JPH02216820A - Heat-treatment device of semiconductor wafer - Google Patents

Heat-treatment device of semiconductor wafer

Info

Publication number
JPH02216820A
JPH02216820A JP3617789A JP3617789A JPH02216820A JP H02216820 A JPH02216820 A JP H02216820A JP 3617789 A JP3617789 A JP 3617789A JP 3617789 A JP3617789 A JP 3617789A JP H02216820 A JPH02216820 A JP H02216820A
Authority
JP
Japan
Prior art keywords
wafers
wafer
temperature
tool
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3617789A
Other languages
Japanese (ja)
Other versions
JP2728488B2 (en
Inventor
Shigeki Hirasawa
茂樹 平沢
Takuji Torii
鳥居 卓爾
Kazuo Honma
本間 和男
Tetsuya Takagaki
哲也 高垣
Toshiyuki Uchino
内野 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1036177A priority Critical patent/JP2728488B2/en
Publication of JPH02216820A publication Critical patent/JPH02216820A/en
Application granted granted Critical
Publication of JP2728488B2 publication Critical patent/JP2728488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable two semiconductor wafers to be subjected to heat treatment at high speed and in a short time by providing a supporting means for performing insertion and take-out while supporting two semiconductor wafers in a heating space of a heat-treatment device and a screening means for screening between the semiconductor wafers stored within the heating space. CONSTITUTION:When signal for starting heat treatment is input to a control part 24, signal is transmitted from a controller 25 to a carrying system and a take-out tool 18 take out two wafers 8 from a first cassette 17 and then carries them onto a load tool 19. Then, the load tool 19 moves horizontally, mounts two wafers 8 on an insertion tool 7, moves to the upper part, and then stores them within a high- temperature furnace 1. At this time, a screening plate 9 is inserted between two wafers 8. After the wafers 8 are heated for a specified amount of time within the high- temperature furnace 1, the insertion tool 7 moves to a lower part, the unload tool removes the wafers 8, and the wafers 8 which are fully cooled by a cooling board 22 are stored in a second cassette 23 by a storing tool 21. At this time, the moving speed of the insertion tool 7 in up and down directions prevents temperature distribution to be generated within the surface of the wafers 8. Thus, the speed should be for example 150mm/sec or higher.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は拡散装置、気相薄膜形成装置(CVD装りなど
に用いられる半導体ウェハの熱処理装置に係り、特に2
枚の半導体ウェハを同時に均一に短時間熱処理するのに
好適な半導体ウェハの熱処理装置に関する6 〔従来の技術〕 従来の半導体ウェハの熱処理装置は、特開昭60−17
1723号公報に記載されたように、縦形の円筒形状高
温炉の下方を開放し、この下方から水平に支持したウェ
ハを1枚ごとに高温炉内に挿入し。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a diffusion device, a vapor phase thin film forming device (a semiconductor wafer heat treatment device used in CVD equipment, etc.), and particularly relates to a semiconductor wafer heat treatment device used in CVD equipment, etc.
6. Related to a semiconductor wafer heat treatment apparatus suitable for simultaneously and uniformly heat-treating two semiconductor wafers for a short time [Prior art] A conventional semiconductor wafer heat treatment apparatus is disclosed in Japanese Patent Application Laid-Open No. 60-17
As described in Japanese Patent No. 1723, the bottom of a vertical cylindrical high-temperature furnace is opened, and horizontally supported wafers are inserted one by one into the high-temperature furnace from below.

ウェハを加熱する構造となっていた。It was designed to heat the wafer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記の従来技術は、半導体ウェハ2枚を同
時に短時間均一加熱する点については配慮がされておら
ず、1枚ごとの加熱では生産性が悪いという問題があっ
た。またウェハを2枚積層して同時に加熱した場合には
、ウェハごとの温度差及びウェハ面内の温度差が非常に
大きくなるという問題があった。
However, the above-mentioned conventional technology does not give consideration to uniformly heating two semiconductor wafers at the same time for a short period of time, and there is a problem in that productivity is poor when heating one semiconductor wafer at a time. Further, when two wafers are stacked and heated at the same time, there is a problem in that the temperature difference between each wafer and the temperature difference within the wafer surface becomes very large.

本発明は上記事情に鑑みてなされたものであり、2枚の
半導体ウェハを同時にかつ均一に加熱することができ、
熱応力欠陥が発生しない半導体ウェハの熱処理装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and is capable of heating two semiconductor wafers simultaneously and uniformly.
An object of the present invention is to provide a heat treatment apparatus for semiconductor wafers in which thermal stress defects do not occur.

