JPH02217406A - Manufacture of rare-earth-metal-fe-b series permanent magnet powder - Google Patents

Manufacture of rare-earth-metal-fe-b series permanent magnet powder

Info

Publication number
JPH02217406A
JPH02217406A JP1037924A JP3792489A JPH02217406A JP H02217406 A JPH02217406 A JP H02217406A JP 1037924 A JP1037924 A JP 1037924A JP 3792489 A JP3792489 A JP 3792489A JP H02217406 A JPH02217406 A JP H02217406A
Authority
JP
Japan
Prior art keywords
powder
hydrogen gas
permanent magnet
temperature
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1037924A
Other languages
Japanese (ja)
Other versions
JPH0579722B2 (en
Inventor
Ryoji Nakayama
亮治 中山
Takuo Takeshita
武下 拓夫
Tamotsu Ogawa
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1037924A priority Critical patent/JPH02217406A/en
Publication of JPH02217406A publication Critical patent/JPH02217406A/en
Publication of JPH0579722B2 publication Critical patent/JPH0579722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnet powder having high magnetic characteristic by executing heat treatment and de-hydrogen treatment under the prescribed conditions to powder obtained by mixing hydride powder of one or more kinds of rare earth elements (R) containing Y, ferro boron powder and iron powder at the prescribed ratios. CONSTITUTION:By atomic %, 10-30% hydride powder of R, 3-30% ferro boron powder and the balance the iron powder are blended to obtain the mixed powder having 0.5-100mum average particle size. The heat treatment is executed at 500-1,100 deg.C under atmosphere of hydrogen gas or mixed gas of the hydrogen gas and inert gas to this powder. Successively, the de-hydrogen treatment is executed at 500-1,000 deg.C, and after making vacuum atmosphere at <=1Torr hydrogen gas pressure or inert gas atmosphere at <=1Torr hydrogen gas partial pressure, this powder is cooled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、主に、Yを含む希土類元素のうち少なくと
も1種(以下、Rで示す)とFeとBからなるR−Fe
−B系ボンド磁石または永久磁石を製造するための粉末
(以下、R−Fe−B系永久磁石粉末という)を、R粉
末またはRの水素化物(以下、RHxで示す。)粉末、
B粉末またはフェロボロン粉末、およびFe粉末の原料
粉末から製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention mainly relates to R-Fe, which is composed of at least one rare earth element containing Y (hereinafter referred to as R), Fe and B.
- Powder for producing a B-based bonded magnet or permanent magnet (hereinafter referred to as R-Fe-B-based permanent magnet powder) is R powder or R hydride (hereinafter referred to as RHx) powder,
The present invention relates to a method for producing B powder or ferroboron powder and Fe powder from raw material powders.

〔従来の技術〕[Conventional technology]

従来、R粉末またはRHx粉末、B粉末またはフェロボ
ロン粉末、およびFe粉末を要素粉末としてR−Fe−
B系永久磁石粉末を製造する方法として上記粉末を所定
の割合に配合し、よく混合し、さらにボールミル等で磨
砕することにより上記要素粉末を均一混合微細化する、
機械的合金化法によりR−Fe−B系永久磁石粉末を製
造する方法が知られている(特開昭62−240742
号公報参照)。
Conventionally, R-Fe-
As a method for producing B-series permanent magnet powder, the above-mentioned powders are blended in a predetermined ratio, mixed well, and further ground with a ball mill or the like to uniformly mix and refine the above-mentioned element powders.
A method of producing R-Fe-B permanent magnet powder by a mechanical alloying method is known (Japanese Patent Laid-Open No. 62-240742).
(see publication).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記特開昭02−240742号公報記載の方法による
と、R−Fe−B系永久磁石粉末は、ボールミルなどに
よる磨砕中に粉末が酸化するのを防止するため、不活性
ガス中で磨砕される。しかしながら、機械的合金化法に
おけるボールミルなどによる上枠は、約10〜30時間
という長時間行うため、ボールの摩耗などによる不純物
の混入は避けられず、また不活性ガス中で磨砕されても
、粉末の微量の酸化は避けられず、そのためこの方法で
得られたR−Fe−B系永久磁石粉末には、その磁気特
性にバラツキが生じるという問題点があった。
According to the method described in JP-A-02-240742, R-Fe-B permanent magnet powder is ground in an inert gas to prevent the powder from oxidizing during grinding with a ball mill or the like. be done. However, since the upper frame is formed using a ball mill or the like in the mechanical alloying method for a long time of about 10 to 30 hours, contamination with impurities due to wear of the balls is unavoidable, and even when ground in an inert gas, However, a small amount of oxidation of the powder is unavoidable, and therefore, the R-Fe-B permanent magnet powder obtained by this method has a problem in that its magnetic properties vary.

〔課ffi?解決するための手段〕[Section ffi? Means to solve]

そこで、本発明者らは、かかる問題点を解決すべく研究
を行った結果、 原料粉末として、R粉末またはRHx(0〈X≦3)粉
末、フェロボロン粉末および鉄粉末を用意し、これら粉
末を原子百分率で、 R粉末またはRHx (0くX≦3)粉末=lO〜30
%、 フェロボロン粉末=3〜30%、 鉄粉末:残部、 となるように配合し混合して得られた平均粒度:0.5
〜100μsの混合粉末を、 温度:500〜1000℃、水素ガス雰囲気中または水
素ガスと不活性ガスの混合雰囲気中で熱処理し、ついで
、温度:500〜1000℃、水素ガス圧力:1Tor
r以下の真空雰囲気または水素ガス分圧:1Torr以
下の不活性ガス雰囲気になるまで脱水素処理したのち、
冷却するか、または、 RHx (0くX≦3)粉末、フェロボロン粉末および
鉄粉末を用意し、これら粉末を原子百分率で、 RHx (0くX≦3)粉末:10〜30%、フェロボ
ロン粉末;3〜30%、 鉄粉末:残部、 となるように配合し混合して得られた平均粒度:0.5
〜100 w@の混合粉末を、湿度:500〜1000
℃、水素ガス圧力:1Torr以下の真空雰囲気または
水素ガス分圧:1Torr以下の不活性ガス雰囲気にな
るまで脱水素処理したのち冷却すると、不純物の混入も
なく、また水素雰囲気中で処理されるために粉末の微量
の酸化も起こらずに、すぐれたR−Fe−B系永久磁石
を得ることができるという知見を得たのである。
Therefore, the present inventors conducted research to solve such problems, and as a result, prepared R powder or RHx (0<X≦3) powder, ferroboron powder, and iron powder as raw material powders, and In atomic percentage, R powder or RHx (0x≦3) powder = lO~30
%, ferroboron powder = 3-30%, iron powder: balance, average particle size obtained by blending and mixing: 0.5
The mixed powder for ~100 μs is heat-treated at a temperature of 500 to 1000°C in a hydrogen gas atmosphere or in a mixed atmosphere of hydrogen gas and inert gas, and then at a temperature of 500 to 1000°C and a hydrogen gas pressure of 1 Tor.
After dehydrogenating until it becomes a vacuum atmosphere of r or less or an inert gas atmosphere of hydrogen gas partial pressure: 1 Torr or less,
Cool or prepare RHx (0x≦3) powder, ferroboron powder and iron powder, and calculate these powders in atomic percentages: RHx (0x≦3) powder: 10-30%, ferroboron powder; 3-30%, iron powder: balance, average particle size obtained by mixing: 0.5
~100 w @ mixed powder, humidity: 500 ~ 1000
°C, hydrogen gas pressure: 1 Torr or less vacuum atmosphere or hydrogen gas partial pressure: 1 Torr or less, if the dehydrogenation treatment is performed until it becomes an inert gas atmosphere and then cooled, no impurities will be mixed in, and the process will be carried out in a hydrogen atmosphere. They found that it is possible to obtain an excellent R-Fe-B permanent magnet without even the slightest oxidation of the powder.

