also input as electrical signals through signal lines L31L4. L is a signal line through which a control signal to the electric valve 3 is output, and the controller 9 performs arithmetic processing as will be described later and outputs the signal line. Here, the internal configuration of the controller 9 will be explained using the block diagram of FIG. 12. It includes a first comparison section 14 that compares the set degree of superheat, which is a target value, and a feedback signal, an internal algorithm section 15, which serves as an adjustment section, A valve drive unit 16 serving as an operating unit, an evaporator temperature measuring unit 17 that detects the temperature of the evaporator 5, a cooled space temperature measuring unit 18 that detects the temperature of the cooled space 4, and a set humidity and a cooled space. It consists of a second comparison section 19 that compares the temperature with the temperature, and a valve fully open signal generation section 20. In addition, in the present invention, as the motor-operated valve, a pulse hydraulic expansion valve shown in FIG. Valve portion 26 and bellows 27 pressed by the shaft. It is composed of a valve body 30 consisting of a refrigerant inlet pipe 28 and a refrigerant outlet pipe 29, and a pulse motor 25 is operated to maintain an appropriate degree of superheat by a valve opening adjustment signal (pulse signal) from the valve driving section. to drive. Further, the rotational force of the pulse motor 25 is converted into vertical movement of the drive shaft 24 to adjust the valve opening degree.

上記構成に於いて電動弁の制御動作に付き説明する。The control operation of the electric valve in the above configuration will be explained.

今、仮に設定過熱度(SH5)を5℃とした場合測定過
熱度SHは蒸発器温度測定部17によって、蒸発器出口
温度センサ10の検出する蒸発器出口温度(8丁)−蒸
発温度センサ11の検出する蒸発温度(ET)から算出
され、この測定過熱度(SH)と設定過熱度(SH3)
とを第1比較部14で比較してその偏差信号(DV)を
内部アルゴリズム部15に入力し、この内部アルゴリズ
ム部で偏差修正を行ない弁駆動部16に調節信号(H5
S)を入力する。弁駆動部16は、調節信号(H3S)
に基づき設定過熱度(SO5)の5℃との偏差に応じた
弁開度調節信号(BKG)を電動弁3に対して継続して
与え、即ち種々のパラメータとなる外乱(DT)を内部
アルゴリズム部15で排除して収斂したパルス信号を電
動弁3に与え、弁開度→開口面積→冷媒流量(GA)の
増減という機械作用によって設定過熱度(S)Is)の
5℃に冷媒流量(GA)を保つべく適切な弁開度を維持
する。この結果、被冷却空間4の測定温度(T耐が設定
温度(Ts)に到達する。この過熱度制御による電動弁
3の動作は第14図のτ。〜τ□の時間に行なわれ、こ
の間の弁開度!glffi5は不定形の階段状に行なわ
れる。
Now, if the set degree of superheat (SH5) is set to 5°C, the measured degree of superheat SH is determined by the evaporator temperature measuring section 17 as follows: evaporator outlet temperature (8) detected by the evaporator outlet temperature sensor 10 - evaporator temperature sensor 11 The measured superheat degree (SH) and the set superheat degree (SH3) are calculated from the detected evaporation temperature (ET).
The first comparator 14 compares the deviation signal (DV) and inputs the deviation signal (DV) to the internal algorithm section 15, which corrects the deviation and sends the adjustment signal (H5) to the valve drive section 16.
Enter S). The valve drive unit 16 receives an adjustment signal (H3S)
Based on this, a valve opening adjustment signal (BKG) corresponding to the deviation from the set superheat degree (SO5) of 5°C is continuously given to the electric valve 3. In other words, the internal algorithm The pulse signal rejected and converged in section 15 is applied to the electric valve 3, and the refrigerant flow rate (Is) is adjusted to 5°C of the set superheat degree (S) Is) by the mechanical action of increasing/decreasing the valve opening → opening area → refrigerant flow rate (GA). Maintain an appropriate valve opening to maintain GA). As a result, the measured temperature (T resistance) of the cooled space 4 reaches the set temperature (Ts). The operation of the electric valve 3 by this superheat degree control is performed during the time period τ to τ□ in FIG. The valve opening degree !glffi5 is performed in the form of irregular steps.

そして、被冷却空間4の温度が被冷却空間温度測定部1
8で測定温度(TM)として得られるが、この測定温度
(TLI)は吐出冷気7aの温度(DA)と吸込冷気の
温度(RA)の平均値、即ちTM =DA+RA/ 2
で算出される。この得られた測定温度(TM)と。
Then, the temperature of the cooled space 4 is determined by the cooled space temperature measurement unit 1.
8 as the measured temperature (TM), and this measured temperature (TLI) is the average value of the temperature of the discharged cold air 7a (DA) and the temperature of the sucked cold air (RA), that is, TM = DA + RA / 2
It is calculated by This obtained measured temperature (TM).

設定温度(Ts)とを第2比較部19で比較して(TM
)≦(Ts)の条件で、弁全閉信号発生部20から弁全
閉信号(BP)を弁駆動部16に入力して電動弁3を弁
閉させ、サーモサイクルと称される温度制御に切換え、
被冷却空間4の冷え過ぎを防止する。しかもこの温度1
1制御を過熱度制御とは関係なく電動弁3で行なってい
る。
The second comparing section 19 compares the set temperature (Ts) with the set temperature (Ts) and
)≦(Ts), the valve fully closed signal (BP) is input from the valve fully closed signal generator 20 to the valve drive unit 16 to close the electric valve 3, and performs temperature control called thermocycle. switching,
To prevent the cooled space 4 from becoming too cold. Moreover, this temperature 1
1 control is performed by the electric valve 3 regardless of superheat degree control.

