JPH02216119A - Liquid crystal electrooptical element - Google Patents

Liquid crystal electrooptical element

Info

Publication number
JPH02216119A
JPH02216119A JP3757089A JP3757089A JPH02216119A JP H02216119 A JPH02216119 A JP H02216119A JP 3757089 A JP3757089 A JP 3757089A JP 3757089 A JP3757089 A JP 3757089A JP H02216119 A JPH02216119 A JP H02216119A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
refractive index
optically anisotropic
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3757089A
Other languages
Japanese (ja)
Inventor
Motoyuki Toki
元幸 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3757089A priority Critical patent/JPH02216119A/en
Priority to DE69008875T priority patent/DE69008875T2/en
Priority to EP90300373A priority patent/EP0379315B1/en
Priority to US07/466,232 priority patent/US5142393A/en
Publication of JPH02216119A publication Critical patent/JPH02216119A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an anisotropic film which has a large difference in refractive index, is thin and inexpensive and allows easy production by uniaxially stretching a high-polymer film essentially consisting of the polymers of specific acrylate derivatives. CONSTITUTION:The optically anisotropic film is formed by uniaxially stretching the film essentially consisting of at least one kind of the polymers of the acrylate derivatives expressed by the general formula CH2=CX-COOR (where X is -Cl, -Br, -CN, -SCN group and R is 1 to 4C alkyl group or dervi. of a benzene ring). This high-polymer film is attached with a halogen and alkyl group to increase the refractive index in the substituent (alpha position of acrylate and an ester group) attached to the main chain of the polymers. The main chains, therefore, line up in the stretching direction and the alpha position, etc., of the acrylate are perpendicular to the main chains. The optically anisotropic film having the large refractive index is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は複屈折効果を利用する液晶電気光学素子の視野
角を広げる視角補償板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a viewing angle compensator that widens the viewing angle of a liquid crystal electro-optic element that utilizes the birefringence effect.

〔従来の技術j ホモジニアス配向した液晶を2枚の電極基板間に挟持し
てなる液晶電気光学素子の視角範囲を広げるには、光学
的異方体膜、である視角補償板を該液晶電気光学素子に
適応する方法が有る。これについては、特願昭63−1
98506に詳しく開示されている。すなわち、光学的
異方体膜はその3つの主要な屈折率NI0、Nxo、N
smの内、N3゜が他の2つの屈折率N+o、Ni。よ
りも小さく、かつN 10とN2oが同値であり、さら
にN3.に対応する軸が光学的異方体膜の面内の一方向
に有るものである。この光学的異方体膜を、そのN1.
軸を液晶の分子軸にあわせて配置することにより、視野
角の変化に対応して起こる液晶の△nの変化をギャンセ
ルすることで視角を広げる作用を発するものである。
[Prior art j] In order to widen the viewing angle range of a liquid crystal electro-optic element in which a homogeneously aligned liquid crystal is sandwiched between two electrode substrates, a viewing angle compensating plate, which is an optically anisotropic film, is attached to the liquid crystal electro-optic element. There is a method to adapt to the element. Regarding this, please refer to the patent application No. 63-1
98506. That is, the optically anisotropic film has its three main refractive indices NI0, Nxo, N
Among sm, N3° is the other two refractive indexes N+o and Ni. , and N10 and N2o are the same value, and N3. The axis corresponding to is located in one direction within the plane of the optically anisotropic film. This optically anisotropic film is applied to its N1.
By aligning the axis with the molecular axis of the liquid crystal, the change in Δn of the liquid crystal that occurs in response to the change in the viewing angle is canceled out, thereby producing the effect of widening the viewing angle.

ところで、光学的異方体膜としては、高分子フィルムタ
イプと、ディスコティック液晶タイプの2種類が考えら
れるが、コス、トや製作の容易さから高分子フィルムタ
イプが良いと考えられる。高分子フィルムタイプは、ポ
リメチルメタクリレート(PMMA)やポリミーフルオ
ロアクリル酸メチル(PMFA)のように、延伸するこ
とによって、5M伸方向の直角方向の屈折率が大きくな
り負の光学的異方性を示す高分子である必要が有る。
By the way, there are two types of optically anisotropic films: a polymer film type and a discotic liquid crystal type, but the polymer film type is considered to be better in terms of cost, cost, and ease of production. Polymer film types, such as polymethyl methacrylate (PMMA) and polymethyl fluoroacrylate (PMFA), increase the refractive index in the direction perpendicular to the 5M stretching direction by stretching, resulting in negative optical anisotropy. It is necessary that the polymer exhibits the following.