この発明は、かかる知見に基づいてなされたものであっ
て、以下に、上記範囲を限定した理由について説明する
This invention was made based on this knowledge, and the reason for limiting the above range will be explained below.

(a)  RHx  (0< X≦3)粉末またはR粉
末Rは、NdおよびPr、またはそれらの混合物が好ま
しく、その他にY、Tb、Dy、La、Ce。
(a) RHx (0<X≦3) powder or R powder R is preferably Nd and Pr, or a mixture thereof, and also includes Y, Tb, Dy, La, and Ce.

Ho、  Er、  Eu、  Ss、  Gd、  
Tm 、 Yb。
Ho, Er, Eu, Ss, Gd,
Tm, Yb.

Lu等の希土類元素を含んでもよい。その中でも、特に
’rb、DyおよびPrは保磁力IHcを向上させる効
果がある。
It may also contain rare earth elements such as Lu. Among them, 'rb, Dy and Pr are particularly effective in improving the coercive force IHc.

水素ガス雰囲気または水素ガスと不活性ガスの混合雰囲
気中で熱処理する工程を含むR−Fe−B系永久磁石粉
末の製造法では、出発原料とじて必ずしもRHx (0
<X≦3)粉末でなくてもよく、R粉末であっても効果
は失なわれないが、上記RHx粉末を出発原料とした場
合には、上記熱処理工程を省略して直接水素ガス圧力:
1Torr以下の真空雰囲気または水素ガス分圧:1T
orr以下の不活性ガス雰囲気になるまで脱水素処理し
てR−Fe−B系永久磁石粉末を製造することもでき、
さらにRHxは、Rに水素を吸収させて製造するもので
あるから、もともと粉末状態となっており、粉砕工程を
省略することもできるので、出発原料としてはRHx粉
末を用いる方が好ましい。
In the method for producing R-Fe-B permanent magnet powder that includes a step of heat treatment in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and an inert gas, RHx (0
<X≦3) It does not need to be a powder, and the effect will not be lost even if it is an R powder, but when the above RHx powder is used as a starting material, the above heat treatment step is omitted and the hydrogen gas pressure is directly applied.
Vacuum atmosphere below 1 Torr or hydrogen gas partial pressure: 1T
It is also possible to produce R-Fe-B permanent magnet powder by dehydrogenating it until it becomes an inert gas atmosphere of orr or less,
Furthermore, since RHx is produced by making R absorb hydrogen, it is originally in a powder state, and the pulverization step can be omitted, so it is preferable to use RHx powder as the starting material.

RHx粉末において、XをOくX≦3とした理由は特に
意味があるものではなく、Rの水素化物:RHxのXは
一般に3以下であるためにO<X≦3に限定した。
In the RHx powder, the reason why X was set to O<X≦3 was not particularly significant, and since X in the hydride of R: RHx was generally 3 or less, it was limited to O<X≦3.

上記RHx (0<X≦3)またはR粉末の配合量が1
0原子%より低いと、永久磁石粉末の保磁力が低下し高
磁気特性が得られず、一方、その配合量が30原子%よ
り高いと、永久磁石粉末の磁化の値が低下し高磁気特性
が得られない。
The above RHx (0<X≦3) or the blending amount of R powder is 1
If the content is lower than 0 at%, the coercive force of the permanent magnet powder will decrease and high magnetic properties will not be obtained.On the other hand, if the content is higher than 30 at%, the magnetization value of the permanent magnet powder will decrease and high magnetic properties will not be obtained. is not obtained.

(b)  フェロボロン粉末 フェロボロン粉末としては、特にF e 2 B粉末が
好ましいが、F e 2 Bの一部または全部をFeB
(b) Ferroboron powder As the ferroboron powder, Fe 2 B powder is particularly preferred, but some or all of the Fe 2 B may be replaced by FeB.
.

Bで置換してもよい。またそれらの一部をFe −C,
Fe−N、Fo−0,Fe −Fの化合物で置換しても
よい。
It may be replaced with B. In addition, some of them are Fe-C,
You may substitute with a compound of Fe-N, Fo-0, or Fe-F.

フェロボロン粉末の配合量が3原子%より低いと永久磁
石粉末の保磁力が低下し高磁気特性が得られず、一方、
30原子%を越えて配合しても永久磁石粉末の磁化の値
が低下し、高磁気特性が得られないことからフェロボロ
ン粉末:3〜30原子%に定めた。
If the blending amount of ferroboron powder is lower than 3 atomic %, the coercive force of the permanent magnet powder will decrease and high magnetic properties will not be obtained;
Ferroboron powder was set at 3 to 30 atom % because even if it was blended in an amount exceeding 30 atom %, the magnetization value of the permanent magnet powder would decrease and high magnetic properties could not be obtained.

(e)  鉄粉末 鉄粉末としては、電解鉄粉などの純鉄粉末を用いるのが
好ましいが、その一部を50原子%以下のCo粉末で置
換してもよく、さらに一部をC1Mg、All、Si、
P、S、Ca、TI 、V。
(e) Iron powder As the iron powder, it is preferable to use pure iron powder such as electrolytic iron powder, but part of it may be replaced with 50 atomic % or less Co powder, and further part of it may be replaced with C1Mg, All ,Si,
P, S, Ca, TI, V.

Cr、Mn、Ni、Cu、Zn、Ga、Ge。Cr, Mn, Ni, Cu, Zn, Ga, Ge.

Sr r  Zr 、Nb 1Mo j  pb l 
Ag *  Cd 。
Sr r Zr , Nb 1Mo j pb l
Ag*Cd.

In、Sn、Sb、Ta、W、Re、Os、Pt。In, Sn, Sb, Ta, W, Re, Os, Pt.

Au、Pbで置換したものであってもよい。これらの置
換元素の中でもCo、C,AfI、Tl 、V。
It may be substituted with Au or Pb. Among these substitutional elements, Co, C, AfI, Tl, V.

Cr、Sl、GaおよびNbは、保磁力IHcを向上さ
せる効果がある。
Cr, Sl, Ga, and Nb have the effect of improving coercive force IHc.

(d)  上記(a)〜(e)粉末の混合および混合粉
末の平均粒度 本発明の製造法における混合は、付加的に粉砕を伴うこ
ともあるが、主たる目的は上記各要素粉末を均質に分散
することであり、例えば、ボールミルでの混合時間は1
0〜60分程度でよい。混合を長時間行うと、酸化や不
純物の混入を伴うので好ましくない。
(d) Mixing of the powders (a) to (e) above and average particle size of the mixed powder Although the mixing in the production method of the present invention may additionally involve pulverization, the main purpose is to homogeneously mix each of the above elemental powders. For example, the mixing time in a ball mill is 1
It may take about 0 to 60 minutes. Mixing for a long time is undesirable because it involves oxidation and contamination of impurities.

RまたはRHx (0<X≦3)粉末、フェロボロン粉
末、および鉄粉末からなる混合粉末の平均粒度が0.5
−より小さいと粉末が活性となるために取扱いが困難と
なり、一方、  1100tIIより大きいと水素ガス
雰囲気または水素ガスと不活性ガスの混合雰囲気中での
熱処理後の合金組成が不均質となり、磁石粉末の特性が
不安定になるために、混合粉末の平均粒度は0.5〜1
00μsに定めた。
The average particle size of the mixed powder consisting of R or RHx (0<X≦3) powder, ferroboron powder, and iron powder is 0.5
- If the size is smaller than 1100tII, the powder will become active and difficult to handle.On the other hand, if it is larger than 1100tII, the alloy composition after heat treatment in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and inert gas will become inhomogeneous, making the magnet powder The average particle size of the mixed powder is between 0.5 and 1 to prevent the properties of
It was set to 00 μs.

