JPH0221616A - Heat treatment equipment for semiconductor device - Google Patents

Heat treatment equipment for semiconductor device

Info

Publication number
JPH0221616A
JPH0221616A JP63170774A JP17077488A JPH0221616A JP H0221616 A JPH0221616 A JP H0221616A JP 63170774 A JP63170774 A JP 63170774A JP 17077488 A JP17077488 A JP 17077488A JP H0221616 A JPH0221616 A JP H0221616A
Authority
JP
Japan
Prior art keywords
main reaction
exhaust gas
gas
flue gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170774A
Other languages
Japanese (ja)
Other versions
JP2581955B2 (en
Inventor
Tsuneo Sasamoto
笹本 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63170774A priority Critical patent/JP2581955B2/en
Publication of JPH0221616A publication Critical patent/JPH0221616A/en
Application granted granted Critical
Publication of JP2581955B2 publication Critical patent/JP2581955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To completely burn unfurnt surfactance in flue gas, unnecessitate the dilution by inert gas as a counter-measure for explosion, and improve the maintainance efficiency, by installing a flue gas treatment chamber to mix the flue gas generated in a main reaction pipe with oxygen gas, in the midway of an exhaust channel, and burn the glue gas. CONSTITUTION:In an electric furnace 2, the end of a main reaction pipe 1 is connected with a flue gas treatment equipment, via a flue gas treatment furnace 9. From a feeding pipe 3, reducing gas such as hydrogen gas is supplied, and flue gas generated in a main reaction chamber, in the main reaction pipe 1, in which a sample is inserted is sent to the flue gas treatment furnace 9. This flue gas is mixed, in the vicinity of an inlet 13, with oxygen gas from piping 14, and burned by the heating of an electric furnace 10. Since the combustion is performed in a closed reaction pipe 11, the safe working is enabled, even if reactive substance is contained in the flue gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化、拡散、アニール及びデポジション等の
熱処理を行なうための半導体デバイスの熱処理装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat treatment apparatus for semiconductor devices for performing heat treatments such as oxidation, diffusion, annealing, and deposition.

[従来の技術] 従来の半導体デバイスの熱処理装置の構成を第9図及び
第10図に基づいて説明する。まず、第9図に示す装置
の構造を述べると、1は石英管などから成る主反応管で
あり、内部の主反応室につ工−ハ等の試料(図示せず)
を収容するようになっている。2は主反応管1を包囲す
る電気〜炉などの加熱炉である。主反応管1の一端には
水素ガス等の反応ガスを供給するための供給管3が接続
され、細端は排気管4が設けられたM5によって封止さ
れている。そして、主反応管1の主反応室内で発生した
排気ガスを排気管4の出口に設けられた種火6によって
燃焼させ大気中に放出させる。
[Prior Art] The configuration of a conventional heat treatment apparatus for semiconductor devices will be described with reference to FIGS. 9 and 10. First, to describe the structure of the apparatus shown in Fig. 9, numeral 1 is a main reaction tube made of a quartz tube, etc., and the main reaction chamber inside contains samples (not shown).
It is designed to accommodate. Reference numeral 2 denotes a heating furnace such as an electric furnace surrounding the main reaction tube 1. A supply pipe 3 for supplying a reaction gas such as hydrogen gas is connected to one end of the main reaction pipe 1, and the narrow end is sealed with an M5 provided with an exhaust pipe 4. Then, the exhaust gas generated in the main reaction chamber of the main reaction tube 1 is combusted by a pilot flame 6 provided at the outlet of the exhaust pipe 4 and released into the atmosphere.

第10図の製造装置は、第9図における排気ガス処理の
ための構成が異なっており、主反応管1の終端部に排気
ガス処理装置(図示せず)へ延びる配管7が接続され、
排気ガスは、配管7の途中に接続された別個の配管8を
介して供給される窒素ガス等の不活性の希釈用ガスとと
もに排気ガス処理装置へ送られるようになっている。
The manufacturing apparatus shown in FIG. 10 has a different configuration for exhaust gas treatment from that shown in FIG. 9, in which a pipe 7 extending to an exhaust gas treatment apparatus (not shown) is connected to the terminal end of the main reaction tube 1.
The exhaust gas is sent to the exhaust gas treatment device along with an inert diluent gas such as nitrogen gas supplied via a separate pipe 8 connected midway through the pipe 7.

[発明が解決しようとする問題点] しかしながら、このような熱処理方法にあっては、次の
ような問題点がある。
[Problems to be Solved by the Invention] However, such a heat treatment method has the following problems.

第9図に示す装置による場合、反応性物質あるいは反応
生成物等が排気ガス中に含まれているときは作業者にと
って極めて危険となる。例えば、気相成長(VD)や、
主反応管1の内部を洗浄するためのHCfJCf−ニン
グ等を行なう場合にあっては同図に示す熱処理装置を適
用することは極めて危険である。
In the case of the apparatus shown in FIG. 9, if reactive substances or reaction products are contained in the exhaust gas, it becomes extremely dangerous for the operator. For example, vapor phase growth (VD),
When performing HCfJCf-ning or the like for cleaning the inside of the main reaction tube 1, it is extremely dangerous to apply the heat treatment apparatus shown in the figure.