(1[Mを解決するための手段〕 本発明は上記目的を達成するために、高温炉内部に設け
たヒータによって炉内に加熱空間を形成し、該加熱空間
の半導体ウェハを収納して熱処理する半導体ウェハの熱
処理装置において、2枚の前記半導体ウェハをほぼ平行
に支持して前記加熱空間に挿入及び取出しを行なう支持
手段と、それぞれの半導体ウェハが前記加熱空間に収納
された際これらの半導体ウェハ間を仕切る仕切手段を設
けたものである。
(1 [Means for Solving M]) In order to achieve the above object, the present invention forms a heating space in the furnace by a heater provided inside the high-temperature furnace, and stores semiconductor wafers in the heating space for heat treatment. In the semiconductor wafer heat treatment apparatus, there is provided a support means for supporting the two semiconductor wafers substantially parallel to each other and inserting and removing the semiconductor wafers into the heating space; A partition means is provided to partition the wafers.

〔作用〕[Effect]

上記の構成によると、低温の半導体ウェハが高温の加熱
空間に収納されたときに、高温の仕切板が2枚のウェハ
間に入り込むため、仕切板が熱源となってウェハの対向
面を加熱する。また各ウェハの外側の面は高温炉の内壁
から加熱されるため、2枚のウェハとも同時に両面加熱
により温度が上昇し、過渡時にウェハ面内に生じる温度
分布差を小さくすることができる。
According to the above configuration, when a low-temperature semiconductor wafer is stored in a high-temperature heating space, the high-temperature partition plate enters between the two wafers, so the partition plate becomes a heat source and heats the opposing surfaces of the wafers. . Furthermore, since the outer surface of each wafer is heated from the inner wall of the high-temperature furnace, the temperature of both wafers increases simultaneously due to double-sided heating, making it possible to reduce the difference in temperature distribution that occurs within the wafer surface during a transient period.

〔実施例〕 以下、本発明に係る半導体ウェハの熱処理装置の実施例
を図面を参照して説明する。
[Example] Hereinafter, an example of a semiconductor wafer heat treatment apparatus according to the present invention will be described with reference to the drawings.

第1図乃至第5図に本発明の第1の実施例を示す、高温
炉1は第3図に示すように直方体状となっており、この
高温炉1内には左右1対の平板状ヒータ2が対向して平
行に設けられている。これらのヒータ2はそれぞれ5つ
の発熱区域2a。
A first embodiment of the present invention is shown in FIGS. 1 to 5. A high-temperature furnace 1 has a rectangular parallelepiped shape as shown in FIG. Heaters 2 are provided in parallel and facing each other. Each of these heaters 2 has five heat generating areas 2a.

2b、2c、2d、2e、及び2f、2g、2h。2b, 2c, 2d, 2e, and 2f, 2g, 2h.

2i、2jに分割されており、これらのヒータ2はカン
タル製抵抗発熱体をつづら折り状にしたもので形成され
ている。これらのヒータ2の外周には第1図及び第2図
に示すように断熱材3が設けられており、内側にはシリ
コンカーバイトなどで形成された均熱管4と、石英ガラ
スなどで形成された反応管5とが設けられている。そし
てこれらの断熱材3.均熱管4及び反応管5は、それぞ
れステンレス鋼などで形成されたフランジ6を介して架
台35に支持されて、高温炉1を構成している。
The heater 2 is divided into 2i and 2j, and these heaters 2 are formed by winding a Kanthal resistance heating element. As shown in FIGS. 1 and 2, a heat insulating material 3 is provided around the outer periphery of these heaters 2, and a heat equalizing tube 4 made of silicon carbide or the like and a heat soaking tube 4 made of quartz glass or the like are provided inside. A reaction tube 5 is provided. And these insulation materials 3. The soaking tube 4 and the reaction tube 5 are each supported by a pedestal 35 via a flange 6 made of stainless steel or the like, thereby forming the high temperature furnace 1.

前記反応管5内には2枚の半導体ウェハ8を支持するウ
ェハ挿入治具7が、高温炉1の下方からほぼ鉛直の状態
で挿入される。このとき、2枚のウェハ8の間に入り込
むように矩形状の仕切板9が設けられており、この仕切
板9は反応管5に固定されている。また挿入治具7の下
端は上下搬送台10に取り付けられており、この上下搬
送台10によって上下移動される。反応管5と均熱管4
との間で挿入されたウェハ2の中心に対向する位置には
、プリズム11が設けられており、ウェハ8からの放射
熱がこのプリズム11によって下方に曲げられ、さらに
高温炉lの下部に設けられたミラー12によって反射さ
れ、放射湿度計13に入射するようになっている。そし
てこの放射温度計13によって測定されたウェハ8の温
度の信号は、熱処理温度コントローラ26に伝達される
A wafer insertion jig 7 that supports two semiconductor wafers 8 is inserted into the reaction tube 5 from below the high temperature furnace 1 in a substantially vertical state. At this time, a rectangular partition plate 9 is provided so as to fit between the two wafers 8, and this partition plate 9 is fixed to the reaction tube 5. Further, the lower end of the insertion jig 7 is attached to a vertical conveyance table 10, and is moved up and down by this vertical conveyance table 10. Reaction tube 5 and soaking tube 4
A prism 11 is provided at a position facing the center of the wafer 2 inserted between the The light is reflected by the mirror 12 and enters the radiation hygrometer 13. The temperature signal of the wafer 8 measured by the radiation thermometer 13 is transmitted to the heat treatment temperature controller 26.