又、デユーティサイクルによる冷却運転を可能とするべ
く、タイマー(T)が設けられており、−定時間電動弁
3を一定の開口度で開は冷媒を流通させて冷却運転を行
い、所定時間後、電動弁3を閉止し、成る期間冷却運転
停止状態とし、その後再び冷却運転に戻ると言う繰り返
し動作をさせる。
In addition, a timer (T) is provided to enable cooling operation based on the duty cycle. - When the motor-operated valve 3 is opened at a certain opening degree for a certain period of time, the cooling operation is performed by circulating the refrigerant. After that, the electric valve 3 is closed, the cooling operation is stopped for a certain period of time, and then the cooling operation is resumed, which is a repeated operation.

上記したような制御方法でもって、電動弁3の開閉制御
を制御器9で行って冷媒流量制御による冷却運転を行っ
ている。
Using the control method described above, the controller 9 controls the opening and closing of the electric valve 3 to perform cooling operation by controlling the refrigerant flow rate.

(ハ)発明が解決しようとする課題 面るに上記構成の従来装置にあっては、過熱度制御によ
る連続的な冷却運転を行っている定常状態から、デフロ
ストやサーモサイクル及びデユーティサイクルによる弁
閉或いは冷凍機が停止する非定常状態に移り、次いで再
びこの停止から定常状態に移行する過度的状態における
電動弁のより円滑なまた迅速な制御は十分に施されてい
ないので、再冷却運転時の冷却スピードが遅く、プルダ
ウン時間が長く延び、利用空間の長時間にわたる温度上
昇を招くと共に、液戻り現象による冷凍機への悪影響等
が生じていた。また、過熱度制御、温度制御を行う各種
温度センサの故障時に対する対策も万全でないので、そ
のような非常時には、冷媒流量制御装置を正常に作動さ
せることが不可能となり、その結果、被冷却空間の適切
な冷却が行えなくなって異常温度状態を招いてしまう欠
点があった。
(c) The problem to be solved by the invention is that in the conventional device with the above configuration, from a steady state in which continuous cooling operation is performed by controlling the degree of superheating, the valves by defrost, thermocycle, and duty cycle Smoother and faster control of the motor-operated valve in a transient state where the refrigerator shuts down or the refrigerator stops, and then transitions from this stop to a steady state is not sufficiently implemented, so during recooling operation. The cooling speed of the refrigerator was slow, the pull-down time was prolonged, and the temperature of the space used increased over a long period of time, and the liquid return phenomenon had an adverse effect on the refrigerator. In addition, there are no thorough measures against failures of the various temperature sensors that control the degree of superheating and temperature, so in such emergencies, it is impossible to operate the refrigerant flow control device normally, and as a result, the space to be cooled becomes This has the drawback of not being able to properly cool the air, leading to abnormal temperatures.

本発明は上記問題点を解決し、再冷却運転時にも冷却が
早急に成され、またセンサ故障に対するバックアップ機
能も十分に備えて、適切な冷却運転が続行するようにし
た冷媒流量制御装置の制御方法を提供することを目的と
する。
The present invention solves the above-mentioned problems, and controls a refrigerant flow rate control device that quickly performs cooling even during re-cooling operation, has a sufficient backup function in case of sensor failure, and continues appropriate cooling operation. The purpose is to provide a method.

(ニ)課厘を解決するための手段 本発明は、蒸発器の入口温度と出口温度を測定する過熱
度制御用センサと、被冷却空間の吐出冷気温度と吸込冷
気温度を測定する温度制御用センサとを用い、これら各
センサからの測定値に基づき電動弁の弁開度制御と弁閉
制御を行う制御器を設け、デフロスト終了後等の再冷却
運転過渡期には、始め電動弁を全開し、その後制御器に
保存している制御弁データから算出する適切な弁開度に
調整する制御を行うと共に、過熱度制御用センサ故障時
には、故障直前の弁開度位置と全開とで電動弁制御を、
また温度制御センサのいずれか一方故障時には正常セン
サの測定値に基づく温度制御を実に双方故障時にはデユ
ーティサイクル運転とするようにした冷媒流量制御装置
の制御方法である。
(d) Means for solving problems The present invention provides a superheat degree control sensor that measures the inlet temperature and outlet temperature of an evaporator, and a temperature control sensor that measures the discharge cold air temperature and suction cold air temperature of the space to be cooled. A controller is installed to control the opening and closing of the motor-operated valve based on the measured values from each sensor, and during the transition period of re-cooling operation such as after defrosting, the motor-operated valve is fully opened at first. Then, control is performed to adjust the valve opening to an appropriate degree calculated from the control valve data stored in the controller, and when the superheat control sensor fails, the electric valve is adjusted to the valve opening position immediately before the failure and fully open. control,
Furthermore, the present invention is a control method for a refrigerant flow rate control device in which temperature control is performed based on the measured value of a normal sensor when either one of the temperature control sensors fails, whereas duty cycle operation is performed when both of the temperature control sensors fail.

(ホ)作 用 冷却運転停止の非定常状態から冷却運転が再開し定常状
態に移行するその過渡状態において、電動弁を一旦全開
し、急冷を行いその後前回の電動弁最終状況に応じた弁
開度に変更して立ち上げて定常状態に移行させる二段階
の制御を行っている。
(E) Function In the transient state where cooling operation resumes from an unsteady state where cooling operation is stopped and shifts to a steady state, the motor-operated valve is once fully opened, rapid cooling is performed, and then the valve is opened according to the final state of the previous motor-operated valve. The system uses two-step control to start up and transition to a steady state.