第10図の場合には、密閉された排気ガス処理装置内で
排気ガスを処理するので、第9図に示す処理のような危
険性は除去されるが、配管での暴爆を防止するために排
気ガスを大ωの不活性ガスで希釈する必要があるため処
理コストが極めて高くなり、又、配管7.8と主反応管
1との継ぎ部の密閉処理等が極めて煩雑となる等の問題
があった。
In the case of Figure 10, the exhaust gas is treated in a sealed exhaust gas treatment device, so the dangers of the treatment shown in Figure 9 are eliminated, but in order to prevent explosions in the piping, It is necessary to dilute the exhaust gas with a large ω inert gas, which increases the processing cost, and also makes sealing the joint between the piping 7.8 and the main reaction tube 1 extremely complicated. There was a problem.

[問題点を解決するための手段] 本発明はこのような問題点に鑑みて成されたものであり
、加熱炉と該加熱内に収容される主反応管を備え、該主
反応管内の反応ガス雰囲気中に置かれた試料を加熱処理
する半導体デバイスの熱処理装置において、前記主反応
管内で発生するi勇気ガスを排気径路の途中で酸素ガス
と混合・燃焼さUる密閉された排気ガス処]!I!室を
備えたことを特徴とする。これにより、排気ガス中の未
燃物を完全燃焼さUることができるので、防爆対策とし
ての不活性ガスによる希釈が不要となり、又、構造が簡
素で済むので取扱いが容易であり、メインテナンス効率
の向上を図ることができる等の効果を4gることができ
る。
[Means for Solving the Problems] The present invention has been made in view of the above problems, and includes a heating furnace and a main reaction tube accommodated in the heating furnace, and includes a heating furnace and a main reaction tube accommodated in the heating furnace. In a semiconductor device heat treatment apparatus that heat-treats a sample placed in a gas atmosphere, a sealed exhaust gas treatment system is used in which the gas generated in the main reaction tube is mixed with oxygen gas and combusted in the middle of the exhaust path. ]! I! It is characterized by having a room. As a result, unburned substances in the exhaust gas can be completely combusted, eliminating the need for dilution with inert gas as an explosion-proof measure.Also, the structure is simple, making it easy to handle and improving maintenance efficiency. It is possible to achieve 4g of effects such as being able to improve the

[実 施 例] 以下、本発明の実m例を図面と共に説明する。[Example] Hereinafter, practical examples of the present invention will be explained with reference to the drawings.

尚、第9,10図と同−又は相当する部分には同一符号
を附けている。
In addition, the same reference numerals are given to the same or corresponding parts as in FIGS. 9 and 10.

まず、第1図に基づいて第1の実施例による熱処理装置
の構造を述べると、1は主反応管、2は電気炉であり、
主反応管1の終端部は排気ガス処理炉9を介して排気ガ
ス処理装置に接続している。
First, the structure of the heat treatment apparatus according to the first embodiment will be described based on FIG. 1. 1 is a main reaction tube, 2 is an electric furnace,
The terminal end of the main reaction tube 1 is connected to an exhaust gas treatment device via an exhaust gas treatment furnace 9.

排気ガス処理炉9は、電気炉10とその中央に配置され
る石英管等よげ成る反応管11を備え、反応管11の内
部は主反応管1より流入する排気ガスの流入方向に対し
て略直交する複数のバッフル板12が設けられ、更に排
気ガスの流入口13の近傍に向けて酸素ガスを供給する
配管14が接続された排気ガス処I’l+ 1となって
いる。そして、バッフル板12の後方に設けられた排気
管15を介して排気ガス処理装置へ接続されている。
The exhaust gas treatment furnace 9 includes an electric furnace 10 and a reaction tube 11 made of a quartz tube or the like arranged in the center of the electric furnace 10. A plurality of baffle plates 12 that are substantially perpendicular to each other are provided, and a pipe 14 for supplying oxygen gas toward the vicinity of the exhaust gas inlet 13 is connected to form an exhaust gas treatment I'l+1. It is connected to an exhaust gas treatment device via an exhaust pipe 15 provided behind the baffle plate 12.

次に、かかる装置の作動を述べると、供給管3より水素
ガス等の還元性ガスが供給され、試料が挿入されている
主反応管1内の主反応室に発生した排気ガスは排気ガス
処理炉9へ送られる。この排気ガスは流入口13の近傍
で配管14よりの酸素ガスと混合し、電気炉10の加熱
によって燃焼される。
Next, to describe the operation of this device, a reducing gas such as hydrogen gas is supplied from the supply pipe 3, and the exhaust gas generated in the main reaction chamber in the main reaction tube 1 in which the sample is inserted is treated as exhaust gas. It is sent to furnace 9. This exhaust gas mixes with oxygen gas from the pipe 14 near the inlet 13 and is burned by heating in the electric furnace 10.