反応管5のウェハ8が挿入される内周には第4図に示す
ように仕切板9が固定されており、左右の両側面にはガ
ス供給管14が設けられている。
As shown in FIG. 4, a partition plate 9 is fixed to the inner circumference of the reaction tube 5 into which the wafer 8 is inserted, and gas supply pipes 14 are provided on both left and right sides.

そして、図示せぬ外部給気管に接続されている流入口部
15から流入される窒素、アルゴン、酸素。
Nitrogen, argon, and oxygen flow in from the inlet port 15 connected to an external air supply pipe (not shown).

水蒸気などの処理ガスが、ガス供給管14内を上昇する
間に予熱され1反応管5の上部に供給される構造となっ
ている。また、これら左右のガス供給管14の流路長さ
は等しくなるように形成されている6反応管5の内部で
は高温に予熱されて供給された処理ガスが下方に流れ、
反応管5の下端から大気中に放出される。なお図中符号
16は、反応管5をフランジ6に固定するための爪であ
る。
Processing gas such as water vapor is preheated while rising in the gas supply pipe 14 and is supplied to the upper part of one reaction tube 5 . Further, inside the six reaction tubes 5, which are formed so that the flow path lengths of the left and right gas supply tubes 14 are equal, the processing gas that has been preheated to a high temperature and is supplied flows downward.
It is discharged into the atmosphere from the lower end of the reaction tube 5. Note that reference numeral 16 in the figure is a claw for fixing the reaction tube 5 to the flange 6.

第5図に上述したように構成された高温炉1が設けられ
た拡散装置を示す1図に示すように、高温炉lの下部に
は未加熱ウェハを収納した第1のカセット17と、この
第1のカセットから2枚のウェハ8を取り出して上方へ
移動させる取出治具18と、この取出治具18からウェ
ハ8を受は取って高温炉1に近接させ、ウェハ挿入治具
7に引き渡すロード治具19とが設けられている。同様
に加熱済ウェハ8をウェハ挿入治具7から受は取って冷
却ボード22に供給するアンロード治具20と、この冷
却ボード22から加熱済ウェハ8を第2のカセット23
に移載する収納治具21とが設けられている。また高温
炉1の近くには各部の作動を制御する制御部24が設け
られている。
FIG. 5 shows a diffusion device equipped with a high temperature furnace 1 configured as described above. As shown in FIG. A take-out jig 18 takes out two wafers 8 from the first cassette and moves them upward, and a receiver takes the wafers 8 from the take-out jig 18, brings them close to the high temperature furnace 1, and delivers them to the wafer insertion jig 7. A loading jig 19 is provided. Similarly, an unloading jig 20 receives the heated wafer 8 from the wafer insertion jig 7 and supplies it to the cooling board 22, and the heated wafer 8 is transferred from the cooling board 22 to the second cassette 23.
A storage jig 21 for transferring is provided. Further, a control section 24 is provided near the high temperature furnace 1 to control the operation of each section.

また、第3図に示すようにヒータ2は10ケ所の発熱区
域2a乃至2jに分かれているが、これらの発熱量は4
つのゾーンに分かれて制御される。
Furthermore, as shown in FIG. 3, the heater 2 is divided into 10 heat generating areas 2a to 2j, and the amount of heat generated in these areas is 4.
It is divided into two zones and controlled.

すなわち、ヒータ2b、2gは中央ゾーン、ヒータ2a
、2fは上方ゾーン、ヒータ2c、2hは下方ゾーン、
ヒータ2d、2a、2i、2jは側方ゾーンとなってい
る。
That is, the heaters 2b and 2g are in the central zone, and the heater 2a is in the central zone.
, 2f is the upper zone, heaters 2c and 2h are the lower zone,
Heaters 2d, 2a, 2i, and 2j are in side zones.