これによって、過渡時の冷却を良好に行え、また定常状
態への移行もスムーズに行なわれる。そして、過熱度制
御用センサの故障時は、センサが故障になる直前の電動
弁の開閉位置(直前が全開の場合は全開になる直前の開
閉位i!りと全開の2つの開閉位置で、被冷却空間の温
度制御を行い、温度制御用センサの一方の故障時には、
他方の正常センサから被冷却空間の温度を算出し、温度
制御を行う。更に両方のセンサ故障時にはデユーティサ
イクルを作動させ、被冷却空間の冷え過ぎを防止する。
This allows good cooling during transient times and smooth transition to a steady state. When the superheat control sensor fails, the electric valve is opened and closed at the open/close position immediately before the sensor malfunctions (if the previous one is fully open, the open/close position just before it becomes fully open), and the two open/close positions of fully open. It controls the temperature of the cooled space, and if one of the temperature control sensors fails,
The temperature of the space to be cooled is calculated from the other normal sensor and temperature control is performed. Furthermore, when both sensors fail, a duty cycle is activated to prevent the space to be cooled from becoming too cold.

このように、センサ故障時にもそれに応じた制御方法に
て動作するようになっており、何ら心配なく冷却制御を
遂行できる。
In this way, even in the event of a sensor failure, the system operates according to a control method corresponding to the failure, and cooling control can be performed without any worries.

(へ)実施例 以下1本発明の実施例を図面に基づいて説明する。(f) Example An embodiment of the present invention will be described below based on the drawings.

本発明に用いた冷媒流量制御装置の構成は前述した第1
1図〜第14図と同等であり、同装置が実行する制御状
態は下記の如く区別できる。
The configuration of the refrigerant flow rate control device used in the present invention is as described above.
1 to 14, and the control states executed by the device can be distinguished as follows.

定常状態一連続的な冷却運転→状態1と表示。Steady state - continuous cooling operation → Displayed as state 1.

全開成いは冷凍機停止状態→状1m2と表示。When fully opened, the refrigerator is stopped and displayed as 1m2.

そしてこれらの制御状態の詳細比較を第1(a)の図表
に、またこの状態を運転の推移と関連させてグラフ化し
たものを第2図(b)に示す。
A detailed comparison of these control states is shown in the chart of FIG. 1(a), and a graph of this state in relation to the transition of operation is shown in FIG. 2(b).

即ち、同図(a)より状態1なる冷却運転はサーモサイ
クル運転で、被冷却空間の温度Tが上記温度(Ts+Δ
t)に高まって冷却に入る時、デフロスト終了後の再冷
却時、更にデユーティサイクル運転で冷却期間にある時
に分けられる。同様に状態2なる場合は被冷却空間温度
Tが設定温度Tsに到達し、冷却停止中の時、デフロス
ト中の時、更にデユーティサイクルの冷却停止期間が含
まれる。
In other words, the cooling operation in state 1 from FIG.
t), when cooling begins, when recooling after defrosting is completed, and when the cooling period is in the duty cycle operation. Similarly, in state 2, when the cooled space temperature T reaches the set temperature Ts, cooling is stopped, defrosting is in progress, and the cooling is stopped during the duty cycle.

そして、状MA2から状態1に移行する過渡状態3は弁
開成いは運転を開始する立上り時、即ち、サーそサイク
ルによる冷却運転開始時、デフロスト終了後の再冷却運
転開始時、そしてデユーティサイクルによる冷却初期時
が該当する。
Transient state 3, which transitions from state MA2 to state 1, occurs at the time of opening the valve or starting operation, that is, at the start of cooling operation by the servo cycle, at the start of recooling operation after the end of defrost, and at the time of the duty cycle. This applies to the initial stage of cooling.

ところで、本発明に採用する冷媒流量制御装置にあって
は、状態1では電動弁3に弁駆動部16から弁開度を調
整する制御信号を出力し、過熱度制御を行うと共に、状
態2では弁開信号(BP)を弁全閉信号発生部20から
弁駆動部16に出力し5被冷却空間の温度制御を行って
いる。これら電動弁3に与えられる制御信号を含めて状
態の推移を示したのが第2図である。
By the way, in the refrigerant flow rate control device adopted in the present invention, in state 1, a control signal for adjusting the valve opening degree is output from the valve drive unit 16 to the electric valve 3 to control the degree of superheating, and in state 2, A valve open signal (BP) is output from the valve fully closed signal generating section 20 to the valve driving section 16 to control the temperature of the 5 cooled spaces. FIG. 2 shows the state transition including the control signals given to these electric valves 3.