この燃焼は、密閉された反応管11の内部で行なわれる
ので、排気ガス中に反応性物質が含まれていても安全に
作業することができる。尚、主反応管1に供給される水
素ガスのMと配管14を介して供給される酸素ガスの伍
の比率H2102(モル比率)を2以下とすることが好
ましい。更に、CVD等の処理で堆積性の反応物が排気
ガス中に含まれる場合、上記の燃焼が行なわれた後の排
気ガスが更にバッフル板12によって攪拌されるので、
未反応物質の反応が促進され、排気管15に達するまで
にかなりの債の堆積物をバッフル板11によって取り除
くことができ、排ガス処理装置の負担を軽減することが
できる。
Since this combustion takes place inside the sealed reaction tube 11, the operation can be carried out safely even if the exhaust gas contains reactive substances. Note that it is preferable that the ratio H2102 (mole ratio) between the hydrogen gas M supplied to the main reaction tube 1 and the oxygen gas supplied via the pipe 14 (mole ratio) is 2 or less. Furthermore, when depository reactants are included in the exhaust gas due to a process such as CVD, the exhaust gas after the above combustion is further stirred by the baffle plate 12.
The reaction of unreacted substances is promoted, and a considerable amount of deposits can be removed by the baffle plate 11 before reaching the exhaust pipe 15, thereby reducing the burden on the exhaust gas treatment device.

この処理方法ににれば、従来のように、主反応管1で発
生した排気ガスを大苗の不活性ガスで希釈して排気ガス
処理装置へ送る必要がなくなるため、処理コストを低減
できる。又、主反応管1と反応管11は夫々別個の電気
炉2,10ぐ加熱するので、例えば主反応管1よりも反
応管11の温度を高温にして排気ガスを処理する等の様
に、夫々独立の熱処理を行なうことができ、排気ガス処
■!炉9において未反応ガスを効率良く反応させること
ができる。更に、排気ガス処理炉9の構造は簡素であり
、主反応管1から容易に取り外すことができるため、バ
ッフル板12yに堆積した堆積物を簡単に洗浄すること
ができ、メインテナンスの効率が極めて高い。
According to this treatment method, there is no need to dilute the exhaust gas generated in the main reaction tube 1 with an inert gas from large seedlings and send it to the exhaust gas treatment device as in the conventional method, so that the treatment cost can be reduced. Furthermore, since the main reaction tube 1 and the reaction tube 11 are heated in separate electric furnaces 2 and 10, respectively, the temperature of the reaction tube 11 is set higher than that of the main reaction tube 1 to treat the exhaust gas. Independent heat treatment can be performed for each exhaust gas treatment ■! Unreacted gas can be efficiently reacted in the furnace 9. Furthermore, the exhaust gas treatment furnace 9 has a simple structure and can be easily removed from the main reaction tube 1, so deposits accumulated on the baffle plate 12y can be easily cleaned, resulting in extremely high maintenance efficiency. .

次に、第2の実施例を第2図に基づいて説明Jる。これ
は、主反応管1内に排気ガス処理部分を一体に構成した
ものである。即ち、主反応管1の中央部に断面が口字状
の筒状の逆流防止用バッフル16が設けられ、試料を収
容するための前室(主反応室)11と排気ガスを処理す
るための後室(排気ガス処理室)18が構成されている
。そして、逆流防止用バッフル1Gは、その底壁が主反
応室17側に、四部が排気ガス処理室18側に向けられ
、その外(iIQ壁と主反応管1の内側壁の間に周方向
に広がる極めて狭い隙間19が形成されるJ:うに配置
されている。この隙間19により、主反応室17で発生
した排気ガスは加速されて排気ガス処理室18へ流れ込
み、逆流が防止される。
Next, a second embodiment will be explained based on FIG. This has an exhaust gas treatment section integrated into the main reaction tube 1. That is, a cylindrical backflow prevention baffle 16 with a mouth-shaped cross section is provided in the center of the main reaction tube 1, and a front chamber (main reaction chamber) 11 for accommodating a sample and a backflow prevention baffle 16 for treating exhaust gas are provided. A rear chamber (exhaust gas treatment chamber) 18 is configured. The backflow prevention baffle 1G has its bottom wall facing the main reaction chamber 17 side, its four parts facing the exhaust gas treatment chamber 18 side, and the outside (circumferential direction between the iIQ wall and the inner wall of the main reaction tube 1). The exhaust gas generated in the main reaction chamber 17 is accelerated by this gap 19 and flows into the exhaust gas processing chamber 18, thereby preventing backflow.

更に、排気ガス処理室18内には逆流防止用バッフル1
Gに対向するように複数のバッフル板20が設けられる
と共に、逆流防止用バッフル16とバッフル板20の間
で隙間19の出口側の近傍に酸素ガスを供給するための
配管21が設けられている。排気ガス処理室18の開口
端は排気ガス処理装置へ延びる排気管4が接続された蓋
5によって封止されている。この装置は、蓋5を外して
主反応室17にウェーハ等の試料を挿入した後、逆流防
止用バッフル16及びバッフル板20を図示するように
挿入し、最後に蓋5で封止することにより熱処理を行な
うことができるようになっている。尚、逆流防止用バッ
フル1Gとバッフル材20を図示の間隔で一体に形成し
、装着及び取外しを容易にしても良い。
Furthermore, a backflow prevention baffle 1 is installed in the exhaust gas treatment chamber 18.
A plurality of baffle plates 20 are provided to face G, and a pipe 21 for supplying oxygen gas is provided near the outlet side of the gap 19 between the backflow prevention baffle 16 and the baffle plate 20. . The open end of the exhaust gas treatment chamber 18 is sealed by a lid 5 to which an exhaust pipe 4 extending to the exhaust gas treatment device is connected. This device is constructed by removing the lid 5 and inserting a sample such as a wafer into the main reaction chamber 17, then inserting the backflow prevention baffle 16 and baffle plate 20 as shown in the figure, and finally sealing with the lid 5. It is now possible to perform heat treatment. Note that the backflow prevention baffle 1G and the baffle material 20 may be integrally formed at the intervals shown in the figure to facilitate attachment and removal.