(e)熱処理 上記混合粉末の圧粉体を水素ガス雰囲気中または水素ガ
スと不活性ガスの混合雰囲気中、温度=500〜100
0℃で熱処理するが、上記熱処理温度が500℃より低
いと水素処理効果がなく、一方、1000℃より高いと
粉末が互いに溶着してしまう上に、保磁力が低下してし
まうので上記熱処理温度は500〜1000℃と定めた
。上記500〜1000℃の範囲内での熱処理は、上記
温度:500−1000”Cの範囲内の一定温度に保持
するだけでなく、上記温度範囲内で昇温変化または降温
変化させてもよい。上記昇温変化または降温変化は、直
線的に昇温または降温変化させてもよいが、曲線的な昇
温または降温変化させてもよい。さらに、上記温度:5
00〜1000℃の範囲内で、昇温、一定温度保持、降
温の任意の組合せからなる温度変化をさせてもよい。
(e) Heat treatment A green compact of the above mixed powder is heated in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and inert gas at a temperature of 500 to 100.
Heat treatment is performed at 0°C, but if the heat treatment temperature is lower than 500°C, there will be no hydrogen treatment effect, while if it is higher than 1000°C, the powders will weld together and the coercive force will decrease. was set at 500 to 1000°C. In the heat treatment within the range of 500 to 1000°C, the temperature may not only be maintained at a constant temperature within the range of 500 to 1000''C, but may also be increased or decreased within the temperature range. The above-mentioned temperature increase change or temperature decrease change may be a linear temperature increase or temperature decrease change, but may also be a curvilinear temperature increase or temperature decrease change.Furthermore, the above temperature: 5
The temperature may be changed within the range of 00 to 1000°C by any combination of temperature increase, constant temperature maintenance, and temperature decrease.

上記熱処理の工程の雰囲気は、水素ガス雰囲気中または
水素ガスと不活性ガスの混合雰囲気中において、水素ガ
ス圧力または水素ガス分圧が、少なくとも10Torr
以上となるような条件で行うことが好ましい。上記水素
ガス圧力または水素ガス分圧が10TOrr以上であれ
ばよいが、好ましくは10〜730Torrにすると島
特性が得られる。
The atmosphere of the heat treatment step is a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and inert gas, and the hydrogen gas pressure or hydrogen gas partial pressure is at least 10 Torr.
It is preferable to carry out the process under the above conditions. The hydrogen gas pressure or hydrogen gas partial pressure may be at least 10 Torr, but preferably from 10 to 730 Torr to obtain island characteristics.

室温から上記温度:500〜1000℃に加熱する途中
の雰囲気は、必ずしも水素ガスがなくてもよく、他のA
r、He等の不活性ガス、あるいは真空でもよいが、好
ましくは水素ガスがよい。上記温度:500〜1000
℃に保持するときは、水素ガスは必須である。また、温
度:500〜1000℃の保持温度、保持時間および水
素ガス圧力を調節することにより、得られる磁石粉末の
保磁力と磁気異方性を制御することができる。
The atmosphere during heating from room temperature to the above temperature: 500 to 1000°C does not necessarily have to contain hydrogen gas, but may contain other A
An inert gas such as r, He, or a vacuum may be used, but hydrogen gas is preferable. Above temperature: 500-1000
Hydrogen gas is essential when maintaining the temperature at ℃. Further, by adjusting the holding temperature of 500 to 1000°C, holding time, and hydrogen gas pressure, the coercive force and magnetic anisotropy of the obtained magnet powder can be controlled.

(「)脱水素処理 脱水素処理は、上記合金磁石粉末のほぼ完全な脱水素化
を目的とするもので、水素ガス圧力または分圧が1To
rrよりも高いと脱水素化が不充分となり高保磁力が得
られない。このため温度=500〜1000℃で、水素
ガス圧力:1Torr以下の真空雰囲気または水素ガス
分圧:1Torr以下の不活性ガス雰囲気になるまで脱
水素処理する。この脱水素処理のパターンは、上記(e
)の熱処理工程と同様に上記温度:500〜1000℃
の範囲内の一定温度に保持するだけでなく、上記温度範
囲内で直線的または曲線的に昇温変化または降温変化さ
せてもよく、さらに、上記温度=500〜1000℃の
範囲内で、昇温、一定温度保持、降温の任意の組合せか
らなる温度変化をさせてもよい。脱水素処理温度は、5
00℃より低いと脱水素処理の効果がなくR−Fe−B
系永久磁石粉末が得られず、1000℃より高いと粉末
が互いに溶着してしまう上に、保磁力が低下してしまう
(“) Dehydrogenation treatment Dehydrogenation treatment aims at almost complete dehydrogenation of the above-mentioned alloy magnet powder, and the hydrogen gas pressure or partial pressure is 1To
If it is higher than rr, dehydrogenation will be insufficient and high coercive force will not be obtained. For this purpose, the dehydrogenation treatment is performed at a temperature of 500 to 1000° C. until a vacuum atmosphere with a hydrogen gas pressure of 1 Torr or less or an inert gas atmosphere with a hydrogen gas partial pressure of 1 Torr or less is created. This dehydrogenation treatment pattern is as described above (e
) Similar to the heat treatment process, the above temperature: 500 to 1000°C
In addition to maintaining the temperature at a constant temperature within the range of The temperature may be varied by any combination of heating, maintaining a constant temperature, and decreasing the temperature. The dehydrogenation temperature is 5
If it is lower than 00℃, the dehydrogenation treatment will not be effective and R-Fe-B
If the temperature is higher than 1000°C, the powders will weld together and the coercive force will decrease.

なお、上記(e)の工程と(1’)の工程の温度範囲は
同一であるが、必ずしも水素ガス雰囲気中または水素ガ
スと不活性ガスの混合雰囲気中で保持した温度をそのま
ま保持して脱水素化しなくてもよい。例えば、水素ガス
雰囲気中または水素ガスと不活性ガスの混合雰囲気中で
保持した温度からさらに昇温および降温して脱水素化し
てもよいが、水素ガス雰囲気中または水素ガスと不活性
ガスの混合雰囲気中で熱処理した温度で脱水素処理を行
うことが好ましい。
Note that although the temperature ranges of the above steps (e) and (1') are the same, dehydration is not necessarily carried out by maintaining the same temperature in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and inert gas. You don't have to be basic. For example, dehydrogenation may be carried out by further raising and lowering the temperature from the temperature maintained in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and an inert gas; It is preferable to perform the dehydrogenation treatment at the temperature of the heat treatment in an atmosphere.

さらに、上記(e)、 Cr”)の工程終了後、繰り返
し上記(e)、 (4)の工程を行ってもよい。
Further, after the steps (e) and Cr") are completed, the steps (e) and (4) may be repeated.

(g)  脱水素処理後の冷却 上記(f)の脱水素処理終了後、ただちにAr等の不活
性ガスにより冷却するか、または冷却途中で真空中また
は不活性ガス中で一定温度に保持して熱処理する。この
熱処理は、上記(e)および(f)の工程を経て得られ
る磁石粉末の保磁力の一層の向上を目的とするもので、
必要に応じて行う。上記熱処理温度は、300〜100
0℃、さらに好ましくは550〜700℃の温度範囲で
ある。かかる熱処理は、上記不活性ガスにより室温まで
冷却した後、再度加熱して真空中または不活性ガス中で
行ってもよく、1回だけでなく、2回以上行ってもよい
(g) Cooling after dehydrogenation treatment After the dehydrogenation treatment in (f) above is completed, immediately cool it with an inert gas such as Ar, or maintain it at a constant temperature in vacuum or in an inert gas during cooling. Heat treatment. The purpose of this heat treatment is to further improve the coercive force of the magnetic powder obtained through the steps (e) and (f) above.
Do this as necessary. The above heat treatment temperature is 300 to 100
The temperature range is 0°C, more preferably 550 to 700°C. Such heat treatment may be performed by cooling to room temperature with the inert gas and then heating again in a vacuum or in an inert gas, and may be performed not only once but twice or more.

上記脱水素化した後および熱処理後の冷却はできるだけ
速い方が望ましい。
It is desirable that the cooling after the dehydrogenation and heat treatment be as fast as possible.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例および比較例にもとづいて一
層具体的に詳細に説明する。
Next, the present invention will be explained in more concrete detail based on Examples and Comparative Examples.