次にこの第2図に付いて、各状態1,2.3と制御信号
Caとの関係を説明するが、その前に制御信号C11の
サンプリング時間間隔(制御信号の出力周期)をTsと
し、状態2の続いている時間をT11とすれば、 T 
s < < T Kである1例えばTs=6秒、TI=
120秒=2分以上(デフロスト時には20〜50分)
である、このような条件の下で、状態1での制御は次の
如きである。即ち 時刻1aにおける制御信号を100とすれば下記の如く
表わせる ”C,:=’C,−z+ (Efi−Efi−1)  
 −(1)式ここで、En8偏差修正分 ”C,−1二制御信号の1回前分(Ts待時間前Efi
−1偏差修正分の1回前(Ts待時間前上記(1)式に
従う制御信号1C7で、電動弁3の開口度調整を行う過
熱度制御が従来と同様に実施される。
Next, the relationship between each state 1, 2.3 and the control signal Ca will be explained with reference to FIG. If the duration of state 2 is T11, then T
1 such that s << T K, e.g. Ts=6 seconds, TI=
120 seconds = 2 minutes or more (20-50 minutes when defrosting)
Under these conditions, control in state 1 is as follows. That is, if the control signal at time 1a is 100, it can be expressed as follows: "C,:='C,-z+ (Efi-Efi-1)
- Equation (1) Here, En8 deviation correction amount "C, -1 2nd control signal one time ago (Efi before Ts waiting time
-1 deviation correction (before Ts waiting time) Superheat degree control for adjusting the opening degree of the motor-operated valve 3 is carried out in the same way as in the past, using the control signal 1C7 according to the above equation (1).

次に状態2での制御を行う時の制御信号2Cflは次式
である ’C,=A (一定値)      ・・・(2)式上
記一定値(A)の制御信号を印加して電動弁3を弁閉状
態とする。このように、過熱度制御を行なわない場合に
は(1)式の制御を行なわずに過熱度データに依らず一
定値を印加している。また定常状態の最終出力制御信号
’Cf1(L)はその時の出力制御1C11とは別個に
2の状態の続くTH時間(T H> > T s )保
持する。この保持は内部アルゴリ、ズム部15で成され
る。
Next, the control signal 2Cfl when performing control in state 2 is as follows: 3 is in the valve closed state. In this manner, when superheat degree control is not performed, a constant value is applied regardless of superheat degree data without performing control according to equation (1). Further, the final output control signal 'Cf1 (L) in the steady state is held separately from the output control 1C11 at that time for the TH time (TH>>Ts) during which the second state continues. This holding is performed by an internal algorithm or rhythm section 15.

そして、状態3での制御に関しては、本発明の特徴とす
る所であるが1次の様に制御信号を2段階に出力して段
階的制御を行っている。
Regarding the control in state 3, which is a feature of the present invention, stepwise control is performed by outputting the control signal in two steps as in the first order.

変化が認められるまで ”Cl1=B(一定値)  ・
・・(3)式状態1への続行   ’Cl1=kX”C
,(L)・・・(4)式(0≦に≦1)このように(3
)式により初期変化を確認できるまで一定値の制御信号
でもって全開させておく。
"Cl1=B (constant value)" until a change is recognized.
...(3) Continuation to equation state 1 'Cl1=kX''C
, (L)...Equation (4) (0≦≦1) In this way, (3
), keep it fully open with a constant control signal until you can confirm the initial change.

このようにして、冷却再開の初期時、急冷効果を得るよ
うにしている。そして(4)式により定常状態1へ完全
に移行させる際に、前回の定常状態での制御の結果1c
 e (r−)を参照して立上げを行う。
In this way, a rapid cooling effect is obtained at the initial stage of restarting cooling. Then, when completely transitioning to steady state 1 using equation (4), the previous steady state control result 1c
Start up with reference to e (r-).

この(4)式の場合、その比例定数には、参照する前回
の出力値1Cfi(L)の大きさに応じて変えられる学
習機能を制御器9に具備させることで、状態に応じた適
切な比例定数kを決定できるようにしている。
In the case of this equation (4), the proportional constant can be adjusted appropriately according to the state by equipping the controller 9 with a learning function that can be changed according to the magnitude of the previous output value 1Cfi (L) to be referenced. The proportionality constant k can be determined.

このように全開→前回の弁状態に応する開口度の2段階
制御を過渡期に行い、過渡状態であることが失なわれれ
ば、定常状態1の制御に完全に戻る。従って、過渡状態
であるか否かの判断をすることによって、この状態移行
の時期を定められる。
In this way, two-step control from fully open to opening degree corresponding to the previous valve state is performed during the transition period, and once the transient state is no longer present, the control returns completely to steady state 1. Therefore, the timing of this state transition can be determined by determining whether or not the state is in a transient state.

過渡状態であることの判断は、諸要素の監視、及び適宜
な方法が考えられる。
To determine whether it is a transient state, monitoring of various elements and appropriate methods can be considered.

例として下記の如き方法で状s3→状、1lilに戻さ
せる。
For example, the following method is used to return the state from s3 to 1 lil.

時間−(4)式の出力印加後一定時間経過後温度一過熱
度データ、被冷却空間を代表する温度その他−圧力、流
量等 これらのうちで、単独あるいは複数の諸量が、一定基準
に到達したと認められるとき、サイクリックに状態1の
制御に戻る。
Time - After a certain period of time has elapsed after applying the output of formula (4), temperature - superheat data, temperature representative of the space to be cooled, etc. - Pressure, flow rate, etc. One or more of these quantities reach a certain standard. When it is recognized that this has occurred, the control returns to state 1 cyclically.

このように、冷却再開初期の過渡状態に、電動弁のスム
ーズな、且つ迅速な開度制御が成し得るので、立ち上り
時の温度上昇を小さくでき、液戻りも防止され冷凍機側
の危険性も解消できる。
In this way, smooth and quick opening control of the motor-operated valve can be achieved in the transient state at the initial stage of restarting cooling, so the temperature rise at startup can be reduced, and liquid return is also prevented, reducing the danger to the refrigerator side. can also be resolved.