次にかかる装置の作動を述べると、供給管3より供給さ
れる水素ガス等の反応ガスと電気炉2による加熱でもっ
て主反応室17内の試料が熱処理され、発生した排気ガ
スは隙間19で加速されると共に配管21より供給され
る酸素ガスと混合させる。
Next, the operation of this device will be described. The sample in the main reaction chamber 17 is heat-treated by a reactive gas such as hydrogen gas supplied from the supply pipe 3 and heated by the electric furnace 2, and the generated exhaust gas is passed through the gap 19. The gas is accelerated and mixed with oxygen gas supplied from the pipe 21.

この温合ガスは電気炉2の加熱により燃焼され、更にバ
ッフル板20によって更に撹拌されるので、未反応物質
の反応を促進することができる。
This warm gas is combusted by heating in the electric furnace 2 and further stirred by the baffle plate 20, so that the reaction of unreacted substances can be promoted.

この実施例は、第1の実施例に比して構成が簡素となり
、又、排気ガス処理装置に対する負担の軽減を図ること
ができる等の効果がある。更に、バッフル板20を設け
たことにより排気ガスの逆流防止の完全を帰すことがで
き、更に排気ガスから堆積物を効率良く取り除くことが
できる等の効果がある。
This embodiment has a simpler configuration than the first embodiment, and has the advantage of reducing the burden on the exhaust gas treatment device. Further, by providing the baffle plate 20, backflow of exhaust gas can be completely prevented, and deposits can be efficiently removed from the exhaust gas.

第3図は第3の実施例を示し、第2の実施例における主
反応管1の構造に変更を加えたものである。即ち、第2
図の主反応管1の先端側にフランジを右する開口部を形
成し、該フランジに密着すると共に着脱可能な蓋22に
接続された供給管3を介して反応ガスを主反応室17へ
供給するようになっている。更に排気ガス処理室18に
は逆流防止用バッフル16の凹部近傍に酸素ガスを供給
する配管23が設けられ、後室18の一端に固着されて
いるli気?24が排気ガス処理装置に接続している。
FIG. 3 shows a third embodiment, in which the structure of the main reaction tube 1 in the second embodiment is modified. That is, the second
An opening to the right of the flange is formed on the tip side of the main reaction tube 1 shown in the figure, and the reaction gas is supplied to the main reaction chamber 17 through the supply pipe 3 that is in close contact with the flange and connected to a removable lid 22. It is supposed to be done. Further, the exhaust gas treatment chamber 18 is provided with a pipe 23 for supplying oxygen gas near the recess of the backflow prevention baffle 16, and a pipe 23 for supplying oxygen gas is installed in the exhaust gas treatment chamber 18, and a pipe 23 is provided in the exhaust gas treatment chamber 18 to supply oxygen gas to the vicinity of the recess of the backflow prevention baffle 16. 24 is connected to the exhaust gas treatment device.

かかる構造の装置にあっては、蓋22を着脱するだけで
排気ガス処理を行なう排気ガス処I!1!室18側の構
成部材を移動することなく試料の挿入及び取出しを行な
うことができ、又堆積物の51を目やすに洗浄すれば良
いので、使い易い等の効果がある。
In an apparatus having such a structure, the exhaust gas treatment I! can be performed by simply attaching and detaching the lid 22. 1! The sample can be inserted and taken out without moving the components on the side of the chamber 18, and the deposits 51 only need to be washed away, so there are advantages such as ease of use.

第4図は第4の実施例を示し、第2図並びに第3図に示
した実施例に改良を加えたものである。
FIG. 4 shows a fourth embodiment, which is an improvement on the embodiments shown in FIGS. 2 and 3.

即ち、上記第2.第3の実施例では、堆積物がバッフル
板20に付着するだけでなく、主反応管1の内壁にも付
着するので、第2図の場合は試料の出し入れの際に汚染
されたり第3図の場合には逆流防止用バッフル1Gやバ
ッフル板20の取外しが煩雑となったりする。これらの
問題点を除去するために、主反応管1の排気ガス処理室
18側に主反応管1の内径より若干小径の円筒状の内管
24が装着され、主反応管1の内側壁と内情24の外側
壁との間に出来る隙間25に酸素ガスが供給されるよう
になっている。挿入、内管22の一側には、周方向に沿
って複数の貫通孔26が形成され、前室17で発生した
排気ガスと酸素ガスが貫通孔26を通過する際に混合ガ
スとなって主反応室18内に流れ込むようになっている
。そして内管24の内部に設けられたバッフル板20に
よって更に混合ガスは攪拌され未反応ガスの反応の促進
が図られ、堆積物等が除かれた排気ガスは排気管4を介
して排気ガス処理へ排出される。ここで、堆積物は内管
24の内部に付着するので、内管24を洗浄するだめの
取り外し作業が極めて容易となると共に、主反応室17
に収容される試料を汚染することが無い。また、試料を
取り出した後に、塩化水素ガス等で堆積物をエツチング
する場合、主反応室17の堆積物の除去が可能となり、
更にこの場合には内管24のみを取り出して洗浮するだ
けで演むので主反応管1の洗浄回数を大幅に減らすこと
ができる。
That is, the above 2. In the third embodiment, deposits not only adhere to the baffle plate 20 but also adhere to the inner wall of the main reaction tube 1, so that in the case of FIG. In this case, it becomes complicated to remove the backflow prevention baffle 1G and the baffle plate 20. In order to eliminate these problems, a cylindrical inner tube 24 with a diameter slightly smaller than the inner diameter of the main reaction tube 1 is installed on the exhaust gas treatment chamber 18 side of the main reaction tube 1, and is connected to the inner wall of the main reaction tube 1. Oxygen gas is supplied to a gap 25 formed between the interior 24 and the outer wall. A plurality of through holes 26 are formed along the circumferential direction on one side of the inner tube 22, and when the exhaust gas and oxygen gas generated in the front chamber 17 pass through the through holes 26, they become a mixed gas. It flows into the main reaction chamber 18. The mixed gas is further stirred by the baffle plate 20 provided inside the inner pipe 24 to promote the reaction of unreacted gas, and the exhaust gas from which deposits have been removed is passed through the exhaust pipe 4 for exhaust gas treatment. is discharged to. Here, since the deposits adhere to the inside of the inner tube 24, it becomes extremely easy to remove the basin for cleaning the inner tube 24, and the main reaction chamber 17
There is no possibility of contaminating the sample stored in the chamber. Furthermore, if the deposits are etched with hydrogen chloride gas or the like after taking out the sample, the deposits in the main reaction chamber 17 can be removed.
Furthermore, in this case, only the inner tube 24 is removed and washed, so the number of times the main reaction tube 1 is washed can be significantly reduced.

第5図は第5の実施例を示し、第4図に示す第4の実施
例を改良したものであり、主反応管1の先端部にフラン
ジ部を有する開口端を形成し、このフランジ部に密着す
ると共に着脱可能な蓋27を介して主反応室17に試料
を出入れすることができるようになっている。そして蓋
27の一端に反応ガスを供給するための供給管3が接続
されている。
FIG. 5 shows a fifth embodiment, which is an improved version of the fourth embodiment shown in FIG. A sample can be taken in and out of the main reaction chamber 17 through a lid 27 that is in close contact with the main reaction chamber 17 and is removable. A supply pipe 3 for supplying a reaction gas is connected to one end of the lid 27.

更に、内情24が配置される側の主反応管1の一端にも
同様のフランジ部を有する開口端が形成され、排気管4
が接続される?!X28を該フランジ部に着脱可能に取
付けるようになっている。かかる構造によると、試料の
出入れと内管24の出入れを別個の間口端より行なうこ
とができるので、作業性の向ヒ、メインテナンスの向上
等の効果が得られる。
Furthermore, an open end having a similar flange portion is formed at one end of the main reaction tube 1 on the side where the internal information 24 is arranged, and the exhaust pipe 4
Is it connected? ! The X28 is detachably attached to the flange. According to this structure, since the sample can be taken in and out and the inner tube 24 can be taken in and out from separate front ends, effects such as improved workability and maintenance can be obtained.

第6図は第6の実施例を示し、第4図と第5図に示す扶
気ガス処理室18内の構成を変えたものである。即ち、
内管24のL!1通孔26よりも若干底壁側に入った位
置に酸素ガスを供給するための配管29を蓋5の一端を
口過して配置し、先の配管21を介して窒素ガスなどの
不活性ガスを供給するようになっている。かかる構成と
することにより、主反応室17で発生した排気ガスは、
配管29より供給される酸素ガスと共に燃焼され、内管
24内の底壁側に堆積物が付着する。このため貫通孔2
Gに堆積物が付着するのを低減し又、内情24の外壁に
付着しなくなり、メインテナンスを簡素にすることがで
きる。尚、後室18内にバッフル板を設けても良い。
FIG. 6 shows a sixth embodiment, in which the internal configuration of the gas processing chamber 18 shown in FIGS. 4 and 5 is changed. That is,
L of inner tube 24! A pipe 29 for supplying oxygen gas is placed at a position slightly closer to the bottom wall than the first through hole 26, passing through one end of the lid 5, and an inert gas such as nitrogen gas is supplied through the pipe 21. It is designed to supply gas. With this configuration, the exhaust gas generated in the main reaction chamber 17 is
It is burned together with the oxygen gas supplied from the pipe 29, and deposits adhere to the bottom wall side of the inner pipe 24. Therefore, through hole 2
This reduces the amount of deposits adhering to G and also prevents deposits from adhering to the outer wall of the interior 24, simplifying maintenance. Note that a baffle plate may be provided in the rear chamber 18.

第7図は第7の実施例を示し、第6図の装置における試
料の出入れ及び内管24の出入れを容易どする構造にし
たものである。叩15、主反応管1の先端部にフランジ
部を有する間口端を形成し、このフランジ部に密着する
と共に着脱可能な蓋30を介して主反応室17に試料を
出入れすることがでさるようになっている。又、蓋30
の一端に反応ガスを供給するための供給管3が接続され
ている。−方、主反応管1の後端部にもフランジ部を右
する間口端を形成し、このフランジ部に密着すると共に
着脱可能な飽31が設けられている。そして、蓋31の
一端に排気管4が接続され、排気ガス処理室18内に酸
素ガスを供給するための配管29が蓋31を口過して排
気ガス処理室18内へ挿入されている。
FIG. 7 shows a seventh embodiment, which has a structure that facilitates the loading and unloading of the sample and the loading and unloading of the inner tube 24 in the apparatus shown in FIG. Step 15: A front end having a flange is formed at the tip of the main reaction tube 1, and the sample can be taken in and out of the main reaction chamber 17 through the lid 30, which is in close contact with the flange and is detachable. It looks like this. Also, lid 30
A supply pipe 3 for supplying a reaction gas is connected to one end of the reactor. On the other hand, the rear end of the main reaction tube 1 also has a frontage end to the right of the flange part, and is provided with a receptacle 31 that is in close contact with the flange part and is detachable. The exhaust pipe 4 is connected to one end of the lid 31, and a pipe 29 for supplying oxygen gas into the exhaust gas processing chamber 18 is inserted into the exhaust gas processing chamber 18 through the lid 31.

かかる構成とすることにより、主反応室17への試料の
出入は蓋30を介して行ない、内管24の着脱は蓋31
を介して行なうことができ、作業かしや1゛りなると共
に、メインテナンスを簡素化することができる。
With this configuration, the sample enters and exits the main reaction chamber 17 through the lid 30, and the inner tube 24 is attached and removed through the lid 31.
This can be done through a single holder, which simplifies maintenance.

第8図は第8の実施例を示し、主反応管32の外側を更
に密封する外管32を備えている。即ち、主反応管1の
後端部に複数の貫通孔33が形成され、主反応管1内に
発生した排気ガスは貫通孔33を介して外管32へ流出
するようになっている。又、貫通孔33の近傍の外管3
2の一端には酸素ガスを供給するための配管34が接続
され、外管32の他の一端に排気ガス処理装置へ延びる
配管4が接続されている。更に、配管34及び貫通孔3
3が設けられた位置と、配管4との間にバッフル板35
が設けられている。かかる構成とすると、排気ガスは貫
通孔33を通り、配管34を介して供給される酸素ガス
と混合され、更にバッフル板35により攪拌され、十分
に燃焼された状態で排ガス処理装置へ排出される。
FIG. 8 shows an eighth embodiment, which includes an outer tube 32 that further seals the outside of the main reaction tube 32. That is, a plurality of through holes 33 are formed at the rear end of the main reaction tube 1 so that exhaust gas generated within the main reaction tube 1 flows out to the outer tube 32 through the through holes 33. In addition, the outer tube 3 near the through hole 33
A pipe 34 for supplying oxygen gas is connected to one end of the outer pipe 2, and a pipe 4 extending to an exhaust gas treatment device is connected to the other end of the outer pipe 32. Furthermore, the piping 34 and the through hole 3
A baffle plate 35 is installed between the position where 3 is provided and the piping 4.
is provided. With this configuration, exhaust gas passes through the through hole 33, is mixed with oxygen gas supplied through the pipe 34, is further stirred by the baffle plate 35, and is discharged to the exhaust gas treatment device in a sufficiently combusted state. .

即ち、主反応管1と外管そして、外管32が主反応管1
と電気炉2の炉壁の間に介在するので炉壁よりのアルミ
ナや炭化シリコン(Si C)等の物質による試料の汚
染を防止することができる。よって、試料を高温で熱処
理したり、熱酸化あるいは熱拡散する場合に要求される
清i手効果を向上させることができる。
That is, the main reaction tube 1 and the outer tube, and the outer tube 32 are the main reaction tube 1.
and the furnace wall of the electric furnace 2, it is possible to prevent the sample from being contaminated by substances such as alumina and silicon carbide (SiC) from the furnace wall. Therefore, it is possible to improve the cleaning effect required when a sample is heat treated at high temperature, thermally oxidized, or thermally diffused.

尚、以上説明した実施例のうちの第4ないし第7の実施
例において、洗浮を行なう場合には、酸素ガスを供給す
る配管にN2.Δr、1−1eなどの不活性ガス又は非
酸化性ガス(水素ガスなど)を供給することにより、付
着した堆積物を容易に除去することが出来、メインテナ
ンスの向上を図ることができる。ただし、この場合には
水素処理を上記第1の実施例その他の方法で行なう必要
があるが、堆積物を非酸化状態で取り出す場合に効果的
である。
In addition, in the fourth to seventh embodiments among the embodiments described above, when performing washing, N2. By supplying an inert gas such as Δr or 1-1e or a non-oxidizing gas (hydrogen gas, etc.), attached deposits can be easily removed and maintenance can be improved. However, in this case, it is necessary to perform the hydrogen treatment using the method described in the first embodiment or another method, which is effective in removing the deposits in a non-oxidized state.

更に、上記第2ないし第7の実施例において、電気炉が
試料を加熱する温度と、排気ガス処理を行なう領域を加
熱する温度とを独立に変えることができる構成となって
いる場合には、排ガス処理の領域を低温にして堆積物を
増加させたり、高温にして未反応ガス分を減少させる等
の制御を行なうと、より優れた効果を得ることができる
Furthermore, in the second to seventh embodiments, if the electric furnace is configured to be able to independently change the temperature at which the sample is heated and the temperature at which the exhaust gas treatment is performed, Better effects can be obtained by controlling the exhaust gas treatment area by lowering the temperature to increase the amount of deposits, or by increasing the temperature to reduce the amount of unreacted gas.

また、通常の熱処理装置で用いられる公知の描・造、た
とえば外気の巻き込み防止用のバージガス口、熱雷対の
挿入口、エレファントチューブ等をこれらの実施例に付
は加えることは容易に行なうことができる。更に、これ
らの実施例では横型炉について説明したが、縦型もしく
は傾斜した構造の炉にも適用できる。
In addition, it is easy to add to these embodiments the well-known designs and structures used in ordinary heat treatment equipment, such as a barge gas port to prevent outside air from being drawn in, a thermal lightning pair insertion port, an elephant tube, etc. I can do it. Further, although these embodiments have been described with respect to a horizontal furnace, the present invention can also be applied to a furnace with a vertical or inclined structure.

[発明の効果] 以上説明したように、本発明によれば、主反応管内に発
生した排気ガスを、密封された排気ガス処1![!室内
で酸素ガスと共に燃焼させ、この燃焼模の排気ガスを排
気ガス処理装置等へ排出させるようにしたので、未燃物
が除去された状態で排気ガスが排出される結果爆発等の
危険性がなくなり、排気ガスを不活性ガスで希釈して排
気ガス処理装置へ送る必要がなくなる。又、堆積性のあ
る反応生成物を含む排気ガスが発生しても該排気ガス処
理室内における燃焼により堆積物が取り残されるので、
排気ガス処理装置への負担が軽減され、又、H2処理を
容易に行なうことができる。更に、装置が簡単に構成す
ることができ、従来から在る熱処理装置に容易に適用す
ることができる。
[Effects of the Invention] As explained above, according to the present invention, the exhaust gas generated in the main reaction tube is transferred to the sealed exhaust gas chamber 1! [! The combustion is done indoors with oxygen gas, and the exhaust gas that simulates combustion is discharged to an exhaust gas treatment device, etc., so there is a risk of explosion as the exhaust gas is discharged with unburned materials removed. This eliminates the need to dilute exhaust gas with inert gas and send it to the exhaust gas treatment device. In addition, even if exhaust gas containing depository reaction products is generated, the deposits are left behind due to combustion in the exhaust gas treatment chamber.
The load on the exhaust gas treatment device is reduced, and H2 treatment can be easily performed. Furthermore, the apparatus can be easily constructed and can be easily applied to conventional heat treatment apparatuses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第8図は本発明による半導体デバイスの熱
処理装置の実施例の構造を示す概略断面図、第9図と第
10図は熱処理装置の従来例の構造を示す概略断面図で
ある。 1・・・主反応管 2・・・電気炉 3・・・供給管 4・・・排気管 5・・・蓋 6・・・種 火 7・・・配 管 8・・・配 管 9・・・排気ガス処理炉 10・・・電気炉 11・・・反応管 12・・・バッフル板 13・・・流入口 14・・・配 管 15・・・排気管 16・・・逆流防止用バッフル 17・・・主反応室 18・・・排気ガス処理室 19・・・隙 問 20・・・バッフル板 21・・・配 管 22・・・蓋 23・・・配 管 24・・・内 管 25・・・隙 間 26・・・口過孔 27・・・蓋 28・・・蓋 29・・・配 管 30・・・蓋 31・・・蓋 32・・・外 管 33・・・貫通孔 34・・・配 管 35・・・バッフル板
1 to 8 are schematic cross-sectional views showing the structure of an embodiment of a heat treatment apparatus for semiconductor devices according to the present invention, and FIGS. 9 and 10 are schematic cross-sectional views showing the structure of a conventional heat treatment apparatus. 1... Main reaction tube 2... Electric furnace 3... Supply pipe 4... Exhaust pipe 5... Lid 6... Seed Fire 7... Piping 8... Piping 9. ...Exhaust gas treatment furnace 10...Electric furnace 11...Reaction tube 12...Baffle plate 13...Inflow port 14...Piping 15...Exhaust pipe 16...Baffle for backflow prevention 17... Main reaction chamber 18... Exhaust gas processing chamber 19... Gap Question 20... Baffle plate 21... Piping 22... Lid 23... Piping 24... Inner pipe 25... Gap 26... Opening hole 27... Lid 28... Lid 29... Piping 30... Lid 31... Lid 32... Outer Pipe 33... Penetration Hole 34...Piping 35...Baffle plate

Claims (1)

【特許請求の範囲】 加熱炉と、該加熱炉内に収容される主反応管を備え、該
主反応管内の反応ガス雰囲気中に置かれた試料を加熱処
理する半導体デバイスの熱処理装置において、 前記主反応管内で発生する排気ガスを排気径路の途中で
酸素ガスと混合・燃焼させる密閉された排気ガス処理室
を備えたことを特徴とする半導体デバイスの熱処理装置
[Scope of Claims] A heat treatment apparatus for semiconductor devices comprising a heating furnace and a main reaction tube housed in the heating furnace, and heat-treating a sample placed in a reaction gas atmosphere in the main reaction tube, comprising: A heat processing apparatus for semiconductor devices characterized by comprising a sealed exhaust gas processing chamber in which exhaust gas generated in a main reaction tube is mixed with oxygen gas and combusted in the middle of an exhaust path.
JP63170774A 1988-07-11 1988-07-11 Heat treatment equipment for semiconductor devices Expired - Lifetime JP2581955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170774A JP2581955B2 (en) 1988-07-11 1988-07-11 Heat treatment equipment for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170774A JP2581955B2 (en) 1988-07-11 1988-07-11 Heat treatment equipment for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH0221616A true JPH0221616A (en) 1990-01-24
JP2581955B2 JP2581955B2 (en) 1997-02-19

Family

ID=15911128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170774A Expired - Lifetime JP2581955B2 (en) 1988-07-11 1988-07-11 Heat treatment equipment for semiconductor devices

Country Status (1)

Country Link
JP (1) JP2581955B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322416A (en) * 1989-06-20 1991-01-30 Oki Electric Ind Co Ltd Heat treatment furnace
KR100374530B1 (en) * 2000-01-20 2003-03-03 가부시키가이샤 히다치 고쿠사이 덴키 Hydrogen annealing process and apparatus therefor
JP2008545262A (en) * 2005-07-06 2008-12-11 エドワーズ リミテッド Exhaust gas treatment method
WO2011016223A1 (en) * 2009-08-04 2011-02-10 キヤノンアネルバ株式会社 Heat treatment apparatus and method for manufacturing semiconductor device
US8147786B2 (en) 2006-04-04 2012-04-03 Tokyo Electron Limited Gas exhaust system of film-forming apparatus, film-forming apparatus, and method for processing exhaust gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561527A (en) * 1979-06-19 1981-01-09 Fujitsu Ltd Exhaust gas disposal method for semiconductor manufacturing equipment
JPS59197141A (en) * 1984-03-13 1984-11-08 Sony Corp Exhaust treatment method in decompression reaction device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561527A (en) * 1979-06-19 1981-01-09 Fujitsu Ltd Exhaust gas disposal method for semiconductor manufacturing equipment
JPS59197141A (en) * 1984-03-13 1984-11-08 Sony Corp Exhaust treatment method in decompression reaction device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322416A (en) * 1989-06-20 1991-01-30 Oki Electric Ind Co Ltd Heat treatment furnace
KR100374530B1 (en) * 2000-01-20 2003-03-03 가부시키가이샤 히다치 고쿠사이 덴키 Hydrogen annealing process and apparatus therefor
JP2008545262A (en) * 2005-07-06 2008-12-11 エドワーズ リミテッド Exhaust gas treatment method
US8147786B2 (en) 2006-04-04 2012-04-03 Tokyo Electron Limited Gas exhaust system of film-forming apparatus, film-forming apparatus, and method for processing exhaust gas
WO2011016223A1 (en) * 2009-08-04 2011-02-10 キヤノンアネルバ株式会社 Heat treatment apparatus and method for manufacturing semiconductor device
JP5497765B2 (en) * 2009-08-04 2014-05-21 キヤノンアネルバ株式会社 Heat treatment apparatus and semiconductor device manufacturing method
US9147742B2 (en) 2009-08-04 2015-09-29 Canon Anelva Corporation Heat treatment apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2581955B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
CA2109198C (en) Primary flow cvd apparatus and method
KR100374065B1 (en) Oxidation treatment apparatus and oxidation treatment method
US6903030B2 (en) System and method for heat treating semiconductor
DE3380823D1 (en) Chemical vapor deposition apparatus and process
JPH0221616A (en) Heat treatment equipment for semiconductor device
EP0825274B1 (en) Gas-carburizing apparatus
JPS62206826A (en) Thermal treatment equipment for semiconductor
JP3215074B2 (en) Method and device for removing semiconductor manufacturing flue gas
US6120285A (en) Dimpled thermal processing furnace and method for processing semiconductor wafers
JPS62245624A (en) Vertical type treating apparatus
JP3971843B2 (en) Semiconductor manufacturing exhaust gas abatement apparatus and abatement method
JP3167523B2 (en) Heat treatment apparatus and heat treatment method
JPH05295549A (en) Heat treatment device
SU1335574A1 (en) Installation for heat treatment of metallic materials
JP2007292362A (en) Exhaust gas treatment unit
JPH0373134B2 (en)
US3811826A (en) Diffusion furnace process tube
JPH11159965A (en) Heat treatment furnace
JPS6318647B2 (en)
RU733135C (en) Device for treating plates in gas phase
JPH11135446A (en) Surface treatment furnace tube equipment for semiconductor substrate
JPS6295819A (en) Heat treating method for semiconductor element
JP3066651B2 (en) Vertical vapor phase growth equipment
JPH03102816A (en) Semiconductor heat treating furnace
JPH04297026A (en) Semiconductor production device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12