JPH02217435A - Manufacture of fe-cu-ni series alloy sintered member - Google Patents

Manufacture of fe-cu-ni series alloy sintered member

Info

Publication number
JPH02217435A
JPH02217435A JP3670789A JP3670789A JPH02217435A JP H02217435 A JPH02217435 A JP H02217435A JP 3670789 A JP3670789 A JP 3670789A JP 3670789 A JP3670789 A JP 3670789A JP H02217435 A JPH02217435 A JP H02217435A
Authority
JP
Japan
Prior art keywords
powder
alloy
sintering
series alloy
sintered member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3670789A
Other languages
Japanese (ja)
Inventor
Takehiko Hayami
早見 威彦
Yoshihiro Igai
猪飼 善弘
Hitoshi Sakuma
均 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3670789A priority Critical patent/JPH02217435A/en
Publication of JPH02217435A publication Critical patent/JPH02217435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suitably regulate the dimensional change of the Fe-Cu-Ni series alloy sintered member at the time of sintering by using Ni-Cu series or Ni-Cu- Mo series alloy powder along with each raw material powder of Fe, Cu and Ni and then executing sintering. CONSTITUTION:Fe powder, Cu powder and Ni powder as raw material powder are mixed with Ni-Cu series alloy powder or Ni-Cu-Mo series alloy powder and the mixture is sintered to obtain the Fe-Cu-Ni series alloy sintered member. Since the alloy powder to be added has the m.p. higher than the sintering temp., it is considered that the expansion due to the alloying by solid phase diffusion is not generated. Thus, at the time of mixedly using these alloy powders in various blending ratios, the dimensional change can suitably be regulated without changing the componential proportion as a whole.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Fe粉、Cu粉およびN1粉等を混合焼結し
て得られるFe−Cu−Ni系合金焼結2部材の製造方
法に関し、殊に焼結時における寸法変化を任意に調整し
得る方法に関するものである。尚本発明におけるFe−
Cu−Ni系合金とは、Fe、Cu、Ntの他にCやM
o等の添加元素或はその他の不可避元素を含み得る趣旨
であ[従来の技術] 粉末冶金法は圧延、鍛造、鋳造等の工程を省略し、金属
粉末を混合して圧縮成形後焼結して焼結晶をつくる方法
である。粉末冶金法によればWやMo等の高融点、含油
軸受やフィルター等の多孔質材料、超硬合金やサーメッ
ト等の工具材料等の様に従来の溶製法では製造の困難な
部材でも容易に製造することができる。そればかりか、
非切削による材料歩留まりの向上、高い寸法精度等の製
造面での利点、および溶製材で発生しゃすい偏析や異方
性が少ないという材質面での利点等、色々な優れた利点
があることから、従来溶製法によって製造されていた各
種部材を粉末冶金によって製造するEいう試みも多くな
されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing two sintered Fe-Cu-Ni alloy members obtained by mixing and sintering Fe powder, Cu powder, N1 powder, etc. In particular, the present invention relates to a method in which dimensional changes during sintering can be arbitrarily adjusted. In addition, in the present invention, Fe-
Cu-Ni alloy refers to C and M in addition to Fe, Cu, and Nt.
[Prior art] The powder metallurgy method omits steps such as rolling, forging, and casting, and mixes metal powder, compression molds it, and then sinters it. This is a method of making fired crystals. Powder metallurgy can easily produce materials that are difficult to manufacture using conventional melting methods, such as materials with high melting points such as W and Mo, porous materials such as oil-impregnated bearings and filters, and tool materials such as cemented carbide and cermet. can be manufactured. Not only that, but
It has many excellent advantages, such as improved material yield due to non-cutting, manufacturing advantages such as high dimensional accuracy, and material advantages such as less segregation and anisotropy that tend to occur with melted materials. There have also been many attempts to manufacture various parts, which were conventionally manufactured by melting methods, by powder metallurgy.

粉末冶金によって製造される鉄鋼部材については様々の
ものが知られており、Fe−C系合金。
Various types of steel members manufactured by powder metallurgy are known, including Fe-C alloys.