次に本発明の第2発明に付き説明する。第2発明は各種
センサ10.11.12.13故障時にもそれに代わる
制御が成されて被冷却空間の温度制御が順調に遂行する
ようにしたものである。故障状態とそれに応答する制御
は次の様である。
Next, the second aspect of the present invention will be explained. In the second invention, even when various sensors 10, 11, 12, 13 are out of order, alternative control is performed so that the temperature control of the space to be cooled can be carried out smoothly. The fault conditions and the controls that respond to them are as follows.

A: 過熱度制御センサ故障時、即ち蒸発温度センサ1
1故障又は蒸発器出口温度センサ10故障時の制御。
A: When the superheat control sensor fails, i.e. evaporation temperature sensor 1
1 failure or evaporator outlet temperature sensor 10 failure.

一方または両方の温度センサ1.0,11が故障した場
合には、センサ10.11が故障になる直前の電動弁3
開閉位置(直前が全開の場合は全開になる直前の開閉位
りと全開の2つの開閉位置で被冷却空間側の温度制御を
行う。
If one or both temperature sensors 1.0, 11 fail, the electric valve 3 immediately before sensor 10.11 fails.
Temperature control on the cooled space side is performed at the opening/closing position (if the immediately before is fully open, the opening/closing position immediately before full opening and the fully open position).

その具体的状況は、第3図に蒸発器出口温度センサ故障
時、第4図に蒸発温度センサ故障時、第5図に南方の温
度センサ故障時における各温度センサ測定値を電動弁作
動信号を示す2例えば第3図で蒸発器出口温度センサ1
0がa点で故障したとすると、センサ故障後の電動弁3
の制御は、☆印で示す電動弁の開度状態と全開の2つの
固定された位置で、サーモサイクルに合わせて動作させ
る。同様に第4図で、蒸発温度センサ11が(b)点で
また、第5図で(c)点で双方とも故障したとすると、
その後の制御は電動弁3を★印の開位置と全開とで動作
制御する。この場合★印に示す電動弁3の制御データは
で。〜τ、迄の時間中に発生した外乱(DT)を排除し
て収斂した値で、基準値となるもので、内部アルゴリズ
ム部15に保存されている。従って、既に外乱(DT)
を無くして安定な冷却を実現している弁開度データ(基
準値)を利用するものであるからセンサ故障しても冷却
効果は大きく変わらず安定した冷却を継続することが可
能となる。
The specific situation is shown in Figure 3 when the evaporator outlet temperature sensor fails, Figure 4 when the evaporator temperature sensor fails, and Figure 5 when the southern temperature sensor fails. For example, in Figure 3 the evaporator outlet temperature sensor 1
0 fails at point a, motor operated valve 3 after sensor failure
The control operates in accordance with the thermocycle at two fixed positions, the open state of the electric valve indicated by ☆ and the fully open position. Similarly, if both the evaporation temperature sensors 11 fail at point (b) in FIG. 4 and at point (c) in FIG.
After that, the motor-operated valve 3 is controlled to be in the open position marked with ★ and fully open. In this case, the control data for electric valve 3 marked with ★ is as follows. This value is converged by excluding the disturbance (DT) that occurred during the time period from .tau. to .tau., serves as a reference value, and is stored in the internal algorithm section 15. Therefore, the disturbance (DT) is already
Since the valve opening degree data (reference value) that eliminates the sensor failure and realizes stable cooling is used, even if the sensor fails, the cooling effect does not change significantly and stable cooling can be continued.

第6図はこの過熱度制御用センサ10.11故障時の制
御方法に係るフローチャート図である。
FIG. 6 is a flowchart relating to a control method when the superheat degree control sensor 10.11 fails.

同図では蒸発温度センサ11を(ET)センサ、蒸発出
口温度センサ10を(ST)センサと表現換えしている
。判断61でET、STセンサのいずれか故障が判定さ
れ、正常(N)ならば処理62に移り制御器9により演
算が行なわれ、PID制御により弁開度を調整し過熱度
制御をする。一方判断61で故障(N)ならば弁開度を
基準弁開度で動作させる処理63が実施される。なお、
ここでET、STセンサの異常有無の判断は、センサが
上限温度+64℃、下限温度−64℃の範囲を測定可能
とすると。
In the figure, the evaporation temperature sensor 11 is expressed as an (ET) sensor, and the evaporation outlet temperature sensor 10 is expressed as an (ST) sensor. In judgment 61, it is determined that either the ET or ST sensor has failed, and if it is normal (N), the process moves to process 62, where the controller 9 performs calculations, adjusts the valve opening degree by PID control, and controls the degree of superheating. On the other hand, if the determination 61 is a failure (N), a process 63 is performed in which the valve opening is set to the reference valve opening. In addition,
Here, it is assumed that the sensor can measure the upper limit temperature of +64°C and the lower limit temperature of -64°C to determine whether there is an abnormality in the ET or ST sensor.

ET、 STセンサの検出する温度が上限値+40℃。The temperature detected by the ET and ST sensors is the upper limit +40°C.

下限値−40℃の範囲内を指示する時は正常、この温度
範囲を超える高温、低温を指示する時、異常と見做す判
断基準で判定する方法をとっている。
A method of judgment is used in which when a temperature within the lower limit of -40°C is indicated, it is considered normal, and when a high temperature or low temperature exceeding this temperature range is indicated, it is considered abnormal.

B; 温度制御用センサ故障時、即ち吐出冷気温度セン
サ12又は吸込冷気温度センサ13故障時の制御。
B; Control when the temperature control sensor fails, that is, the discharge cold air temperature sensor 12 or the suction cold air temperature sensor 13 fails.

j)どちらか一方が故障した場合、正常な温度センサか
ら、被冷却側空間の温度を算出し。
j) If either one of them fails, calculate the temperature of the space to be cooled from the normal temperature sensor.