実施例1〜12および比較例13〜16純度99.9%
のNd、Pr、Y、Dyの各希土類金属(塊状)を第1
表に示される割合で秤量し、1気圧の水素中、温度30
0℃、2時間保持して、第1表に示されるX値を有する
R Hx粉末を作製用意し、さらに、純度: 99.9
重量%を有し粒度:40〇−以下のF e 2 B粉末
、置換粉末として平均粒度:10〇−以下のCO粉末、
および純度: 99.Qffi量%を有し粒度:400
.cm以下の電解鉄粉を用意して原料粉末とした。
Examples 1-12 and Comparative Examples 13-16 Purity 99.9%
The rare earth metals (bulk) of Nd, Pr, Y, Dy are first
Weigh in the proportions shown in the table, and at a temperature of 30°C in 1 atm of hydrogen.
RHx powder having the X value shown in Table 1 was prepared by holding at 0°C for 2 hours, and the purity was 99.9.
F e 2 B powder with a particle size of 400- or less, CO powder with an average particle size of 100- or less as a replacement powder,
and purity: 99. Particle size: 400 with Qffi amount%
.. Electrolytic iron powder with a size of less than cm was prepared and used as a raw material powder.

これら原料粉末を第1表に示される配合組成゛となるよ
うに配合し、ボールミルにて混合して平均粒度:30−
の混合粉末にした。この混合粉末の粉末X線回折を行い
、相同定を行ったところ、RHX 、F e 2 B 
、 CoおよびFeの回折線のみが認められた。
These raw material powders were blended to have the composition shown in Table 1, mixed in a ball mill, and average particle size: 30-
It was made into a mixed powder. When this mixed powder was subjected to powder X-ray diffraction and phase identification was performed, it was found that RHX, Fe 2 B
, Co and Fe diffraction lines were observed.

この混合粉末を、圧カニ4Ton/c−で成形して圧粉
体とし、温度二840℃、1気圧の水素中で熱処理した
のち、温度:870℃、5 X lO’Torrまで脱
水素処理して冷却し、解砕してR−Fe−B系永久磁石
粉末を得た。上記混合粉末からR−Fe−B系永久磁石
粉末を作製したときの歩留りは全て97%以上であった
This mixed powder was molded with a pressure crab of 4Ton/c- to form a green compact, heat treated in hydrogen at a temperature of 2,840°C and 1 atm, and then dehydrogenated to a temperature of 870°C and 5 X lO'Torr. The mixture was cooled and crushed to obtain R-Fe-B permanent magnet powder. When R-Fe-B permanent magnet powder was produced from the above mixed powder, the yield was 97% or more in all cases.

得られたR−Fe−B系永久磁石粉末について、振動式
磁束計(VSM)を用いて、着磁磁場:40 koo時
のiHcを測定してその結果を第1表に示すと共に、粉
末X線回折を行い、強磁性相:R2Fe14Bの同定を
行った。上記粉末X線回折結果を、 ◎は、強磁性相R2Fe、4Bの回折線のみが確認され
、それ以外の相の回折線がほとんど確認されないもの 0は、強磁性相R2Fe14Bの回折線が確認され、そ
れ以外の相の回折線も明かに確認されるもの Xは、強磁性相R2Fe14Bの回折線がほとんど確認
されないもの として、◎、0およびXで区別して第1表に示した。
The obtained R-Fe-B permanent magnet powder was measured for iHc at a magnetizing magnetic field of 40 koo using a vibrating magnetometer (VSM), and the results are shown in Table 1. Linear diffraction was performed to identify the ferromagnetic phase: R2Fe14B. The above powder X-ray diffraction results are as follows: ◎ indicates that only the diffraction lines of the ferromagnetic phase R2Fe, 4B are confirmed, and almost no diffraction lines of other phases are observed. 0 indicates that the diffraction line of the ferromagnetic phase R2Fe14B is confirmed. , X, in which diffraction lines of other phases are also clearly observed, and X, in which diffraction lines of the ferromagnetic phase R2Fe14B are hardly observed, are shown in Table 1 as ◎, 0, and X.

さらに、得られた上記R−Fe−B系永久磁石粉末を、
3重量%のエポキシ樹脂と混合し、圧カニ77on/c
−で成形して120℃で5時間熱硬化させ、等方性ボン
ド磁石を作製し、自記磁束計を用いて、着磁磁場: 4
G koe時のボンド磁石の磁気特性を測定し、その結
果も第1表に示した。
Furthermore, the obtained R-Fe-B permanent magnet powder,
Mixed with 3% by weight epoxy resin, pressure crab 77on/c
- and heat cured at 120°C for 5 hours to produce an isotropic bonded magnet, and using a self-recording magnetometer, magnetization magnetic field: 4
The magnetic properties of the bonded magnets at G koe were measured, and the results are also shown in Table 1.

第1表の結果から、この発明の条件をみたす実施例1〜
12で製造されたR−Fe−B系永久磁石粉末は、高保
磁力を示すとともに、この磁石粉末で作製されたボンド
磁石も高い磁気特性を示すが、第1表で棗印を付したこ
の発明の条件から外れたものは十分な磁気特性を示さな
いことがわかる。
From the results in Table 1, Examples 1 to 1 that meet the conditions of this invention
The R-Fe-B permanent magnet powder produced in No. 12 shows high coercive force, and the bonded magnet made with this magnet powder also shows high magnetic properties. It can be seen that those that deviate from the conditions do not exhibit sufficient magnetic properties.

実施例17〜28および比較例29〜32上記実施例1
〜12および比較例13〜16の混合粉末を圧カニ 4
 Ton/cdで成形した圧粉体を、室温で圧カニlX
1O″″5Torrの真空中に保持し、その後、ただち
に温度二870℃の熱処理炉に挿入して、温度二870
℃で5 X 10”””Torrまで脱水素処理し、冷
却したのち、解砕してR−Fe−B系永久磁石粉末を得
た。混合粉末からR−Fe−B系永久磁石粉末を製造し
たときの歩留りは、全て9G%以上であった。
Examples 17-28 and Comparative Examples 29-32 Above Example 1
The mixed powders of ~12 and Comparative Examples 13~16 were crushed under pressure 4
The green compact molded with Ton/cd was heated with a pressure crab lX at room temperature.
It is maintained in a vacuum of 10''5 Torr, and then immediately inserted into a heat treatment furnace at a temperature of 2870°C.
After dehydrogenating at 5 x 10"" Torr at ℃, cooling, and crushing, R-Fe-B permanent magnet powder was obtained. R-Fe-B permanent magnet powder was produced from the mixed powder. The yield in all cases was 9G% or higher.

得られたR−Fe−B系永久磁石粉末について、上記実
施例1〜12および比較例13〜1Bと同一条件にて着
磁磁場: 40 kOe時のIHcを測定するとともに
、粉末X線回折を行い、強磁性相:R2Fe14Bの同
定を行い、実施例1〜12および比較例13〜16の場
合と同様に◎、0または×で区別し、さらにボンド磁石
を作製してその磁気特性をΔ−1定し、それらの結果を
第2表に示した。
Regarding the obtained R-Fe-B permanent magnet powder, IHc at a magnetizing magnetic field of 40 kOe was measured under the same conditions as in Examples 1 to 12 and Comparative Examples 13 to 1B, and powder X-ray diffraction was also conducted. The ferromagnetic phase: R2Fe14B was identified and distinguished by ◎, 0 or The results are shown in Table 2.

第2表の結果から、混合粉末の圧粉体を直接脱水素処理
しても、上記実施例1〜12および比較例13〜tCと
ほぼ同じ結果が得られることがわかる。
From the results in Table 2, it can be seen that almost the same results as in Examples 1 to 12 and Comparative Example 13 to tC can be obtained even if the green compact of the mixed powder is directly dehydrogenated.