Fe−C−Cu系合金、Fe−Cu系合金、Fe−C−
Cu−Ni系合金およびFe−C−Cu−N i −M
o系合金等がある。
Fe-C-Cu alloy, Fe-Cu alloy, Fe-C-
Cu-Ni alloy and Fe-C-Cu-N i -M
There are o-based alloys, etc.

ところで焼結の際に用いる原料粉末としては、各金属の
単味粉を混合して使用されており、又粒径は63μm以
下のものが一般的に使用されている。特にNiは粒径5
μm程度のインコNi粉が用いられており、高融点金属
では10μm以下の粒径にしないと希望する焼結強度が
得られないと言われている。尚粉末冶金法においてFe
粉に0分を添加する場合には、黒鉛の形で添加するのが
一般的であり、またこれらの焼結部材を製造する際には
、潤滑剤としてステアリン酸亜鉛を1%程度添加される
By the way, the raw material powder used in sintering is a mixture of single powders of various metals, and those having a particle size of 63 μm or less are generally used. In particular, Ni has a particle size of 5
Inco Ni powder of about μm size is used, and it is said that the desired sintering strength cannot be obtained with high melting point metals unless the particle size is 10 μm or less. In addition, in the powder metallurgy method, Fe
When adding zero to powder, it is generally added in the form of graphite, and when manufacturing these sintered parts, about 1% of zinc stearate is added as a lubricant. .

[発明が解決しようとする課題] Cuは焼結時に溶融して焼結を促進し強度を向上させる
元素であり、一方Nfは焼結部材6強度を向上させる元
素である。またこれら元素の添加はいずれも焼入性を向
上させる効果があるとされる。しかしながらCuやNi
を配合する場合はその配合比率によって焼結部材の寸法
が色々に変化するという現象が生じる。特にCuの添加
量を増加すると、いわゆるCu−Growthと呼ばれ
る太きな異常膨張現象を生じる。これはCuの少量添加
(Fe−Cu系では8%程度まで)のは、焼結温度がC
uの融点以上になった時点でCu粉が溶融してFe粉に
拡散浸透し、流出孔を残して固溶する為であるとされる
。一方Niの添加量を増加すると焼結部材はわずかに収
縮する。従って強度を高める目的で成分添加量を変える
必要が生じた場合には、型開き後の収縮量の増大に対応
させることの必要上高価な金型から作りなおさなければ
ならないという問題が生じる。また焼結条件や原料条件
等の何らかの要因によって金型寸法が合わなくなった場
合には、成分割合を変えずに寸法変化を大きく制御し得
れば好都合であるが、現在のところその様な方法は開発
されていない。尚黒鉛添加量を増加させることによって
、Cuによる異常膨張量を減少させ得ることも知られて
いるが、C量を変化させて制御することは焼結部材の特
性までをも変えてしまうことから実際問題として好まし
い手段とは言えず、また不十分でもある。
[Problems to be Solved by the Invention] Cu is an element that melts during sintering to promote sintering and improve the strength, while Nf is an element that improves the strength of the sintered member 6. It is also said that the addition of these elements has the effect of improving hardenability. However, Cu and Ni
When blending, a phenomenon occurs in which the dimensions of the sintered member vary depending on the blending ratio. In particular, when the amount of Cu added is increased, a large abnormal expansion phenomenon called so-called Cu-Growth occurs. This is because the sintering temperature is C
It is said that this is because the Cu powder melts when the temperature reaches or exceeds the melting point of u, diffuses into the Fe powder, and forms a solid solution leaving an outflow hole. On the other hand, when the amount of Ni added is increased, the sintered member slightly shrinks. Therefore, when it becomes necessary to change the amount of added components for the purpose of increasing strength, a problem arises in that an expensive mold must be remade in order to cope with the increase in the amount of shrinkage after the mold is opened. In addition, if the mold dimensions do not match due to some factors such as sintering conditions or raw material conditions, it would be convenient if the dimensional change could be largely controlled without changing the component ratio, but currently there is no such method. has not been developed. It is also known that the amount of abnormal expansion due to Cu can be reduced by increasing the amount of graphite added, but controlling it by changing the amount of C also changes the characteristics of the sintered member. As a practical matter, this is not a desirable means, nor is it sufficient.