温度制御を行う。Perform temperature control.

ii)両方の温度センサが故障した場合、デユーティサ
イクルを作動させ、被冷却側空間の冷え過ぎを防止する
。(デユーティサイクルのスイッチがOFFであっても
、強制的にデユーティサイクルを作動させる。
ii) If both temperature sensors fail, a duty cycle is activated to prevent the space to be cooled from becoming too cold. (Even if the duty cycle switch is OFF, the duty cycle is forcibly activated.

その具体的状況は第7図に吸込冷気温度センサ故障時、
第8図に吐出冷気温度センサ故障時における各温度セン
サ測定値と電動弁作動信号を示す。
The specific situation is shown in Figure 7 when the intake cold air temperature sensor fails.
FIG. 8 shows the measured values of each temperature sensor and the electric valve actuation signal when the discharge cold air temperature sensor fails.

例えば第7図で吸込冷気温度センサ13が(d)点で故
障したとすると、温度センサ故障後は、正常な方、即ち
吐出冷気温度センサ12の測定値にΔtの温度を加えて
被冷却側空間の温度Tkと見做して算出し、温度制御を
行う。逆の場合には第8図に示す如く正常な方の吸込冷
気温度センサ13の測定値よりΔtの温度を引いて温度
Tkと見做し算出する。
For example, if the suction cold air temperature sensor 13 fails at point (d) in FIG. It is calculated by regarding it as the temperature Tk of the space, and temperature control is performed. In the opposite case, as shown in FIG. 8, the temperature Tk is calculated by subtracting the temperature Δt from the measured value of the normal intake cold air temperature sensor 13.

そして、両方故障時は第9図に示す如く、故障以後、デ
ユーティサイクル運転で被冷却空間を温度制御する。
When both fail, as shown in FIG. 9, the temperature of the space to be cooled is controlled by duty cycle operation after the failure.

このように、被冷却空間の温度測定センサ12゜13故
障時には正常なセンサの測定値より、はぼ正常制御時の
温度値に近似した値を算出することを可能としている。
In this way, when the temperature measurement sensor 12 or 13 in the space to be cooled fails, it is possible to calculate a value that approximates the temperature value under normal control from the measurement value of a normal sensor.

又、双方故障時にはデユーティサイクルで行うと言う万
全な対策が成されており、十分な冷却効果を得られる温
度制御を中断することなく続行できる。
In addition, in the event of a failure in both, a thorough measure has been taken to perform the duty cycle, so that temperature control that provides sufficient cooling effect can be continued without interruption.

第10図はこの温度制御用センサ12.13故障時の制
御方法に係るフローチャート図である。同図では吐出冷
気温度センサ12を(DA)センサ、その測定温度を(
OA)と表現換えし、また吸込冷気温度センサ13を(
RA)センサ、その測定温度を(flA)と表現換えし
ている。
FIG. 10 is a flowchart relating to the control method when the temperature control sensor 12.13 fails. In the figure, the discharge cold air temperature sensor 12 is a (DA) sensor, and its measured temperature is (
OA), and the intake cold air temperature sensor 13 is expressed as (OA).
RA) sensor, and its measured temperature is expressed as (flA).

判断101でRA故障か否かを判定し、正常(N)なら
ばOA故障か否かの判断】02を行い、正常(N)なら
ば、処理103で被冷却空間の測定温度T k =OA
+RA/2と算出する。もし1判断102でDAセンサ
故障(Y)ならば、正常なRAセンサを用い、処理10
4で被冷却空間温度Tk=RA−DΔと算出する。また
、最初の判断101でRAセンサ故障(Y)ならば、判
断105でDAセンサ故障か否かの判定をし、D^セン
サは正常(N)ならば、処理106を行い、Tk=DA
+Δtで測定温度を算出する。
In judgment 101, it is determined whether or not there is an RA failure, and if it is normal (N), it is determined whether or not there is an OA failure.
+RA/2 is calculated. If the DA sensor is malfunctioning (Y) in the first judgment 102, a normal RA sensor is used and the process 10
4, the cooled space temperature Tk=RA-DΔ is calculated. Furthermore, if the RA sensor is faulty (Y) in the first judgment 101, it is judged in judgment 105 whether or not the DA sensor is faulty, and if the D^sensor is normal (N), processing 106 is performed and Tk=DA
The measured temperature is calculated by +Δt.

方判断105でDAセンサも故障(Y)ならば、結局、
RA、 DAセンサ双方とも故障なので、デユーティサ
イクル運転を行う処理107を実行する。なお、このR
A、DAセンサの異常判断基準も前述のET、STセン
サと同様上限温度+40℃、下限温度−40℃の限界値
内にあるか否かで行っている。
If the DA sensor is also faulty (Y) in judgment 105, after all,
Since both the RA and DA sensors are out of order, processing 107 for performing duty cycle operation is executed. Furthermore, this R
Similar to the ET and ST sensors described above, the abnormality judgment criteria for the A and DA sensors is based on whether or not the temperature is within the upper limit temperature of +40°C and the lower limit temperature of -40°C.

以上の動作を要点的にまとめると干コ記の如くである。The above operations can be summarized as follows.

1) RAセンサ故障時には→rDA十八t」へ測定温
度Tkと見做す。
1) When the RA sensor fails, the measured temperature is assumed to be Tk.

2) DAセンサ故障時には→rRA−Δし」を測定温
度Tkと見做す。
2) When the DA sensor fails, →rRA-Δ is regarded as the measured temperature Tk.