実施例33〜38および比較例39〜42純度: 99
.9重量%のNd粉末、Pr粉末、およびDy粉末を混
合して第3表に示される組成のR粉末を作製し用意し、
さらに、純度: 99.9重ffi%を有し粒度:20
0m以下のF e 2 B粉末、置換粉末として粒度:
l[l[1m以下のCo粉末、および純度:99.9重
量%を有し、粒度:BOOura以下の電解鉄粉を用意
し、原料粉末とした。
Examples 33-38 and Comparative Examples 39-42 Purity: 99
.. Mix 9% by weight of Nd powder, Pr powder, and Dy powder to prepare R powder having the composition shown in Table 3,
Further, purity: 99.9% by weight and particle size: 20
Fe2B powder below 0m, particle size as replacement powder:
A Co powder of 1 m or less and an electrolytic iron powder having a purity of 99.9% by weight and a particle size of BOOura or less were prepared and used as raw material powder.

これら原料粉末を、第3表に示される配合組成(原子百
分率)となるように配合し、ボールミルにて混合し、平
均粒度: 40uMの混合粉末にした。
These raw material powders were blended to have the composition (atomic percentage) shown in Table 3, and mixed in a ball mill to form a mixed powder with an average particle size of 40 uM.

この混合粉末の粉末X線回折を行い、相同定を行ったと
ころ、R,Fe2B、CoおよびFeの回折線のみが認
められた。
When this mixed powder was subjected to powder X-ray diffraction and phase identification was performed, only the diffraction lines of R, Fe2B, Co, and Fe were observed.

この混合粉末を、圧カニ4Ton/c−で成形して圧粉
体とし、温度=840℃、1気圧の水素中で熱処理した
のち、温度:860℃、5 X 1O−2Torrまで
脱水素処理して冷却し、解砕してR−Fe−B系永久磁
石粉末を得た。上記混合粉末からR−Fe−B系永久磁
石粉末を作製したときの歩留りは全て97%以上であっ
た。
This mixed powder was molded with a pressure crab of 4Ton/c- to form a green compact, heat-treated in hydrogen at 840°C and 1 atm, and then dehydrogenated to 860°C and 5 x 1O-2Torr. The mixture was cooled and crushed to obtain R-Fe-B permanent magnet powder. When R-Fe-B permanent magnet powder was produced from the above mixed powder, the yield was 97% or more in all cases.

得られたR−Fe−B系永久磁石粉末について、振動式
磁束計(VSM)を用いて、着磁磁場:40 koe時
のiHcを測定してその結果を第3表に示すと共に、粉
末X線回折を行い、強磁性相:R2Fe14Bの同定を
行った。上記粉末X線回折結果を、 ◎は、強磁性相R2Fe14Bの回折線のみが確認され
、それ以外の相の回折線がほとんど確認されないもの ○は、強磁性相R2Fe14Bの回折線が確認され、そ
れ以外の相の回折線も明かに確認されるもの Xは、強磁性相R2F 614 Bの回折線がほとんど
確認されないもの として、◎、OおよびXで区別、して第3表に示した。
The obtained R-Fe-B permanent magnet powder was measured for iHc at a magnetizing magnetic field of 40 koe using a vibrating magnetometer (VSM), and the results are shown in Table 3. Linear diffraction was performed to identify the ferromagnetic phase: R2Fe14B. The above powder X-ray diffraction results are as follows: ◎: Only the diffraction line of the ferromagnetic phase R2Fe14B is confirmed, and almost no diffraction lines of other phases are confirmed.○: The diffraction line of the ferromagnetic phase R2Fe14B is confirmed, and X, in which diffraction lines of other phases are also clearly observed, is classified as ◎, O, and X, and is shown in Table 3, with almost no diffraction lines of the ferromagnetic phase R2F 614 B being observed.

さらに、得られた上記R−Fe−、B系永久磁石粉末を
、Bffi量%のエポキシ樹脂と混合し、圧力=7To
n/cdで成形して120℃で5時間熱硬化させ、等方
性ボンド磁石を作製し、0記磁束計を用いて、着磁磁場
:40kOc時のボンド磁石の磁気特性を測定し、その
結果も第3表に示した。
Furthermore, the obtained R-Fe-, B-based permanent magnet powder was mixed with an epoxy resin in an amount of Bffi%, and the pressure was set at 7To.
An isotropic bonded magnet was produced by molding with n/cd and heat curing at 120°C for 5 hours, and the magnetic properties of the bonded magnet were measured using a magnetization field of 40 kOc using a 0-mark magnetometer. The results are also shown in Table 3.

第3表の結果から、原料粉末としてR粉末を用いてもこ
の発明の条件をみたす実施例33〜38で製造されたR
−Fe−B系永久磁石粉末は、高保磁力を示すとともに
、このR−Fe−B系永久磁石粉末で作製されたボンド
磁石も高い磁気特性を示すが、第3表で棗印を付したこ
の発明の条件から外れた比較例39〜42では十分な磁
気特性を示さないことがわかる。
From the results in Table 3, it can be seen that the R powder produced in Examples 33 to 38 satisfies the conditions of this invention even when R powder is used as the raw material powder.
-Fe-B permanent magnet powder exhibits high coercive force, and bonded magnets made from this R-Fe-B permanent magnet powder also exhibit high magnetic properties. It can be seen that Comparative Examples 39 to 42, which deviate from the conditions of the invention, do not exhibit sufficient magnetic properties.

実施例43〜50および比較例51〜52純度: 99
.9重量%のNdを温度=400℃、1 aimの水素
中で2時間保持して作製したNdの水素化物(N d 
H,3)粉末、純度: 99.9重量%を有し粒度: 
400tng以下のF e 2 B粉末、および純度=
99.9重量%を有し粒度:400μs以下の電解鉄粉
を用意し、これら粉末を第4表に示される組成に配合し
、ボールミルにて混合し、第4表に示される平均粒度を
有する混合粉末とした。この混合粉末の粉末X線回折を
行い、相同窓を行ったところ、N d H、F e 2
 B 、およびFeの回折線のみ2.3 が認められた。
Examples 43-50 and Comparative Examples 51-52 Purity: 99
.. Nd hydride (N d
H, 3) Powder, purity: 99.9% by weight, particle size:
F e 2 B powder below 400 tng, and purity =
Electrolytic iron powder containing 99.9% by weight and particle size: 400 μs or less is prepared, and these powders are blended into the composition shown in Table 4, mixed in a ball mill, and have the average particle size shown in Table 4. It was made into a mixed powder. When this mixed powder was subjected to powder X-ray diffraction and a phase window was performed, N d H, Fe 2
Only the diffraction lines of 2.3 for B and Fe were observed.

この混合粉末を、圧カニ 4 Ton/ c−で成形し
て圧粉体とし、温度:840℃、1気圧の水素中で熱処
理したのち、温度=860℃、5 X 1O−2Tor
rまで脱水素処理して冷却し、解砕してNd−Fe−B
系永久磁石粉末を得た。
This mixed powder was molded into a green compact using a pressure crab of 4 Ton/c-, and then heat-treated in hydrogen at 840°C and 1 atm, and then heated at 860°C and 5 x 1O-2 Torr.
Dehydrogenated to r, cooled, and crushed to produce Nd-Fe-B
A permanent magnet powder was obtained.