本発明はこうした実情のもとでなされたものであって、
その目的は、Fe−Cu−Ni系合金焼結部材の焼結時
における寸法変化を適宜調整し得る様な製造方法を提供
することにある。
The present invention was made under these circumstances, and
The purpose is to provide a manufacturing method that can appropriately adjust dimensional changes during sintering of a Fe-Cu-Ni based alloy sintered member.

[課題を解決する為の手段] 上記目的を達成し得た本発明方法とは、Fe粉、Cu粉
およびNi粉を原料粉末として用い、粉末冶金法によっ
てFe−Cu−Ni系合金焼結部材を製造するに当たり
、上記原料粉末の他、N 1−Cu系合金粉末またはN
i−Cu−Mo系合金粉末を併用して焼結する点に要旨
を有するFe−Cu−Ni系合金焼結部材の製造方法で
ある。
[Means for Solving the Problems] The method of the present invention that achieves the above object uses Fe powder, Cu powder, and Ni powder as raw material powders, and produces a Fe-Cu-Ni alloy sintered member by a powder metallurgy method. In addition to the above raw material powder, N1-Cu alloy powder or N
This is a method for producing a Fe-Cu-Ni alloy sintered member, the gist of which is sintering using an i-Cu-Mo alloy powder.

[作用] 粉末冶金法に適する良質な金属粉末を得葛ことは以前は
必ずしも容易なことではなかったが、電解法、還元法、
噴射法(アトマイズ法)等の技術の発達により良質の金
属粉末が得られる様になフた。特にアトマイズ法の技術
の進歩によってNi−Cu、N 1−Cu−Mo等の合
金微粉末も得られる様になった。
[Function] In the past, it was not always easy to obtain high-quality metal powder suitable for powder metallurgy, but electrolysis, reduction,
With the development of technology such as the injection method (atomization method), it has become possible to obtain high quality metal powder. In particular, advances in atomization technology have made it possible to obtain fine powders of alloys such as Ni-Cu and N1-Cu-Mo.

本発明者らはFe−Cu−Ni系合金焼結部材を様々な
原料粉末を組合せることによって製造し、寸法変化とい
う観点から種々の検討を加えた。その結果Ni−Cu系
合金粉末やN 1−Cu−Mo系合金粉末等を用いて焼
結したときは、Ni、Cu、Moの夫々の単味金属粉末
を用いて焼結したときに比べて同じ重量割合であっても
膨張率が異なるということを見出した。
The present inventors manufactured a Fe-Cu-Ni based alloy sintered member by combining various raw material powders, and conducted various studies from the viewpoint of dimensional changes. As a result, when sintering using Ni-Cu alloy powder, N1-Cu-Mo alloy powder, etc., compared to when using single metal powders of Ni, Cu, and Mo, It has been found that even if the weight ratio is the same, the expansion ratio is different.

この様な現象が生じる原因については次の様に考えられ
る。即ち、Cuの単味金属粉末の融点(又は液相発生点
)は1083℃であり、通常の焼結条件(1120〜b Cuは溶融して鉄粉粒子間に浸透して合金化することに
よってCu −Growthが発生するのであるが、N
i−Cu系合金粉末やNi−Cu−Mo系合金粉末では
融点(又は液相発生点)が焼結温度より高<(Ni−C
u系で1310℃、Ni−Cu−Mo系で1300℃以
上)、これらの合金粉末が熔融せず固相拡散による合金
化のために膨張は発生しないと考えられる。
The reason why such a phenomenon occurs can be considered as follows. That is, the melting point (or liquid phase generation point) of a single metal powder of Cu is 1083°C, and under normal sintering conditions (1120~b), Cu melts and permeates between iron powder particles to form an alloy. Cu-Growth occurs, but N
For i-Cu alloy powder and Ni-Cu-Mo alloy powder, the melting point (or liquid phase generation point) is higher than the sintering temperature <(Ni-C
1310° C. for the U-based material and 1300° C. for the Ni-Cu-Mo based material), it is considered that these alloy powders do not melt and are alloyed by solid-phase diffusion, so no expansion occurs.