[発明が解決しようとする課題1 しかし、前述の従来技術における高分子フィルムタイプ
の光学的異方体膜は、主にPMMAやPMFAであり、
これらは延伸により発生する八〇の値が小さく、厚みを
1〜2 +n mといつ厚膜にする必要があり、コスト
高であったり、製造が困難であるという問題点が有った
[Problem to be Solved by the Invention 1] However, the polymer film type optically anisotropic film in the above-mentioned prior art is mainly made of PMMA or PMFA;
These have a problem in that the 80 value generated by stretching is small, and it is necessary to make the film as thick as 1 to 2 + nm, resulting in high cost and difficulty in manufacturing.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、延伸により発生する△nを大き
くし、必要なフィルムの厚みを薄くすることにより、安
価で製造容易な光学的異方体膜を提供するところにある
The present invention is intended to solve these problems, and its purpose is to increase △n generated by stretching and reduce the required thickness of the film, thereby creating an optical film that is inexpensive and easy to manufacture. The purpose is to provide an anisotropic film.

【課題を解決するための手段] 本発明の液晶電気光学素子は、対向する2枚の電極基板
間にホモジニアス配向した液晶を挟持してなる液晶セル
と、該素子の規制特性を広くする光学的異方体膜と、そ
れらを挾んで両側に配置された一対の偏光扱とを具備し
た液晶電気光学素子において、光軸が光学的異方体の面
内の一方向に有り、光学的に負、の−軸性を有する光学
的異方体を、−能代が下記のアクリレート誘導体の重合
物の少なくとも一種を主成分とするフィルムの一軸延伸
体であることを特徴とする6 CH,=CX−C00R (ここt’Xは、−CR1−Dr、−CN、−5CN基
で、Rは炭素数1〜4のアルギル基あるいは、ベンゼン
環のJ秀導1本) [作 用] 本発明の高分子フィルムは、延伸することにより、延伸
方向の直角方向の屈折率が延伸方向の屈折率よりも大き
くなり、光学的に負の屈折率異方体を形成することにな
る。この原理をここに説明する。
[Means for Solving the Problems] The liquid crystal electro-optical device of the present invention includes a liquid crystal cell in which a homogeneously aligned liquid crystal is sandwiched between two opposing electrode substrates, and an optical device that widens the regulation characteristics of the device. In a liquid crystal electro-optical element that is equipped with an anisotropic film and a pair of polarization handlers placed on both sides of the film, the optical axis is in one direction within the plane of the optically anisotropic film, and the optical axis is optically negative. 6 CH, = C C00R (here, t'X is a -CR1-Dr, -CN, -5CN group, and R is an argyl group having 1 to 4 carbon atoms or one J-shudo of a benzene ring) [Function] By stretching the molecular film, the refractive index in the direction perpendicular to the stretching direction becomes larger than the refractive index in the stretching direction, forming an optically negative refractive index anisotropic body. This principle will be explained here.

最初に、通常の延伸により正の複屈折性を示す屈折率異
方体を形成する高分子フィルムの場合を説明する。この
タイプの高分子フィルムには2.ボッエチレンやポリカ
ーボネートフィルムが有る。
First, the case of a polymer film that forms a refractive index anisotropic body exhibiting positive birefringence through normal stretching will be described. This type of polymer film has 2. There are Botethylene and polycarbonate films.

これらの高分子は、主鎖方向に分子が伸びており、ベン
ゼン環等の屈折率を高める基も主鎖内に存在しているた
め、延伸することにより主鎖を延伸方向に揃えると、主
鎖方向の屈折率が、その直角方向の屈折率より大きくな
る。従ってこの場合は、正の複屈折性を示す光学的n方
体膜となる。
These polymers have molecules extending in the direction of the main chain, and groups that increase the refractive index, such as benzene rings, are also present in the main chain, so if the main chains are aligned in the stretching direction by stretching, the main chain The refractive index in the chain direction is greater than the refractive index in the direction perpendicular to it. Therefore, in this case, it becomes an optical n-paralleloid film exhibiting positive birefringence.

これに対して1本発明の高分子フィルムは、アクリレー
ト誘導体の重合物であり1重合体の主鎖についている置
換基(アクリレートのa位及びエステル基)に、屈折率
を高める基であるへロゲルやアルキル基、ベンゼン環を
含む誘導体の基をつけている。このため、この高分子フ
ィルムを延伸すると、延伸方向に主鎖かならぶたぬ、ア
クリレトのa位やエステル基は主鎖に対して直角方向に
1萌うことになる。従って、この場合には延伸方向より
その直角方向の屈折率が大きくなり、負の複屈折性を示
す光学的異方体膜になる。
On the other hand, the polymer film of the present invention is a polymer of acrylate derivatives, and the substituents (a-position and ester group of acrylate) attached to the main chain of the polymer include herogel, which is a group that increases the refractive index. It has a derivative group containing an alkyl group, a benzene ring, or an alkyl group. Therefore, when this polymer film is stretched, if the main chain is in the stretching direction, the a-position of the acrylate or the ester group will be one in the direction perpendicular to the main chain. Therefore, in this case, the refractive index in the direction perpendicular to the stretching direction is greater than that in the stretching direction, resulting in an optically anisotropic film exhibiting negative birefringence.