得られたNd−Fe−B系永久磁石粉末について、振動
式磁束計(VSM)を用いて、着磁磁場:40 kOe
時のiHcを#1定してその結果を第4表に示すと共に
、粉末X線回折を行い、強磁性相:Nd2Fe14Bの
同定を行った。上記粉末X線回折結果を、 ◎は、強磁性相Nd2F814Bの回折線のみが確認さ
れ、それ以外の相の回折線がほとんど確認されないもの 0は、強磁性相Nd2Fe14Bの回折線が確認され、
それ以外の相の回折線も明かに確認されるもの ×は、強磁性相N d 2 F ? 14 Bの回折線
がほとんど確認されないもの として、◎、0およびXで区別して第4表に示した。
The obtained Nd-Fe-B permanent magnet powder was subjected to a magnetizing magnetic field of 40 kOe using a vibrating magnetometer (VSM).
The iHc was determined to be #1 and the results are shown in Table 4, and powder X-ray diffraction was performed to identify the ferromagnetic phase: Nd2Fe14B. The above powder X-ray diffraction results are as follows: ◎ indicates that only the diffraction line of the ferromagnetic phase Nd2F814B is confirmed, and almost no diffraction lines of other phases are confirmed; 0 indicates that the diffraction line of the ferromagnetic phase Nd2Fe14B is confirmed;
Diffraction lines of other phases are also clearly confirmed. × indicates the ferromagnetic phase N d 2 F? 14 B diffraction lines are hardly observed and are shown in Table 4, distinguished by ◎, 0, and X.

さらに、得られた上記Nd−Fe−B系永久磁石粉末を
、3重量%のエポキシ樹脂と混合し、圧カニ 7Ton
 /cシで成形して120℃で5時間熱硬化させ、等方
性ボンド磁石を作製し、自記磁束計を用いて、着磁磁場
:40kOe時のボンド磁石の磁気特性を測定し、その
結果を第4表に示した。
Furthermore, the obtained Nd-Fe-B permanent magnet powder was mixed with 3% by weight of epoxy resin,
/c molding and heat curing at 120°C for 5 hours to produce an isotropic bonded magnet. Using a self-recording magnetometer, the magnetic properties of the bonded magnet at a magnetizing magnetic field of 40 kOe were measured, and the results were are shown in Table 4.

第4表の結果から、平均粒度:0.5〜100−の混合
粉末の時に、高保磁力のNd−Fe−B系永久磁石粉末
が製造され、この粉末を用いて製造されたボンド磁石も
高い磁気特性を示すことがわかる。
From the results in Table 4, when the mixed powder has an average particle size of 0.5 to 100, Nd-Fe-B permanent magnet powder with a high coercive force is produced, and the bonded magnet produced using this powder also has a high coercive force. It can be seen that it exhibits magnetic properties.

実施例53〜55および比較例56〜57実施例3の配
合組成を有する混合粉末を圧力;4Ton/c−で成形
して圧粉体とし、この圧粉体を温度二850℃、250
Torrの水素中で熱処理したのち、温度;850℃で
第5表に示される真空度まで脱水素処理して冷却し、解
砕して、R−Fe−B系永久磁石粉末を得た。
Examples 53 to 55 and Comparative Examples 56 to 57 A mixed powder having the composition of Example 3 was molded at a pressure of 4 Ton/c to form a green compact, and this green compact was molded at a temperature of 2850°C and 250°C.
After heat treatment in Torr hydrogen, dehydrogenation was performed at a temperature of 850°C to the degree of vacuum shown in Table 5, cooled, and crushed to obtain R-Fe-B permanent magnet powder.

得られたR−Fe−B系永久磁石粉末について、振動式
磁束計(VSM)を用いて、着磁磁場=40 koe時
のiHcを測定し、さらに、この磁石粉末と、3重量%
のエポキシ樹脂とを混合し、圧カニ 7Ton /c−
で成形して温度:120℃で5時間熱硬化させ、等方性
ボンド磁石を作製し、自記磁束計を用いて着磁磁場:4
0 kOe時のボンド磁石の磁気特性を測定し、これら
Jll定結果を第5表に示した。第5表において秦印を
付した値は、この発明の条件から外れた値である。
Regarding the obtained R-Fe-B permanent magnet powder, the iHc at the time of magnetizing magnetic field = 40 koe was measured using a vibrating magnetometer (VSM).
of epoxy resin and pressure crab 7Ton/c-
An isotropic bonded magnet was produced by molding and heat curing at a temperature of 120°C for 5 hours, and a magnetizing magnetic field of 4
The magnetic properties of the bonded magnet at 0 kOe were measured, and the results are shown in Table 5. The values marked with a square in Table 5 are values outside the conditions of the present invention.

この発明の製造法により、脱水素処理の真空度が1To
rr以下の時に、R−Fe−B系合金粉末が製造される
と同時に高保磁力の磁石粉末が製造され、ボンド磁石に
使用しても高い磁気特性を示すことがわかる。
By the production method of this invention, the degree of vacuum in dehydrogenation treatment is 1To
It can be seen that when R-Fe-B alloy powder is produced at the same time as rr or less, magnet powder with high coercive force is produced and exhibits high magnetic properties even when used in a bonded magnet.

実施例58〜8B 純度: 99.effii1%のNd粉末およびPr粉
末を、温度=300℃、1気圧の水素中で2時間保持す
ることにより作製したRH,、粉末(ただし、RはNd
:95重量%、P「:5重量%からなる組成を有する)
、純度799.9重量%を有し粒度:400tu@以下
のF e 2 B粉末、置換粉末として粒度:100x
以下のB粉末、FeB粉末、F e 3C粉末\AfI
粉末、S1粉末およびFeGa粉末、並びに純度: 9
9.9重量%を有し粒度:40〇−以下の電解鉄粉を用
意し、これら粉末を第6表に示される配合組成となるよ
うに配合し、ボールミルにて混合し、平均粒度:30虜
の混合粉末にした。この混合粉末の粉末X線回折を行い
、相同窓を行ったところ、RH2,t−Fe  B、F
eB、B、Fe5C,Ag、Si。
Examples 58-8B Purity: 99. RH,, powder (where R is Nd
: 95% by weight, P": 5% by weight)
, Fe 2 B powder with purity 799.9% by weight and particle size: 400 tu@ or less, particle size: 100x as replacement powder
The following B powder, FeB powder, Fe 3C powder\AfI
Powder, S1 powder and FeGa powder, and purity: 9
Electrolytic iron powder containing 9.9% by weight and particle size: 400- or less was prepared, and these powders were blended to have the composition shown in Table 6, mixed in a ball mill, and average particle size: 30. I made it into a mixed powder. Powder X-ray diffraction of this mixed powder was performed, and phase window analysis revealed that RH2, t-Fe B, F
eB, B, Fe5C, Ag, Si.

FeGaおよびFeの回折線のみが認められた。Only FeGa and Fe diffraction lines were observed.

この混合粉末を、圧カニ 4 Ton / cdで成形
して圧粉体とし、温度=840℃、1気圧の水素中で熱
処理したのち、温度=860℃、I X 10’Tor
rまで脱水素処理して冷却し、解砕してR−Fe−B系
永久磁石粉末を得た。上記混合粉末からR−Fe−B系
永久磁石粉末を作製したときの歩留りは全て97%以上
であった。
This mixed powder was molded into a green compact using a pressure crab of 4 Ton/cd, and then heat treated in hydrogen at 840°C and 1 atm, and then heated at 860°C and 10' Tor
It was dehydrogenated to r, cooled, and crushed to obtain R-Fe-B permanent magnet powder. When R-Fe-B permanent magnet powder was produced from the above mixed powder, the yield was 97% or more in all cases.

得られたR−Fe−B系永久磁石粉末について、振動式
磁束計(V S M)を用いて、着磁磁場:40 kO
e時のiHcを測定してその結果を第6表に示すと共に
、粉末X線回折を行い、強磁性相:R2Fe14Bの同
定を行ったところ、強磁性相:R2Fe、4Bの回折線
が確認され、それ以外の相の回折線も確認された。
The obtained R-Fe-B permanent magnet powder was subjected to a magnetizing magnetic field of 40 kO using a vibrating magnetometer (VSM).
The iHc at time e was measured and the results are shown in Table 6. In addition, powder X-ray diffraction was performed to identify the ferromagnetic phase: R2Fe14B, and the diffraction lines of the ferromagnetic phase: R2Fe, 4B were confirmed. , diffraction lines of other phases were also confirmed.