従ってN 1−Cu系合金粉末やNL−Cu−Mo系合
金粉末を色々な配合比で混合使用すれば、全体としての
成分割合を変えないで寸法変化を適正に制御することが
可能となるのである。またこれらの合金粉末を用いれば
、異常膨張の原因となるCu成分の重量%を増加させる
必要が生じた場合であっても膨張の度合を所定範囲内に
抑制することができるので、高価な金型を作り替える必
要がない。
Therefore, by mixing and using N1-Cu alloy powder and NL-Cu-Mo alloy powder in various compounding ratios, it is possible to appropriately control dimensional changes without changing the overall component ratio. be. Furthermore, by using these alloy powders, even if it becomes necessary to increase the weight percentage of the Cu component that causes abnormal expansion, the degree of expansion can be suppressed within a predetermined range. There is no need to change the mold.

以下本発明を実施例によフて更に詳細に説明するが、下
記実施例は本発明方法を限定する性質のものではなく、
前・後記の趣旨に徴して設計変更することはいずれも本
発明の技術的範囲に含まれることである。例えば、下記
実施例ではCuとNiの割合が1:1の合金粉末を用い
たが他の任意の割合のものを用いてもよいのは勿論であ
る。
The present invention will be explained in more detail below with reference to examples, but the following examples are not intended to limit the method of the present invention.
Any design changes based on the above and below intentions are included within the technical scope of the present invention. For example, in the following examples, an alloy powder with a ratio of Cu to Ni of 1:1 was used, but it goes without saying that any other ratio may be used.

また下記実施例ではCuおよびNiの夫々の単味金属粉
とCu−Ni系合金粉末(またはCu−Ni−Mo系合
金粉末を混合・焼結して寸法変化を制御する場合につい
て示すけれども、制御する必要のある寸法変化量に応じ
てCuやNiの阜味粉を用いずしてFe粉にCu−Ni
系合金粉末(またはCu−Ni−Mo系合金粉末)を混
合・焼結する様にしてもよい。
Further, in the following example, a case is shown in which dimensional changes are controlled by mixing and sintering single metal powders of Cu and Ni and Cu-Ni alloy powder (or Cu-Ni-Mo alloy powder). Depending on the amount of dimensional change required, Cu-Ni powder may be added to Fe powder without using Cu or Ni powder.
It is also possible to mix and sinter a Cu-Ni-Mo alloy powder (or a Cu-Ni-Mo alloy powder).

[実施例] 実施例I Fe粉、Cu粉、NL粉、黒鉛の単味粉および潤滑剤と
してのステアリン酸亜鉛を下記第1表の割合となる様に
混合して焼結した。
[Example] Example I Fe powder, Cu powder, NL powder, simple graphite powder, and zinc stearate as a lubricant were mixed in the proportions shown in Table 1 below and sintered.

第   1   表 (重量%) このと幹の焼結部材の寸法分布は第1図に示す如くであ
りた。
Table 1 (% by weight) The size distribution of this sintered trunk member was as shown in FIG.

次にCu粉の割合を1.5%から2%に増量して同様に
焼結し、得られた焼結部材の寸法分布を調査したところ
、第2図に示す結果が得られた。この結果から明らかな
様にCud加量を0.5%増加させるだけでも顕著な膨
張が生じ製品の上限規格を大幅に外れた。
Next, the proportion of Cu powder was increased from 1.5% to 2% and sintered in the same manner, and the size distribution of the obtained sintered member was investigated, and the results shown in FIG. 2 were obtained. As is clear from these results, even if the amount of Cud was increased by only 0.5%, significant expansion occurred and the product significantly exceeded the upper limit specifications.

そこで第2表に示す割合となる様にN L−Cu合金粉
末(Ni:Cu=1 : 1)を加えて焼結したところ
、第1図と同じ寸法分布が得られた。
Therefore, when NL--Cu alloy powder (Ni:Cu=1:1) was added and sintered so as to have the ratio shown in Table 2, the same size distribution as shown in FIG. 1 was obtained.

第 2表 (重量%) 実施例2 原粉末を下記第3表の割合となる様に混合し、成る金型
を用いて焼結したところ第3図に示す寸法分布が得られ
た。
Table 2 (% by weight) Example 2 Raw powders were mixed in the proportions shown in Table 3 below and sintered using a mold, resulting in the size distribution shown in FIG. 3.