アクリレートのa位やエステルJ、(の置換基について
は、屈折率を高める基でなくてはいけないことは前記し
であるが、どういう基が屈折率を高めるかを説明する。
As mentioned above, the a-position of the acrylate and the substituents of the esters J and () must be groups that increase the refractive index, but what kind of groups increase the refractive index will be explained.

一般に、屈折率は分子内の電子の動き安さに関係が有り
、大きな原子やπ軌道を持つ分子の電子はたいへん動き
やすく、屈折率を大きくすることになる。大きな原子と
しては金属原子が良いが、この原子がポリマー中に入る
と09に不透明になるため、本発明の用途には使用でき
ない、透明性を保ちさらに原子サイズの大きいものとし
て候補とじてに考えられるのは。
Generally, the refractive index is related to the ease with which electrons move within a molecule, and the electrons of large atoms and molecules with π orbitals move very easily, which increases the refractive index. Metal atoms are good as large atoms, but when these atoms enter the polymer, they become opaque, so they cannot be used for the purpose of the present invention. What can be done?

−F、−CJ2、−Br、−■のハロゲン原子である。-F, -CJ2, -Br, -■ halogen atoms.

これらはさらに、電子吸引性であることからfllll
珀111+1へ電子を集めるためさらに屈折率を高める
効果を有している。一方、π電子を持つ置換基としては
、フェニル基、ビフェニル基、ターフエニル基、ナフク
レン基、アントラセン基、アゾベンゼン基、スチルベン
基、等及びそれらの誘導体が考えられる。
Furthermore, since these are electron-withdrawing, flllll
It has the effect of further increasing the refractive index because it collects electrons to the crystal 111+1. On the other hand, examples of substituents having π electrons include phenyl, biphenyl, terphenyl, naphculene, anthracene, azobenzene, stilbene, and derivatives thereof.

これらの置換基の組み合わせによって本発明の液晶表示
素子に適した光学異方体とすることができる。
By combining these substituents, an optically anisotropic material suitable for the liquid crystal display element of the present invention can be obtained.

[実 施 例] 以下に、実施例でさらに詳しく説明する。[Example] This will be explained in more detail in Examples below.

実施例1゜ 透明電極基板間にチッソ社製液晶5S−4008(Δn
=0.15)を入れホモジニアス配向させた。このセル
厚は6.0μmにし、レターデーションΔndを0.9
0umとなるように設定した。一方、a−クロロアクリ
ル酸フェニル(CH,=ccg−coo−(9を合成し
重合した。このフィルムを110°Cで3 m m /
 s e cの速度で延伸し、厚みl 00 ri m
の一軸延伸フィルムを得た。このフィルムの延伸方向と
その直角方向の屈折率差は0..009であり、△nd
は0.9umであった。
Example 1゜Liquid crystal 5S-4008 manufactured by Chisso Corporation (Δn
=0.15) for homogeneous orientation. The cell thickness is 6.0 μm, and the retardation Δnd is 0.9
It was set to be 0 um. On the other hand, phenyl a-chloroacrylate (CH, = ccg-coo-(9) was synthesized and polymerized. This film was heated at 110°C to 3 mm /
Stretched at a speed of s e c to a thickness of l 00 rim
A uniaxially stretched film was obtained. The refractive index difference between the stretching direction and the direction perpendicular to the stretching direction of this film is 0. .. 009, △nd
was 0.9 um.

σ−クロロアクリル酸フェニルの延伸フィルムを上記液
晶セルの上に置き、それらの上下に偏光板をクロスニコ
ルにして配置した。延伸フィルムを入れたものと入れな
いものを比較すると、視角範囲が広くなっていた。
A stretched film of σ-phenyl chloroacrylate was placed on the liquid crystal cell, and polarizing plates were placed above and below it in a crossed nicol configuration. Comparing those with and without stretched film, the viewing angle range was wider.