次に、上記のように構成さ九た拡散装置を用いて、ウェ
ハ8の熱処理を行なう場合の動作を説明する。まず、作
業者は熱処理条件、例えば温度1000℃、加熱時間3
分、処理ガス窒素を制御部24に入力する。制御部24
の中にある主コントーラ25から熱処理温度コントロー
ラ26に上記条件の信号が伝わり、この熱処理温度コン
トローラ26から前述したヒータ2の各ゾーンごとに設
けられたヒータ温度調節器27 a乃至27dにヒータ
設定温度が与えられる。このとき、中央ゾーンのヒータ
温度調節器27bには高温炉内部温度が熱処理温度にな
るような設定温度が与えられる。また、下方ゾーンのヒ
ータ温度調節器27cには、高温炉1の下方挿入口から
の放熱や挿入治具7の影響を打ち消すため、中央ゾーン
の設定温度よりも高い温度が設定される。また、上方ゾ
ーン及び側方ゾーンの設定温度はウェハ8面内が均一温
度となるような設定温度が与えられる。さらに、各ゾー
ンのヒータ温度調節@ 27 a乃至27dは、各ゾー
ンに設けられたヒータ温度センサ28a乃至28dの指
示温度がそれぞれ設定温度に近づくように、ヒータ電源
29a乃至29dを制御する。なお、第1@では側方ゾ
ーン用のヒータ温度調節器27d、温度センサ28d、
ヒータ電源29dの図示を省略しである。
Next, the operation of heat-treating the wafer 8 using the diffusion device configured as described above will be described. First, the operator must set the heat treatment conditions, for example, at a temperature of 1000°C and a heating time of 3.
The processing gas nitrogen is input to the control unit 24. Control unit 24
A signal of the above conditions is transmitted from the main controller 25 located in the heater 2 to the heat treatment temperature controller 26, and from this heat treatment temperature controller 26 the heater temperature controller 27a to 27d provided for each zone of the heater 2 is informed of the heater set temperature. is given. At this time, a set temperature is given to the heater temperature controller 27b in the central zone so that the internal temperature of the high temperature furnace becomes the heat treatment temperature. Further, the lower zone heater temperature controller 27c is set at a temperature higher than the set temperature for the central zone in order to cancel out the heat radiation from the lower insertion port of the high temperature furnace 1 and the influence of the insertion jig 7. Further, the set temperatures of the upper zone and the side zones are set so that the temperature within the surface of the wafer 8 becomes uniform. Further, the heater temperature controllers @27a to 27d for each zone control the heater power supplies 29a to 29d so that the temperatures indicated by the heater temperature sensors 28a to 28d provided in each zone approach the set temperatures, respectively. In addition, in the first @, a heater temperature controller 27d for the side zone, a temperature sensor 28d,
The illustration of the heater power source 29d is omitted.

次に作業者はウェハ8を入れた第1のカセット17と空
のカセット23とを装置にセットし、制御部24に熱処
理開始の信号を入力する。すると制御部24内に設けら
れたコントローラ25から搬送系に信号が伝わり、取出
治具18が第1のカセット17から2枚のウェハ8を取
り出してロード治具19に運ぶ1次に挿入治具7が下方
に移動し、ロード治具19が横方向に移動して2枚のウ
ェハ8を挿入治具7に乗せる。そして挿入治具7は上方
に移動して第1図に示すように高温炉1の内部に収納す
る。このとき2枚のウェハ8間に仕切板9が挿入される
。二のウェハ8を高温炉1内で所定時間加熱した後、挿
入治具7が下方に移動し、アンロード治具によってウェ
ハ8を取り外し、収納治具21によって冷却ボード22
に運ぶ、この冷却ボード22上で十分冷却されたウェハ
8は。
Next, the operator sets the first cassette 17 containing the wafers 8 and the empty cassette 23 into the apparatus, and inputs a signal to the control section 24 to start the heat treatment. Then, a signal is transmitted from the controller 25 provided in the control unit 24 to the transport system, and the take-out jig 18 takes out the two wafers 8 from the first cassette 17 and transports them to the loading jig 19. 7 moves downward, and the loading jig 19 moves laterally to place the two wafers 8 on the insertion jig 7. The insertion jig 7 is then moved upward and housed inside the high temperature furnace 1 as shown in FIG. At this time, a partition plate 9 is inserted between the two wafers 8. After heating the second wafer 8 in the high temperature furnace 1 for a predetermined time, the insertion jig 7 moves downward, the wafer 8 is removed by the unloading jig, and the cooling board 22 is moved by the storage jig 21.
The wafer 8, which has been sufficiently cooled on the cooling board 22, is then transported to.

収納治具21によって第2のカセット23に収納される
。そして上記各動作は連続して繰り返される。このとき
の挿入治具7の上昇及び下降の移動速度は、ウェハ8面
内に温度分布が発生することを阻止するため、例えば1
50mm/秒以上の高速とする。また、加熱後ウェハ8
を下方に移動する際に反応管5内の下部において一旦停
止し、外気にふれない状態で除冷してもよい、さらに、
ウェハ8の供給が中断している場合には、挿入治具7を
高温炉1の内部に収納しておき、常に高温にしておく。
It is stored in the second cassette 23 by the storage jig 21. Each of the above operations is then repeated continuously. At this time, the moving speed of the insertion jig 7 for raising and lowering is set to 1, for example, in order to prevent temperature distribution from occurring within the surface of the wafer 8.
The speed shall be 50 mm/sec or more. Also, after heating the wafer 8
When moving downward, the reaction tube 5 may be temporarily stopped at the lower part of the reaction tube 5 and cooled slowly without being exposed to outside air.
When the supply of wafers 8 is interrupted, the insertion jig 7 is stored inside the high temperature furnace 1 and kept at a high temperature at all times.

ウェハ温度とウェハ面内温度差の過渡変化について数値
計算を行なった結果を第6図及び第7図に示す、計算条
件としては、シリコン製ウェハの直径150m、石英ガ
ラス製仕切板の厚さを5m。
Figures 6 and 7 show the results of numerical calculations regarding the transient changes in wafer temperature and wafer in-plane temperature difference.The calculation conditions were as follows: The diameter of the silicon wafer was 150 m, and the thickness of the quartz glass partition plate. 5m.

ウェハと仕切板との間隔を10m、仕切板のないときの
ウェハ間隔を20m1とし、22℃のウェハを一瞬のう
ちに1000℃の高温炉に挿入したものとした。第6図
によりウェハは挿入されてから約30秒後に高温炉の内
部温度になることがかる。
The distance between the wafers and the partition plate was 10 m, the distance between the wafers without the partition plate was 20 m1, and the wafer at 22°C was instantly inserted into a high temperature furnace at 1000°C. It can be seen from FIG. 6 that the wafer reaches the internal temperature of the high temperature furnace approximately 30 seconds after being inserted.

仕切板はウェハに熱を奪われ一旦温度が下がるが、次第
に元の温度に戻る。また第7図によりウェハ面内温度差
は中心温度が約600℃のときに最大となることがわか
る。また、仕切板がある場合はない場合に比べてウェハ
面内温度差が約半分に低減することもわかる。このこと
は下記の理由による。すなわち、仕切板がないと2枚の
室温ウェハが高温炉の内部に挿入されたときに、2枚の
ウェハの外側の面は高温炉の内壁からほぼ一様に加熱さ
れるが、内側の面は2枚のウェハのすき間からの加熱が
外周部はど大きくなり、ウェハの外周部が高温となるよ
うなウェハ面内の温度分布が生じる、一方、仕切板があ
ると2枚のウェハの内側の面も高温の仕切板によって加
熱されるため、ウェハ面内温度分布が低減する。
The temperature of the partition plate temporarily drops as the wafer absorbs heat, but it gradually returns to its original temperature. Furthermore, it can be seen from FIG. 7 that the in-plane temperature difference of the wafer becomes maximum when the center temperature is approximately 600°C. It can also be seen that when there is a partition plate, the temperature difference within the wafer surface is reduced by about half compared to when there is no partition plate. This is due to the following reason. In other words, when two room-temperature wafers are inserted into a high-temperature furnace without a partition plate, the outer surfaces of the two wafers are almost uniformly heated from the inner wall of the high-temperature furnace, but the inner surfaces In this case, the heating from the gap between the two wafers increases at the outer periphery, creating a temperature distribution within the wafer surface such that the outer periphery of the wafer becomes hot. Since the surface of the wafer is also heated by the high-temperature partition plate, the temperature distribution within the wafer surface is reduced.

また1反応管5において、仕切板9をウェハ8が高温炉
1内に挿入完了したときの対向する位置に設けた理由は
1反応管5内を下方に流れる処理ガスを2枚のウェハ8
について同じように流すためと1重量を軽くするためで
ある。
In addition, in one reaction tube 5, the reason why the partition plate 9 is provided at the opposite position when the wafer 8 is completely inserted into the high temperature furnace 1 is that the processing gas flowing downward in the first reaction tube 5 is separated from the two wafers 8.
The purpose is to flow the same amount of water and to reduce the weight by 1.

さらに、ウェハ8が第1図に示すように鉛直方向に対し
て、例えば5度と僅かに傾斜している理由は、挿入治具
7が上下に移動するときにウェハ8が前後に振動するこ
とを阻止するためである。
Furthermore, the reason why the wafer 8 is slightly inclined by, for example, 5 degrees with respect to the vertical direction as shown in FIG. 1 is that the wafer 8 vibrates back and forth when the insertion jig 7 moves up and down. This is to prevent

この場合、ウェハ8の傾斜は僅かであるので、2枚のウ
ェハの伝熱特性にほとんど差がない。
In this case, since the inclination of the wafer 8 is slight, there is almost no difference in the heat transfer characteristics of the two wafers.

第8図及び第9図に本発明の第2の実施例を示す0図に
おいて、第1図及び第2図に示す第1の実施例と同一ま
たは同等部分には同一符号を付して示し、説明を省略す
る0本実施例の特徴は、2枚のウェハ8の間に入る仕切
板9がウェハ2と等しい直径の円板形状となっており、
さらに仕切板9の外周部30が中央部より薄肉となって
いる点にある。この仕切板9は3方向に設けられた支持
材31を介して反応管5に固定されており、ウェハ8は
鉛直状態で挿入治具7に載置されている。
In FIGS. 8 and 9 showing the second embodiment of the present invention, parts that are the same as or equivalent to those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals. The feature of this embodiment is that the partition plate 9 inserted between the two wafers 8 has a disk shape with the same diameter as the wafer 2.
Furthermore, the outer peripheral portion 30 of the partition plate 9 is thinner than the central portion. This partition plate 9 is fixed to the reaction tube 5 via support members 31 provided in three directions, and the wafer 8 is placed on the insertion jig 7 in a vertical state.

その他の構造は第1の実施例と同様である。The rest of the structure is the same as the first embodiment.

本実施例によると、仕切板9の外周部30が中央部より
薄肉となっているため、室温のウェハ8を高温炉1の内
部に挿入したときに、2枚のウェハ8の内側の面が仕切
板9によって加熱される斌が外周部が小さくなる。一方
、2枚のウェハ8の内側の面の外周部はウェハ8間の間
隔からの加熱があるため、両者の作用によりウェハ8は
全面で一様に加熱され、ウェハ面内の温度分布が小さく
なる効果がある。
According to this embodiment, since the outer peripheral part 30 of the partition plate 9 is thinner than the central part, when the wafers 8 at room temperature are inserted into the high temperature furnace 1, the inner surfaces of the two wafers 8 are The outer periphery of the pin heated by the partition plate 9 becomes smaller. On the other hand, since the outer periphery of the inner surface of the two wafers 8 is heated from the distance between the wafers 8, the wafer 8 is heated uniformly over the entire surface due to the action of both, and the temperature distribution within the wafer surface is small. There is a certain effect.

なお、上記実施例では仕切板9の形状がウェハ8と等し
い直径の円板形状である場合について説明したが、この
仕切板9の形状は第10図乃至第13図に示すような形
状であってもよい、第10図は仕切板9の大きさがウェ
ハ8より大きく、さらにウェハ8の中央部に対向する部
分が厚肉となっている。そして厚肉部は円形でその直径
がウェハ8の直径より小さい0本実施例によっても前述
した第2の実施例と同様の効果がある。
In the above embodiment, the case where the shape of the partition plate 9 is a disk shape having the same diameter as the wafer 8 has been described, but the shape of the partition plate 9 may be as shown in FIGS. 10 to 13. In FIG. 10, the size of the partition plate 9 is larger than the wafer 8, and the portion facing the center of the wafer 8 is thicker. The thick portion is circular and its diameter is smaller than the diameter of the wafer 8. Also, the same effect as the second embodiment described above can be obtained.

第11図の仕切板9は円板形状でその直径がウェハ8の
直径よりも小さい場合を示し、上記と同様の効果がある
The partition plate 9 in FIG. 11 has a disk shape and its diameter is smaller than the diameter of the wafer 8, and has the same effect as described above.

第12図の仕切板9はウェハ8よりも大きく、さらにウ
ェハ8の外周に対向する部分32がリング状の厚肉とな
っており、このリングの直径はウェハ8の直径以上とな
っている。本実施例では。
The partition plate 9 shown in FIG. 12 is larger than the wafer 8, and has a thick ring-shaped portion 32 facing the outer circumference of the wafer 8, and the diameter of this ring is larger than the diameter of the wafer 8. In this example.

室温のウェハ8を高温炉1の内部に挿入したときに、リ
ング状の厚肉部32がウェハ8間の間隙をふさぐ作用を
し、ウェハ面内温度分布が小さくなる効果がある。
When the wafers 8 at room temperature are inserted into the high-temperature furnace 1, the ring-shaped thick portion 32 acts to close the gap between the wafers 8, which has the effect of reducing the temperature distribution within the wafer surface.

第13図の仕切板9はウェハ8の外周に対向する部分3
2が前記実施例と同様にリング状の厚肉部となっており
、その内側にウェハ8とほぼ等しい直径の円形の穴が形
成されている0本実施例によっても前記実施例と同様の
効果がある。
The partition plate 9 in FIG.
Similar to the previous embodiment, 2 is a ring-shaped thick walled part, and a circular hole having a diameter approximately equal to that of the wafer 8 is formed inside the ring-shaped thick part. There is.

第14図及び第15図にそれぞれ本発明の第3及び第4
の実施例を示す、これらの図において、第1図に示す第
1の実施例と同一または同等部分には同一符号を付して
示し、説明を省略する。第14図に示す第3の実施例の
特徴は均熱管4の内部に2つの反応管5が設けられ、そ
れぞれの反応管5の中に1対の挿入治具7によって1枚
ずつウェハ8が挿入されるようになっている点にある。
FIG. 14 and FIG. 15 show the third and fourth embodiments of the present invention, respectively.
In these figures showing the embodiment, the same or equivalent parts as in the first embodiment shown in FIG. The feature of the third embodiment shown in FIG. 14 is that two reaction tubes 5 are provided inside the soaking tube 4, and each wafer 8 is inserted one by one into each reaction tube 5 by a pair of insertion jigs 7. The point is that it is meant to be inserted.

これら2つの挿入治具7は同じ上下搬送台10に取り付
けられ、2枚のウェハ8が同時に熱処理される。この場
合、均熱管4と反応管5との間に熱処理室温度計34が
挿入されており、この温度計34によってヒータ設定温
度が制御されている。
These two insertion jigs 7 are attached to the same upper and lower transport table 10, and the two wafers 8 are heat-treated at the same time. In this case, a heat treatment chamber thermometer 34 is inserted between the soaking tube 4 and the reaction tube 5, and the heater set temperature is controlled by this thermometer 34.

本実施例によっても前記各実施例と同様の効果を得るこ
とができる。
This embodiment also provides the same effects as those of the embodiments described above.

第15図に示す第4の実施例の特徴′は2枚のウェハ8
のそれぞれに反応管5及び均熱管4が設けられており、
2つの均熱管4の間に断熱材33が設けられている点に
ある0本実施例によると、2枚のウェハ8が完全に分離
されているため、ウェハ8は完全に一様に加熱され、ウ
ェハ8の面内温変分布が生じることはない。
The feature of the fourth embodiment shown in FIG.
A reaction tube 5 and a soaking tube 4 are provided in each of the
According to this embodiment, in which the heat insulating material 33 is provided between the two heat soaking tubes 4, the two wafers 8 are completely separated, so that the wafers 8 are heated completely uniformly. , no in-plane temperature variation distribution of the wafer 8 occurs.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、熱処理装置の加
熱空間に2枚の半導体ウェハを支持して挿入、取出しを
行なう支持手段と、加熱空間内に収納された半導体ウェ
ハ間を仕切る仕切手段とを設けたので、2枚の半導体ウ
ェハを同時に高速短時間に均一に熱処理することが可能
となり、また熱処理時のウェハ面内温度分布が小さいた
め、熱応力欠陥のない高品質の半導体ウェハを得ること
ができる。
As explained above, according to the present invention, there is provided a support means for supporting and inserting and removing two semiconductor wafers into a heating space of a heat treatment apparatus, and a partition means for partitioning between the semiconductor wafers housed in the heating space. This makes it possible to uniformly heat-treat two semiconductor wafers at the same time at high speed and in a short time, and because the temperature distribution within the wafer surface during heat treatment is small, it is possible to produce high-quality semiconductor wafers without thermal stress defects. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体ウェハの熱処理装置の第1
の実施例を示す縦断面図及び温度制御系ブロック図、第
2図は第1図の直角方向の断面における高温炉の縦断面
図、!s3図は第1図のヒータ分割を示す高温炉の透視
斜視図、第4図は第1図の反応管を示す斜視図、第5図
は本実施例による高温炉が設けられた拡散装置を示す一
部破断斜視図、第6図はウェハ温度の時間変化の計算結
果を示すグラフ、第7図はウェハ面内温度分布の結算結
果を示すグラフ、第8図は本発明の第2の実施例による
高温炉を示す縦断面図、第9図は第8図の直角方向の縦
断面図、第10図乃至第13図はそれぞれ本発明の他の
実施例による仕切板を示す縦断面図、第14図及び第1
5図はそれぞれ本発明の第3及び第4の実施例による高
温炉を示す縦断面図である。 1・・・高温炉、2・・・ヒータ、3・・・断熱材、4
・・・均熱管、5・・・反応管、7・・・挿入治具、8
・・・半導体ウェハ、9・・・仕切板。 不 j 図 ¥4図 15 汰入口杏F 10二下刊(L台 ■ 図 纂 図 冨 図 ウニへ中!し湿原(”c) 図 纂 図 z 4閃野 罵 図 !Q理!温屓訂
FIG. 1 shows a first part of a semiconductor wafer heat treatment apparatus according to the present invention.
A vertical cross-sectional view and a block diagram of the temperature control system showing an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view of the high-temperature furnace in a cross section perpendicular to FIG. 1. Figure s3 is a transparent perspective view of the high-temperature furnace showing the heater division in Figure 1, Figure 4 is a perspective view showing the reaction tube in Figure 1, and Figure 5 is a diffusion device equipped with the high-temperature furnace according to this embodiment. FIG. 6 is a graph showing the calculation result of the temporal change in wafer temperature, FIG. 7 is a graph showing the calculation result of the temperature distribution within the wafer surface, and FIG. 8 is a graph showing the calculation result of the temperature distribution within the wafer surface. FIG. 9 is a vertical cross-sectional view in a direction perpendicular to FIG. 8, and FIGS. 10 to 13 are vertical cross-sectional views showing partition plates according to other embodiments of the present invention. Figure 14 and 1
FIG. 5 is a longitudinal cross-sectional view showing high temperature furnaces according to third and fourth embodiments of the present invention, respectively. 1... High temperature furnace, 2... Heater, 3... Insulating material, 4
... soaking tube, 5 ... reaction tube, 7 ... insertion jig, 8
... Semiconductor wafer, 9... Partition plate. Non j Figure ¥4 Figure 15 汰口杏F 102nd edition (L version■ Illustrated map Tomizu sea urchin inside!shi wetland (''c) Illustrated map z 4 Senno cursed map! Q science! Warm edition

Claims (1)