第   3   表 (!li量%) そこで下記第4表に示す割合となる様にNi−Cu−M
o系金粉末(Ni :Cu:Mom4:4:1)を加え
て焼結したところ、第4図に示す様な正常な寸法分布が
得られた。
Table 3 (!li amount %) Therefore, Ni-Cu-M was adjusted to the proportions shown in Table 4 below.
When o-based gold powder (Ni:Cu:Mom 4:4:1) was added and sintered, a normal size distribution as shown in FIG. 4 was obtained.

[発明の効果] 以上述べた如く本発明によれば、Fe−Cu−Ni系合
金部材の焼結時における寸法変化を適宜希望する範囲に
調整できる様になった。
[Effects of the Invention] As described above, according to the present invention, the dimensional change during sintering of the Fe-Cu-Ni alloy member can be adjusted to a desired range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は各種焼結部材の寸法分布を示すグラフであ
る。
1 to 4 are graphs showing the size distribution of various sintered members.

Claims (1)

【特許請求の範囲】[Claims] Fe粉、Cu粉およびNi粉を原料粉末として用い、粉
末冶金法によってFe−Cu−N系合金焼結部材を製造
するに当たり、上記原料粉末の他、Ni−Cu系合金粉
末またはNi−Cu−Mo系合金粉末を併用して焼結す
ることを特徴とするFe−Cu−Ni系合金焼結部材の
製造方法。
In producing a Fe-Cu-N based alloy sintered member by powder metallurgy using Fe powder, Cu powder and Ni powder as raw material powders, in addition to the above raw material powders, Ni-Cu based alloy powder or Ni-Cu- A method for producing a Fe-Cu-Ni based alloy sintered member, characterized in that Mo based alloy powder is used in combination for sintering.
JP3670789A 1989-02-15 1989-02-15 Manufacture of fe-cu-ni series alloy sintered member Pending JPH02217435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3670789A JPH02217435A (en) 1989-02-15 1989-02-15 Manufacture of fe-cu-ni series alloy sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3670789A JPH02217435A (en) 1989-02-15 1989-02-15 Manufacture of fe-cu-ni series alloy sintered member

Publications (1)

Publication Number Publication Date
JPH02217435A true JPH02217435A (en) 1990-08-30

Family

ID=12477243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3670789A Pending JPH02217435A (en) 1989-02-15 1989-02-15 Manufacture of fe-cu-ni series alloy sintered member

Country Status (1)

Country Link
JP (1) JPH02217435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122711A (en) * 2010-03-15 2012-06-28 Denso Corp Adsorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122711A (en) * 2010-03-15 2012-06-28 Denso Corp Adsorber

Similar Documents

Publication Publication Date Title
US4299629A (en) Metal powder mixtures, sintered article produced therefrom and process for producing same
US4093454A (en) Nickel-base sintered alloy
TWI325896B (en) Iron-based powder combination
DE1783134A1 (en) Process for the production of hard alloys
US5679182A (en) Semi-solid processing of beryllium-containing alloys of magnesium
US5993507A (en) Composition and process for metal injection molding
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
CN105695846A (en) Phosphorus-contained iron-based powder metallurgy material and preparing process thereof
KR890014774A (en) Method for producing flat articles from metal powders and alloy plates produced by the method
US4131450A (en) Process for manufacturing cobalt-base reduced powder
JPS6365051A (en) Manufacture of ferrous sintered alloy member excellent in wear resistance
KR960003721B1 (en) Mixed powder for powder metallurgy and the sintered product thereof
JPH02217435A (en) Manufacture of fe-cu-ni series alloy sintered member
Berry Factors affecting the growth of 90/10 copper/tin mixes based on atomized powders
US4155754A (en) Method of producing high density iron-base material
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
US3497347A (en) Phosphorus containing iron powder
JP2910326B2 (en) Mixed powder for powder metallurgy and its sintered body
CN110016622B (en) Powder metallurgy material and application thereof
JPH0252681B2 (en)
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH02217401A (en) Manufacture of iron series sintered member
JP2639812B2 (en) Magnetic alloy powder for sintering
JPH01180902A (en) Fe powder for sintering