3) RA、 DA2つとも故障時には→デユーティサ
イクル(冷却+弁閉)に移行する。
3) When both RA and DA fail, the system shifts to duty cycle (cooling + valve closing).

4) ET、 STのいずれか一方、又は双方とも故障
時には→電動弁を基準弁開度に保つ。
4) If either ET, ST, or both fail, → maintain the electric valve at the standard valve opening.

このようにして、各温度センサ10. il、 12.
13故障時、夫々に応じた制御方法に基づく被冷却空間
の温度制御を実施する。
In this way, each temperature sensor 10. il, 12.
13. When a failure occurs, temperature control of the space to be cooled is carried out based on the control method corresponding to each case.

(ト)発明の効果 以上の様に、本発明の冷媒流量制御装置では、冷却再開
の過渡期の立上り時に、電動弁を最初全開、続いて適度
な開口度に自動的に調節する2段階制御により冷媒を流
すよう制御するので、冷却停止中の被冷却空間の温度上
昇は速やかに低下傾向となり、又1段階的な冷媒流通に
より液戻り現象も起こさず冷凍機に対する負担が解消す
る。このように非正常状態(弁閉、冷凍機停止)から正
常状態(連続的な冷却運転)への移行制御が円滑。
(G) Effects of the Invention As described above, the refrigerant flow rate control device of the present invention employs two-stage control in which the electric valve is initially fully opened and then automatically adjusted to an appropriate opening degree at the start of the transition period of restarting cooling. Since the refrigerant is controlled to flow, the temperature rise in the space to be cooled during cooling stops tends to decrease quickly, and the one-step refrigerant flow eliminates the liquid return phenomenon and relieves the load on the refrigerator. In this way, the transition from an abnormal state (valve closed, refrigerator stopped) to a normal state (continuous cooling operation) is controlled smoothly.

迅速に賃上われ、制御性が改善される。Quick pay increases and improved control.

また、過熱度制御用、温度制御用の各温度センサが故障
しても、それに応じた適切な制御が換わって動作するバ
ックアップ機能も十分としているので、それらの故障修
理するまでの間、被冷却空間の適切な冷却が可能となり
、貯蔵商品等に悪影響を起たさない等、優れた効果を発
揮する。
In addition, even if each temperature sensor for superheat degree control or temperature control fails, it has a sufficient backup function that will take over and operate the appropriate control accordingly, so until the failure is repaired, the It is possible to properly cool the space, and exhibits excellent effects such as not having a negative impact on stored products, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は冷却運転制御の状態区分図、第1図(b
)は運転状態の推移とその時の温度とを関連付けした動
作特性図、第2図は電動弁に与えられる制御信号と運転
状態の推移及び温度とを関連付けした動作特性図、第3
図は蒸発器出口温度センサ故障時の各センサ測定値と電
動弁の動作信号との関連図、第4図は蒸発温度センサ故
障時の各センサ測定値と電動弁の動作信号との関連図、
第5図は蒸発温度センサ、蒸発器出口温度センサの双方
故障時の各センサ測定値と電動弁の動作信号との関連図
、第6図は蒸発器温度センサ、蒸発器出口温度センサの
故障検知のフローチャート図、第7図は吸込冷気温度セ
ンサ故障時の各温度センサ測定値と電動弁の動作信号と
の関連図、第8図は吐出冷気温度センサ故障時の各セン
サ測定値と電動弁の動作信号との関連図、第9図は吐出
冷気温度センサ、吸込冷気温度センサの双方故障時の各
センサ測定値と電動弁の動作信号との関連図、第10図
は吐出冷気、吸込冷気の温度センサ故障検知のフローチ
ャート図、第11図は冷媒回路図、第12図は制御器の
ブロック図、第13図は電動弁の縦断面図、第14図は
電動弁の動作特性図である。 3・・・電動弁、 4・・・被冷却空間、5・・・蒸発
器、9・・・制御器、10・・・蒸発器出口温度センサ
、11・・・蒸発温度センサ、】2・・・吐出冷気温度
センサ、13・・・吸込冷気温度センサ、I5・・・内
部アルゴリズム部。 第 図 第 1゜ 図 第 図 第 図
Figure 1 (a) is a state classification diagram of cooling operation control, Figure 1 (b)
) is an operating characteristic diagram that associates the transition of operating state with the temperature at that time; Figure 2 is an operating characteristic diagram that correlates the control signal given to the electric valve with the transition of operating status and temperature;
The figure shows the relationship between each sensor measurement value and the electric valve operation signal when the evaporator outlet temperature sensor fails, and Figure 4 shows the relationship between each sensor measurement value and the electric valve operation signal when the evaporator temperature sensor fails.
Figure 5 is a diagram of the relationship between the measured values of each sensor and the operating signal of the electric valve when both the evaporator temperature sensor and evaporator outlet temperature sensor fail, and Figure 6 shows the failure detection of the evaporator temperature sensor and evaporator outlet temperature sensor. Fig. 7 is a diagram showing the relationship between each temperature sensor measurement value and the motor-operated valve operation signal when the intake cold air temperature sensor fails, and Fig. 8 shows the relationship between each sensor measurement value and the motor-operated valve operation signal when the discharge cold air temperature sensor fails. Figure 9 is a diagram showing the relationship between the measured values of each sensor and the operating signal of the electric valve when both the discharge cold air temperature sensor and the suction cold air temperature sensor fail. Figure 10 is the relationship between the discharge cold air temperature sensor and the intake cold air temperature sensor. 11 is a refrigerant circuit diagram, FIG. 12 is a block diagram of the controller, FIG. 13 is a longitudinal sectional view of the motor-operated valve, and FIG. 14 is a diagram of operating characteristics of the motor-operated valve. 3... Electric valve, 4... Space to be cooled, 5... Evaporator, 9... Controller, 10... Evaporator outlet temperature sensor, 11... Evaporation temperature sensor, ]2. ...Discharge cold air temperature sensor, 13...Suction cold air temperature sensor, I5...Internal algorithm section. Figure 1゜Figure Figure 1

Claims (1)

【特許請求の範囲】[Claims] 被冷却空間に配置された蒸発器と、この蒸発器に減圧液
冷媒を供給する電動弁と、上記蒸発器の入口温度と出口
温度とを各々測定する過熱度制御用センサと、上記被冷
却空間の吐出冷気温度と吸込冷気温度とを各々測定する
温度制御用センサと、上記過熱度制御用センサより得ら
れる測定値に基づいて前記電動弁の弁開度制御を行うと
共に、上記温度制御用センサより得られる測定値に基づ
いて前記電動弁の弁閉を成す制御部とを備え、再冷却運
転過渡期には、始め電動弁を全開し、続いて制御器に保
存している弁制御データから算出する適切な弁開度に調
整する制御を行い、一方過熱度制御用センサ故障時には
、故障直前の弁開度位置と全閉とで電動弁制御を、また
温度制御用センサのいずれか一方故障時には正常センサ
の測定値に基づく温度制御を、更に双方故障時にはデュ
ーティサイクル運転を成す冷媒流量制御装置の制御方法
An evaporator disposed in the space to be cooled, an electric valve for supplying reduced pressure liquid refrigerant to the evaporator, a superheat degree control sensor that measures an inlet temperature and an outlet temperature of the evaporator, respectively, and the space to be cooled. a temperature control sensor that measures the discharge cold air temperature and the suction cold air temperature, respectively; and a temperature control sensor that controls the valve opening of the electric valve based on the measured values obtained from the superheat degree control sensor, and the temperature control sensor and a control unit that closes the electric valve based on the measured value obtained from the control unit, and during the transition period of recooling operation, the electric valve is first fully opened, and then the control unit closes the electric valve based on the measured value obtained from the controller. Control is performed to adjust the valve opening to the calculated appropriate valve opening, and when the superheat control sensor fails, the electric valve is controlled at the valve opening position immediately before the failure and fully closed, and either one of the temperature control sensors fails. A control method for a refrigerant flow rate control device that sometimes performs temperature control based on the measured value of a normal sensor, and further performs duty cycle operation when both are malfunctioning.
JP3611589A 1989-02-17 1989-02-17 Control of refrigerant flow rate controller Pending JPH02217753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3611589A JPH02217753A (en) 1989-02-17 1989-02-17 Control of refrigerant flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3611589A JPH02217753A (en) 1989-02-17 1989-02-17 Control of refrigerant flow rate controller

Publications (1)

Publication Number Publication Date
JPH02217753A true JPH02217753A (en) 1990-08-30

Family

ID=12460782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3611589A Pending JPH02217753A (en) 1989-02-17 1989-02-17 Control of refrigerant flow rate controller

Country Status (1)

Country Link
JP (1) JPH02217753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222349A (en) * 1990-12-21 1992-08-12 Daikin Ind Ltd Operation controller for freezer
JPH0599516A (en) * 1991-10-14 1993-04-20 Mitsubishi Electric Corp Freezer device
JP2018087683A (en) * 2017-11-29 2018-06-07 株式会社鷺宮製作所 Method for controlling refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222349A (en) * 1990-12-21 1992-08-12 Daikin Ind Ltd Operation controller for freezer
JPH0599516A (en) * 1991-10-14 1993-04-20 Mitsubishi Electric Corp Freezer device
JP2785546B2 (en) * 1991-10-14 1998-08-13 三菱電機株式会社 Refrigeration equipment
JP2018087683A (en) * 2017-11-29 2018-06-07 株式会社鷺宮製作所 Method for controlling refrigerator

Similar Documents

Publication Publication Date Title
US20130025304A1 (en) Loading and unloading of compressors in a cooling system
JPH0360025B2 (en)
JP2000199669A (en) Method for operating compressor in ordinary state
KR101517248B1 (en) Control method for refrigerator
JPH02217753A (en) Control of refrigerant flow rate controller
JP2889791B2 (en) Vapor compression refrigerator
JP5384124B2 (en) Refrigeration system, control device and control method thereof
JP2009236347A (en) Cooling storage cabinet
JP2009236349A (en) Cooling storage
JPH08200843A (en) Superheat controlling apparatus for refrigeration cycle
JP2002115954A (en) Refrigerator
JP3046740B2 (en) Expansion mechanism added control type refrigeration system
JP2701598B2 (en) Freezer refrigerator
JP2999776B2 (en) Refrigeration device defrost control method
JP3586996B2 (en) Showcase cooling system
JPH10318612A (en) Control method for air conditioner
JPH08189740A (en) Refrigerating device for automatic vending machine
JP2680687B2 (en) Defrost control method for open showcase
KR100221880B1 (en) The operating method for a refrigerator
JP2701634B2 (en) Refrigeration equipment
JPS63129286A (en) Refrigerator
JP2009236348A (en) Cooling storage
KR100452994B1 (en) Control method for refrigeration system
CN107477925B (en) Device and method for detecting failure of pipeline insulating layers of indoor unit and outdoor unit of air conditioner
JPH08271016A (en) Air conditioner of multi-room type