得られたR−Fe−B系永久磁石粉末を、3重量%のエ
ポキシ樹脂と混合し、圧カニ 7Ton /cdで成形
して120℃で5時間熱硬化させ、等方性ボンド磁石を
作製し、自記磁束計を用いて、着磁磁場:40kOe時
のボンド磁石の磁気特性を測定し、その結果も第6表に
示した。
The obtained R-Fe-B permanent magnet powder was mixed with 3% by weight of epoxy resin, molded with a pressure crab at 7Ton/cd, and heat-cured at 120°C for 5 hours to produce an isotropic bonded magnet. The magnetic properties of the bonded magnets were measured using a self-recording magnetometer at a magnetizing magnetic field of 40 kOe, and the results are also shown in Table 6.

第6表の結果から、F e 2 Bの一部または全部を
B、FeB、Fe5Cで置換した場合でも、またFeの
一部をAjl、St、FeGaで置換した場合でも、高
保磁力の永久磁石粉末が製造され、特にA、1?、Sl
 、FeGa置換の場合は保磁力が一層向上することが
わかる。
From the results in Table 6, it is clear that even if part or all of Fe2B is replaced with B, FeB, or Fe5C, or if part of Fe is replaced with Ajl, St, or FeGa, a permanent magnet with high coercive force can be obtained. A powder is produced, in particular A, 1? , Sl
, it can be seen that in the case of FeGa substitution, the coercive force is further improved.

実施例67〜78および比較例79〜84実施例3の配
合組成の混合粉末を圧力4Ton/cdで成形して圧粉
体とし、室温から第7表に示される温度まで、300T
orr水素分圧の水素とArとの混合雰囲気中で熱処理
した後、第7表に示される温度で、5 X lO’To
rrまで脱水素処理をして冷却し、解砕してR−Fe−
B系永久磁石粉末を得た。混合粉末から磁石粉末の歩留
りは、全て96%以上であった。
Examples 67 to 78 and Comparative Examples 79 to 84 The mixed powder having the composition of Example 3 was molded at a pressure of 4Ton/cd to form a green compact, and then heated at 300T from room temperature to the temperature shown in Table 7.
After heat treatment in a mixed atmosphere of hydrogen and Ar with orr hydrogen partial pressure, 5X lO'To
It is dehydrogenated to rr, cooled, and crushed to produce R-Fe-
B-based permanent magnet powder was obtained. The yield of magnet powder from mixed powder was all 96% or more.

得られた磁石粉末について、振動式磁束計(VSM)を
用いて、着磁磁場40kOe時のIHCを測定し、その
結果も第7表に示した。第7表において、茶印は、この
発明の条件外の値を示す。
Regarding the obtained magnet powder, IHC was measured at a magnetizing magnetic field of 40 kOe using a vibrating magnetometer (VSM), and the results are also shown in Table 7. In Table 7, brown marks indicate values outside the conditions of this invention.

第7表に示される結果から、水素ガスとArガスの混合
雰囲気中における熱処理温度は、500〜1000℃の
範囲内にあり、さらに脱水素処理温度も500〜100
0℃の範囲内に保持することにより、高保磁力を有する
R−Pa−B系永久磁石粉末が製造されることがわかる
From the results shown in Table 7, the heat treatment temperature in a mixed atmosphere of hydrogen gas and Ar gas is within the range of 500 to 1000°C, and the dehydrogenation temperature is also within the range of 500 to 1000°C.
It can be seen that by maintaining the temperature within the range of 0° C., R-Pa-B permanent magnet powder having a high coercive force can be produced.

また、比較例83および84において、実施例3の組成
の混合粉末から得られた圧粉体を、室温から850 ’
Cまで水素を含まない雰囲気中で熱処理し、さらに脱水
素処理し、ついで解砕して得たRFe−B系永久磁石粉
末の保磁力をIpj定したが、熱処理工程で水素を全く
使用しない場合は、永久磁石粉末の保磁力が非常に低い
ことがわかる。
In addition, in Comparative Examples 83 and 84, the green compact obtained from the mixed powder having the composition of Example 3 was heated from room temperature to 850'
The coercive force of RFe-B permanent magnet powder obtained by heat treatment in a hydrogen-free atmosphere up to C, further dehydrogenation treatment, and then crushing was determined by Ipj, but when no hydrogen is used at all in the heat treatment process. It can be seen that the coercive force of the permanent magnet powder is very low.

実施例85〜96および比較例97〜98実施例4で得
られたR−Fe−B系永久磁石粉末を、さらに、1気圧
のArガス雰囲気中または2 X 1G’Torrの真
空中で第8表に示される温度に第 表 10〜120分保持の熱処理を行った。
Examples 85 to 96 and Comparative Examples 97 to 98 The R-Fe-B permanent magnet powder obtained in Example 4 was further heated in an Ar gas atmosphere of 1 atm or in a vacuum of 2 x 1 G'Torr. Heat treatment was carried out at the temperature shown in the table for 10 to 120 minutes.

得られたR−Fe−B系永久磁石粉末について、振動式
磁束計(VSM)を用いて、着磁磁場=40 kOc時
のiHcを測定し、さらに、この磁石粉末と、3重量%
のエポキシ樹脂とを混合し、圧カニ 7Ton /cj
で成形して温度=120℃で5時間熱硬化させ、等方性
ボンド磁石を作製し、自記磁束計を用いて着磁磁場:4
0kOe時のボンド磁石の磁気特性を測定し、これらn
1定結果を第8表に示した。第8表において栗印を付し
た値は、この発明の条件から外れた値である。
The obtained R-Fe-B permanent magnet powder was measured for iHc at a magnetizing magnetic field of 40 kOc using a vibrating magnetometer (VSM), and further, this magnet powder and 3% by weight
Mix with epoxy resin and press 7Ton/cj
An isotropic bonded magnet was prepared by molding and heat curing at a temperature of 120°C for 5 hours, and a magnetizing magnetic field of 4
The magnetic properties of the bonded magnet at 0 kOe were measured, and these n
The constant results are shown in Table 8. The values marked with a chestnut in Table 8 are values outside the conditions of the present invention.

第8表の結果から、この発明の実施例4で得られたR−
Fe−B系永久磁石粉末を、さらに熱処理した方がよい
ことがわかる。その場合、熱処理温度は、1000℃を
越えると、磁石粉末の保磁力が低下しその磁石粉末を用
いて作製したボンド磁石の磁気特性も低下するので、1
000℃以下であることが必要であり、特に磁気特性を
一層向上させるためには、熱処理温度:300〜100
0℃の範囲内にあることが好ましいことがわかる。
From the results in Table 8, it can be seen that R-
It can be seen that it is better to further heat treat the Fe-B based permanent magnet powder. In that case, if the heat treatment temperature exceeds 1000°C, the coercive force of the magnet powder will decrease and the magnetic properties of the bonded magnet made using the magnet powder will also decrease.
In order to further improve the magnetic properties, heat treatment temperature: 300 to 100°C is required.
It can be seen that the temperature is preferably within the range of 0°C.

〔発明の効果〕〔Effect of the invention〕

この発明は、R−Fe−B系永久磁石粉末を製造する方
法において、特定の原料粉末を用い、かつ水素処理法を
取り入れることにより、粉末が酸化されることな(R−
Fe−B系の合金化と同時に高磁気特性の磁石粉末が、
安定した特性で、かつ非常に効率よく製造される。さら
に、本発明の製造法で得られた磁石粉末は、ボンド磁石
に対して・も十分実用的であるばかりでなく、焼結磁石
の原料粉末に用いることができる。また従来の異方性化
の手段である熱間塑性加工を利用することにより、異方
性磁石、または異方性磁石粉末を製造することも可能で
あり、工業的価値がきわめて高い。
This invention uses a specific raw material powder and incorporates a hydrogen treatment method in a method for producing R-Fe-B permanent magnet powder, thereby preventing the powder from being oxidized (R-Fe-B).
At the same time as Fe-B alloying, magnet powder with high magnetic properties is produced.
It has stable properties and is manufactured very efficiently. Furthermore, the magnet powder obtained by the production method of the present invention is not only sufficiently practical for bonded magnets, but also can be used as raw material powder for sintered magnets. Furthermore, by utilizing hot plastic working, which is a conventional means of anisotropy, it is also possible to produce anisotropic magnets or anisotropic magnet powder, which has extremely high industrial value.