実施例2゜ a−ブロモアクリル酸ビフェニル、メタクリル酸ビフェ
ニル、α−シアノアクリル酸ビフェニル、α−チオシア
ノアクリル酸ビフェニルを合成し、それぞれ重合した。
Example 2 a-Biphenyl bromoacrylate, biphenyl methacrylate, biphenyl cyanoacrylate, and biphenyl thiocyanoacrylate were synthesized and polymerized, respectively.

それぞれのポリマーを1駁にし、120℃で5 m m
 / s e cのスピードで延伸し膜厚1100uの
シートを得た。これは−軸延伸されたフィルムになり、
いずれのフィルムも△ndは0.5μmであった。この
フィルムを、実施例1に述べたホモジニアス配向した液
晶セルにつけると実施例1と同様に視野角が広がった。
Each polymer was made into 1 piece and 5 mm at 120°C.
The film was stretched at a speed of /sec to obtain a sheet with a film thickness of 1100u. This results in a -axially stretched film,
Δnd of both films was 0.5 μm. When this film was attached to the homogeneously aligned liquid crystal cell described in Example 1, the viewing angle was widened as in Example 1.

実施例3 メタクリル酸ナフクレン、a−クロロアクリル酸ナフタ
レン、a−シアノアクリル酸ナフクレン、a−チオシア
ノアクリル酸ナフクレン、を合成し、それぞれ重合した
。それぞれのポリマーを薄膜にし、100℃で5mm/
secのスピードで延伸し膜厚1100uのシートを得
た。これらは−軸延伸されたフィルムになり、いずれの
フィルムも△ndは0.9μmであった。このフィルム
を実施例1に述べたホモジニアス配向した液晶セルにつ
けると実施例1と同様に視野範囲が広がった。
Example 3 Nafculene methacrylate, naphthalene a-chloroacrylate, naphculene a-cyanoacrylate, and naphculene a-thiocyanacrylate were synthesized and polymerized, respectively. Each polymer was made into a thin film at 100°C with a thickness of 5 mm/
The sheet was stretched at a speed of 1,100 μm in thickness. These were -axially stretched films, and the Δnd of each film was 0.9 μm. When this film was attached to the homogeneously aligned liquid crystal cell described in Example 1, the viewing range was expanded as in Example 1.

実施例5゜ 4−(フェノキシカルボニルフェニル)メタクリレート
、4−(フェノキシカルボニルフェニル)、α−シアノ
アクリレート、を合成し、重合した。それぞれのポリマ
ーを薄膜にし、100℃で5mm/secのスピードで
延伸し膜厚50μmのシートを得た。これらは−軸延伸
されたフィルムになり、いずれのフィルムも△ndは0
.9umであった。これらのフィルムを実施例1に述べ
たホモジニアス配向した液晶セルにつけると実施例1と
同様に視野範囲が広がった。
Example 5 4-(phenoxycarbonylphenyl) methacrylate, 4-(phenoxycarbonylphenyl), α-cyanoacrylate were synthesized and polymerized. Each polymer was made into a thin film and stretched at 100° C. at a speed of 5 mm/sec to obtain a sheet with a thickness of 50 μm. These are -axially stretched films, and △nd is 0 for both films.
.. It was 9um. When these films were attached to the homogeneously aligned liquid crystal cell described in Example 1, the viewing range was expanded as in Example 1.

[発明の効果] 以上述べたように、本発明によれば、アクリル酸エステ
ルの6位及びエステル基の置換基を、屈折率を高める効
果を有する基に置換することで、そのポリマーを延伸し
た時に、延伸方向よりその垂直方向の屈折率が高くなり
、負の複屈折性を示す光学的異方体膜とすることができ
る。このようにして得られる異方体膜は、液晶光学素子
の視角を広げる効果を有する。
[Effects of the Invention] As described above, according to the present invention, by substituting the 6-position of the acrylic acid ester and the substituent of the ester group with a group having the effect of increasing the refractive index, the polymer can be stretched. In some cases, the refractive index in the direction perpendicular to the stretching direction is higher than that in the stretching direction, resulting in an optically anisotropic film exhibiting negative birefringence. The anisotropic film obtained in this manner has the effect of widening the viewing angle of the liquid crystal optical element.

以上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】 対向する2枚の電極基板間にホモジニアス配向した液晶
を挟持してなる液晶セルと、該素子の視角特性を広くす
る光学的異方体膜と、それらを挟んで両側に配置された
一対の偏光板とを具備した液晶電気光学素子において、
光軸が光学的異方体膜の面内の一方向に有る光学的に負
の一軸性を有する光学的異方体を、一般式が下記のアク
リレート誘導体の重合物の少なくとも一種を主成分とす
るフィルムの一軸延伸体であることを特徴とする液晶電
気光学素子。 CH_2=CX−COOR (ここでXは、−Cl、−Br、−CN、−SCN基で
、Rは、炭素数1〜4のアルキル基あるいは、ベンゼン
環の誘導体)
[Claims] A liquid crystal cell comprising a homogeneously oriented liquid crystal sandwiched between two opposing electrode substrates, an optically anisotropic film that widens the viewing angle characteristics of the device, and an optical anisotropic film on both sides sandwiching them. A liquid crystal electro-optical element comprising a pair of arranged polarizing plates,
An optically anisotropic material having an optically negative uniaxiality in which the optical axis lies in one direction within the plane of the optically anisotropic material film, whose main component is at least one kind of polymer of an acrylate derivative having the general formula below. 1. A liquid crystal electro-optical device, characterized in that it is a uniaxially stretched body of a film. CH_2=CX-COOR (where X is -Cl, -Br, -CN, -SCN group, R is an alkyl group having 1 to 4 carbon atoms or a benzene ring derivative)
JP3757089A 1989-01-19 1989-02-17 Liquid crystal electrooptical element Pending JPH02216119A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3757089A JPH02216119A (en) 1989-02-17 1989-02-17 Liquid crystal electrooptical element
DE69008875T DE69008875T2 (en) 1989-01-19 1990-01-12 Electro-optical liquid crystal display device.
EP90300373A EP0379315B1 (en) 1989-01-19 1990-01-12 Electro-optical liquid crystal device
US07/466,232 US5142393A (en) 1989-01-19 1990-01-19 Electro-optical liquid crystal device with compensator having negative optical anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3757089A JPH02216119A (en) 1989-02-17 1989-02-17 Liquid crystal electrooptical element

Publications (1)

Publication Number Publication Date
JPH02216119A true JPH02216119A (en) 1990-08-29

Family

ID=12501186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3757089A Pending JPH02216119A (en) 1989-01-19 1989-02-17 Liquid crystal electrooptical element

Country Status (1)

Country Link
JP (1) JPH02216119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544008A1 (en) * 1991-06-17 1993-06-02 Seiko Epson Corporation Phase difference elemental film, phase difference plate and liquid crystal display using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544008A1 (en) * 1991-06-17 1993-06-02 Seiko Epson Corporation Phase difference elemental film, phase difference plate and liquid crystal display using same

Similar Documents

Publication Publication Date Title
US5142393A (en) Electro-optical liquid crystal device with compensator having negative optical anisotropy
KR101118000B1 (en) Liquid crystal display
JP3557290B2 (en) Optical compensation sheet, method for manufacturing the same, liquid crystal display device, and color liquid crystal display device
JP4440817B2 (en) An optically anisotropic film, a brightness enhancement film, a laminated optical film, and an image display device using them.
JP4786552B2 (en) Optical compensation sheet, manufacturing method thereof, polarizing plate and liquid crystal display device using the same
US5568294A (en) Liquid crystal display device having a polymer functioning as an orientation layer and a retarder
KR102446762B1 (en) Optically anisotropic film, optical film, polarizing plate and image display device
JPWO2017043438A1 (en) Polymerizable liquid crystal composition, retardation film, polarizing plate, liquid crystal display device and organic electroluminescent device
TWI402579B (en) Multilayer compensator, method of forming a compensator and liquid crystal display
CN101373295A (en) Optical compensation film, method of producing the same, and polarizing plate and liquid crystal display device using the same
JP7118153B2 (en) Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
KR101023005B1 (en) Optical compensating sheet, production method thereof, optical film, and polarizing plate and liquid crystal display device using the same
TW200615624A (en) Liquid crystal display device
KR20070100275A (en) Optical compensation sheet, process for producing the same, and polarizing plate and liquid crystal display device using the same
CN101408693A (en) Liquid crystal panel and liquid crystal display device
JP2006126768A (en) Optically anisotropic film, and polarizing plate using the film, and liquid crystal display
JP6674359B2 (en) Liquid crystal display
JP2005206638A (en) Optical film and polarizing plate and picture display unit using the same
JP2005134884A (en) Optical anisotropic film and polarizing plate and liquid crystal display using the same
JP2006091205A (en) Optical compensation sheet, manufacturing method thereof, polarizing plate provided with the optical compensation sheet and liquid crystal display device
JP2008058589A (en) Optical compensation film, polarizing plate and liquid crystal display device
JP2005309110A (en) Liquid crystal display
KR100894239B1 (en) Liquid crystal display device
JPH02216119A (en) Liquid crystal electrooptical element
JP7355835B2 (en) Polymerizable liquid crystal compositions, optically anisotropic layers, optical films, polarizing plates, and image display devices