【特許請求の範囲】[Claims] 1、高温炉内部に設けたヒータにより炉内に加熱空間を
形成し、該加熱空間に半導体ウェハを収納して熱処理す
る半導体ウェハの熱処理装置において、2枚の前記半導
体ウェハをほぼ平行に支持して前記加熱空間に挿入及び
取出しする支持手段と、それぞれの半導体ウェハが前記
加熱空間に収納された際これらの半導体ウェハ間を仕切
る仕切手段とを設けたことを特徴とする半導体ウェハの
熱処理装置。
1. In a semiconductor wafer heat treatment apparatus in which a heating space is formed in the furnace by a heater provided inside the high-temperature furnace, and a semiconductor wafer is housed in the heating space and heat-treated, the two semiconductor wafers are supported substantially in parallel. A heat processing apparatus for semiconductor wafers, comprising: support means for inserting and taking out the semiconductor wafers into and out of the heating space; and partition means for separating the semiconductor wafers when the semiconductor wafers are stored in the heating space.
JP1036177A 1989-02-17 1989-02-17 Semiconductor wafer heat treatment equipment Expired - Lifetime JP2728488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036177A JP2728488B2 (en) 1989-02-17 1989-02-17 Semiconductor wafer heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036177A JP2728488B2 (en) 1989-02-17 1989-02-17 Semiconductor wafer heat treatment equipment

Publications (2)

Publication Number Publication Date
JPH02216820A true JPH02216820A (en) 1990-08-29
JP2728488B2 JP2728488B2 (en) 1998-03-18

Family

ID=12462458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036177A Expired - Lifetime JP2728488B2 (en) 1989-02-17 1989-02-17 Semiconductor wafer heat treatment equipment

Country Status (1)

Country Link
JP (1) JP2728488B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076973A (en) * 1993-06-18 1995-01-10 Kokusai Electric Co Ltd Heating apparatus
US5443648A (en) * 1993-04-13 1995-08-22 Tokyo Electron Kabushiki Kaisha Vertical heat treatment apparatus with a rotary holder turning independently of a liner plate
US5520742A (en) * 1993-03-03 1996-05-28 Tokyo Electron Kabushiki Kaisha Thermal processing apparatus with heat shielding member
US6793734B2 (en) * 2001-07-26 2004-09-21 F.T.L. Co., Ltd. Heating furnace and semiconductor wafer-holding jig assembly and process of manufacturing semiconductor devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122122A (en) * 1985-11-21 1987-06-03 Nec Corp Diffusing method for impurity
JPH088220A (en) * 1994-06-23 1996-01-12 Dainippon Screen Mfg Co Ltd Thin-plate-material dipping apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122122A (en) * 1985-11-21 1987-06-03 Nec Corp Diffusing method for impurity
JPH088220A (en) * 1994-06-23 1996-01-12 Dainippon Screen Mfg Co Ltd Thin-plate-material dipping apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520742A (en) * 1993-03-03 1996-05-28 Tokyo Electron Kabushiki Kaisha Thermal processing apparatus with heat shielding member
US5443648A (en) * 1993-04-13 1995-08-22 Tokyo Electron Kabushiki Kaisha Vertical heat treatment apparatus with a rotary holder turning independently of a liner plate
JPH076973A (en) * 1993-06-18 1995-01-10 Kokusai Electric Co Ltd Heating apparatus
US6793734B2 (en) * 2001-07-26 2004-09-21 F.T.L. Co., Ltd. Heating furnace and semiconductor wafer-holding jig assembly and process of manufacturing semiconductor devices

Also Published As

Publication number Publication date
JP2728488B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
KR101543375B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and method of detecting temperature
US6209220B1 (en) Apparatus for cooling substrates
KR101528138B1 (en) Substrate processing apparatus, substrate supporting tool and method of manufacturing semiconductor device
JP2002075890A (en) Heat treatment system and control method of decreasing temperature rate thereof
JPH06302523A (en) Vertical thermal treatment equipment
US8734148B2 (en) Heat treatment apparatus and method of manufacturing semiconductor device
JPH04179223A (en) Heat treatment apparatus
US3842794A (en) Apparatus for high temperature semiconductor processing
JPH02216820A (en) Heat-treatment device of semiconductor wafer
JP2004018215A (en) Heat-treatment apparatus for flat panel display and heat treatment method
JP5087283B2 (en) Temperature control system, substrate processing apparatus, and semiconductor device manufacturing method
JPH0744159B2 (en) Semiconductor wafer heat treatment apparatus and heat treatment method
JPH0269932A (en) Device for heat treatment of semiconductor wafer and heat treating method
JP2003037147A (en) Substrate carrying apparatus and thermally treatment method
JP2008078505A (en) Substrate treating equipment
JP2000232108A (en) Substrate heating method and substrate heating device
US3943015A (en) Method for high temperature semiconductor processing
JP2003037109A (en) Heat treatment device
JP2740849B2 (en) Vertical heat treatment equipment
JPH0637025A (en) Heat treatment apparatus
JP4509360B2 (en) Heat treatment method
JP3534518B2 (en) Semiconductor heat treatment method and apparatus used therefor
KR920004911B1 (en) Thermally processing apparatus and method of semiconductor wafer
JP2004319695A (en) Substrate treatment equipment
JPH10223722A (en) Semiconductor treatment apparatus