Claims (4)

【特許請求の範囲】[Claims] (1)主に、Yを含む希土類元素のうち少なくとも一種
(以下、Rで示す。)と鉄とボロンからなるR−Fe−
B系永久磁石粉末の製造法において、原料粉末として、
Rの水素化物粉末、フェロボロン粉末および鉄粉末を用
意し、これら粉末を原子百分率で、 Rの水素化物粉末:10〜30%、 フェロボロン粉末:3〜30%、 鉄粉末:残部、 となるように配合し混合して得られた平均粒度:0.5
〜100μmの混合粉末を、 温度:500〜1000℃、水素ガス雰囲気中または水
素ガスと不活性ガスの混合雰囲気中で熱処理し、ついで
、温度:500〜1000℃、水素ガス圧力:1Tor
r以下の真空雰囲気または水素ガス分圧:1Torr以
下の不活性ガス雰囲気になるまで脱水素処理したのち、
冷却すること を特徴とする希土類−Fe−B系永久磁石粉末の製造法
(1) R-Fe- mainly consists of at least one rare earth element including Y (hereinafter referred to as R), iron, and boron.
In the method for producing B-series permanent magnet powder, as raw material powder,
Prepare R hydride powder, ferroboron powder, and iron powder, and prepare these powders in atomic percentages such that R hydride powder: 10-30%, ferroboron powder: 3-30%, iron powder: balance. Average particle size obtained by blending and mixing: 0.5
The mixed powder of ~100 μm is heat treated at a temperature of 500 to 1000°C in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and inert gas, and then at a temperature of 500 to 1000°C and a hydrogen gas pressure of 1 Tor.
After dehydrogenating until it becomes a vacuum atmosphere of r or less or an inert gas atmosphere of hydrogen gas partial pressure: 1 Torr or less,
A method for producing rare earth-Fe-B permanent magnet powder, which comprises cooling.
(2)主に、Rと鉄とボロンからなるR−Fe−B系永
久磁石粉末の製造法において、 原料粉末として、Rの水素化物粉末、フェロボロン粉末
および鉄粉末を用意し、これら粉末を原子百分率で、 Rの水素化物粉末:10〜30%、 フェロボロン粉末:3〜30%、 鉄粉末:残部、 となるように配合し混合して得られた平均粒度:0.5
〜100μmの混合粉末を、温度:500〜1000℃
、水素ガス圧力:1Torr以下の真空雰囲気または水
素ガス分圧:1Torr以下の不活性ガス雰囲気になる
まで脱水素処理したのち、冷却することを特徴とする希
土類−Fe−B系永久磁石粉末の製造法。
(2) In the manufacturing method of R-Fe-B permanent magnet powder mainly composed of R, iron, and boron, R hydride powder, ferroboron powder, and iron powder are prepared as raw material powders, and these powders are atomically In percentage terms, R hydride powder: 10-30%, ferroboron powder: 3-30%, iron powder: balance, average particle size obtained by blending and mixing: 0.5
~100μm mixed powder, temperature: 500~1000℃
Production of rare earth-Fe-B permanent magnet powder characterized by dehydrogenating until it becomes a vacuum atmosphere with a hydrogen gas pressure of 1 Torr or less or an inert gas atmosphere with a hydrogen gas partial pressure of 1 Torr or less, followed by cooling. Law.
(3)主に、Rと鉄とボロンからなるR−Fe−B系永
久磁石粉末の製造法において、 原料粉末として、R粉末、フェロボロン粉末および鉄粉
末を用意し、これら粉末を原子百分率で、R粉末:10
〜30%、 フェロボロン粉末:3〜30%、 鉄粉末:残部、 となるように配合し混合して得られた平均粒度:0.5
〜100μmの混合粉末を、 温度:500〜1000℃、水素ガス雰囲気中または水
素ガスと不活性ガスの混合雰囲気中で熱処理し、ついで
、温度:500〜1000℃、水素ガス圧力:1Tor
r以下の真空雰囲気または水素ガス分圧:1Torr以
下の不活性ガス雰囲気になるまで脱水素処理したのち、
冷却すること を特徴とする希土類−Fe−B系永久磁石粉末の製造法
(3) In the method for producing R-Fe-B permanent magnet powder mainly composed of R, iron, and boron, R powder, ferroboron powder, and iron powder are prepared as raw material powders, and these powders are expressed in atomic percent as follows: R powder: 10
~30%, ferroboron powder: 3~30%, iron powder: balance, Average particle size obtained by blending and mixing: 0.5
The mixed powder of ~100 μm is heat treated at a temperature of 500 to 1000°C in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and inert gas, and then at a temperature of 500 to 1000°C and a hydrogen gas pressure of 1 Tor.
After dehydrogenating until it becomes a vacuum atmosphere of r or less or an inert gas atmosphere of hydrogen gas partial pressure: 1 Torr or less,
A method for producing rare earth-Fe-B permanent magnet powder, which comprises cooling.
(4)上記脱水素処理した後、温度:300〜1000
℃で熱処理し、ついで冷却することを特徴とする請求項
1,2または3記載の希土類−Fe−B系永久磁石粉末
の製造法。
(4) After the above dehydrogenation treatment, temperature: 300-1000
4. The method for producing rare earth-Fe-B permanent magnet powder according to claim 1, 2 or 3, characterized in that the powder is heat-treated at <0>C and then cooled.
JP1037924A 1989-02-17 1989-02-17 Manufacture of rare-earth-metal-fe-b series permanent magnet powder Granted JPH02217406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1037924A JPH02217406A (en) 1989-02-17 1989-02-17 Manufacture of rare-earth-metal-fe-b series permanent magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1037924A JPH02217406A (en) 1989-02-17 1989-02-17 Manufacture of rare-earth-metal-fe-b series permanent magnet powder

Publications (2)

Publication Number Publication Date
JPH02217406A true JPH02217406A (en) 1990-08-30
JPH0579722B2 JPH0579722B2 (en) 1993-11-04

Family

ID=12511097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1037924A Granted JPH02217406A (en) 1989-02-17 1989-02-17 Manufacture of rare-earth-metal-fe-b series permanent magnet powder

Country Status (1)

Country Link
JP (1) JPH02217406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554240A (en) * 2010-12-31 2012-07-11 上海爱普生磁性器件有限公司 Preparation method for bonded neodymium iron boron permanent magnet granular material
CN105057097A (en) * 2015-09-16 2015-11-18 重庆市九瑞粉末冶金有限责任公司 Waterfall type separation device for magnetic iron powder particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554240A (en) * 2010-12-31 2012-07-11 上海爱普生磁性器件有限公司 Preparation method for bonded neodymium iron boron permanent magnet granular material
CN105057097A (en) * 2015-09-16 2015-11-18 重庆市九瑞粉末冶金有限责任公司 Waterfall type separation device for magnetic iron powder particles

Also Published As

Publication number Publication date
JPH0579722B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JP2001189206A (en) Permanent magnet
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
JPH04359404A (en) Rare earth iron-boron based permanent magnet and manufacture thereof
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JPS61174364A (en) Permanent magnet
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3247508B2 (en) permanent magnet
JPH0353505A (en) Bonded magnet and magnetization thereof
JPH02217406A (en) Manufacture of rare-earth-metal-fe-b series permanent magnet powder
JP3469496B2 (en) Manufacturing method of magnet material
JPH0146575B2 (en)
JP3386552B2 (en) Magnetic material
JPH045739B2 (en)
JPS6373502A (en) Manufacture of rare earth magnet
JP3623564B2 (en) Anisotropic bonded magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH023206A (en) Rare earth-iron system permanent magnet
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
JPS6052556A (en) Permanent magnet and its production

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees