JPH02215513A - Molding device with precise mold - Google Patents

Molding device with precise mold

Info

Publication number
JPH02215513A
JPH02215513A JP3708089A JP3708089A JPH02215513A JP H02215513 A JPH02215513 A JP H02215513A JP 3708089 A JP3708089 A JP 3708089A JP 3708089 A JP3708089 A JP 3708089A JP H02215513 A JPH02215513 A JP H02215513A
Authority
JP
Japan
Prior art keywords
temperature
stamper
matrix
mold
mother mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3708089A
Other languages
Japanese (ja)
Inventor
Shigeru Fujita
滋 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3708089A priority Critical patent/JPH02215513A/en
Publication of JPH02215513A publication Critical patent/JPH02215513A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • B29C45/2642Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Abstract

PURPOSE:To avoid generation of shear stress, by a method wherein the title device is provided with a stamper, monitors temperatures of a matrix and matter to be molded which are set up heatably and coolably and movable throughout the process of contraction of both of them and the temperature of the matrix is controlled so that respective contracting quantities coincide with each other. CONSTITUTION:A matrix 2 is constituted of a moving main body part 6, a variable-temperature body 8 provided in front of the moving main body part 6 through lamination and a stamper 10 made of nickel. An injection hole 4a is formed into a stationary mold 4, a temperature detecting element 26 is mounted on the bottom in a state of the matrix and a temperature variation of a matter 5 to be molded is detected by the first temperature detecting part 30 of a temperature monitoring mechanism 28 with an electromotive force value through a heat gradient between the temperature detecting elements 26 adjoining to each other. A temperature variation of the stamper 10 is detected by the second temperature detecting part 34 of the temperature monitoring mechanism 28. All of detected information are transmitted to a temperature control mechanism 32, the information from the temperature detectors 30, 34 are collated with that and an electric power source 24 is controlled. Since a direction of an electric current is controlled, reversibility in a Peltier effect such as heating capacity and cooling capacity in the variable-temperature body 8 is obtained and a variation of the temperature is contrived.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は1例えば、コンパクトディスク、光ディスク
、光磁気ディスク等、高精度の転写性が要求される記録
媒体等の製品を成形するために用いられる精密金型によ
る成形装置に関する。
Detailed Description of the Invention (Industrial Field of Application) This invention is applicable to the following: This invention relates to a molding device using precision molds.

(従来の技術) 一般に、コンパクトディスク、光ディスク、光磁気ディ
スク等の記録媒体は、ポリカーボネイト。
(Prior Art) Generally, recording media such as compact discs, optical discs, and magneto-optical discs are made of polycarbonate.

アクリル、ポリスチレン等の熱可塑性樹脂を用いて射出
成形法、あるいは射出圧縮成形法で成形され、そのビッ
トパターンの転写にはサブミクロンオーダの精度が要求
される。
It is molded using thermoplastic resin such as acrylic or polystyrene by injection molding or injection compression molding, and the transfer of the bit pattern requires precision on the order of submicrons.

従来、このような製品を成形する精密金型による成形装
置では、所定の成形パターン面を有するニッケル製のス
タンパを備えた移動可能な母型と。
Conventionally, molding equipment using precision molds for molding such products uses a movable mother mold equipped with a nickel stamper having a predetermined molding pattern surface.

この母型に対向する固定金型との間で射出成形、あるい
は射出圧縮成形を行なうようになっている。
Injection molding or injection compression molding is performed between this mother mold and a fixed mold opposing it.

また、母型には発熱体と、水冷による冷却体が設けられ
ており、射出時の急速硬化による転写精度の低下を抑制
するとともに一定時間経過後の硬化を早めるための母型
の温度コントロールができるようになっている。
In addition, the mother mold is equipped with a heating element and a water-cooled cooling element, which suppresses the drop in transfer accuracy due to rapid curing during injection and controls the temperature of the mother mold to accelerate curing after a certain period of time. It is now possible to do so.

(発明が解決しようとする課題) ところで1例えば、ポリカーボネイトa脂と5スタンパ
の素材であるニッケルの熱膨張係数を比較すると、前者
は7.OX 10 =/’Cであり、後者は1゜28X
10=/’Cである。このため、成形樹脂とスタンパの
温度降下に伴う収縮量には差が生じるが、上述のような
成形装置における母型の温度コントロールは、単に発熱
と冷却を設定するにすぎないので、成形樹脂とスタンパ
はそれぞれの熱膨張係数に対応した収縮過程を経ている
(Problem to be Solved by the Invention) By the way, when comparing the thermal expansion coefficients of nickel, which is the material of the stamper 1, for example, polycarbonate A fat and 5 the stamper, the former has a coefficient of 7. OX 10 = /'C, and the latter is 1°28X
10=/'C. For this reason, there will be a difference in the amount of shrinkage between the molding resin and the stamper as the temperature drops, but the temperature control of the matrix in the molding equipment described above simply sets heat generation and cooling, so the molding resin and The stamper undergoes a shrinkage process corresponding to its respective coefficient of thermal expansion.

このため、第4図に示すように、母型を移動させて型開
きを行なう場合、スタンパ50と被成形物としてのディ
スク52の収縮量の差によって矢印Rで示す半径方向外
側へのずれ応力が生じ、ディスク52のビット54の右
肩部54aがめくれたような形状となる異常転写を来す
場合がある。この異常転写の度合が甚だしい場合にはト
ラックはずれの原因となり、製品の品質低下に繋がって
いる0図中、符号56.58はそれぞれ、スタンパ50
に形成されたビット形成突起、グループ形成突起を示し
ており、60はグループ形成突起58によってディスク
52に転写されたグループを示している。
Therefore, as shown in FIG. 4, when moving the master mold to open the mold, the difference in the amount of shrinkage between the stamper 50 and the disk 52 as the molded object causes a radially outward shift stress as indicated by the arrow R. This may result in abnormal transfer in which the right shoulder portion 54a of the bit 54 of the disk 52 has a bent shape. If the degree of abnormal transfer is severe, it may cause track misalignment, leading to a decline in product quality.
The bit forming protrusions and group forming protrusions formed on the disc 52 are shown, and 60 indicates the group transferred to the disk 52 by the group forming protrusions 58.

(11110を解決するための手段) この発明は、上記課題を解決するため、母型と被成形物
の温度を両者の収縮過程を通して監視し。
(Means for solving 11110) In order to solve the above-mentioned problem, the present invention monitors the temperature of the mother mold and the molded object throughout the shrinkage process of both.

それぞれの収縮量が一致するように母型の温度を制御す
ることによってずれ応力の発生を回避することを企図し
たもので、所定の成形パターン面を有するスタンパを備
え1発熱可能に且つ冷却可能に設定された移動可能な母
型と、該母型に対向する固定金型との間で射出による成
形を行なう精密金型による成形装置において、前記母型
と被成形物の温度を検出する温度モニター機構を設置す
るとともに、該温度モニター機構からの情報を受けて前
記母型と被成形物の温度降下に伴うそれぞれの収縮量が
一致するように前記母型の温度を収縮過程を通して制御
する温度制御機構を設置した構成としたものである。
It is designed to avoid the occurrence of shear stress by controlling the temperature of the mother mold so that the amount of shrinkage of each mold matches, and it is equipped with a stamper having a predetermined molding pattern surface and is capable of generating heat and cooling. In a precision mold molding device that performs injection molding between a set movable mother mold and a fixed mold opposing the mother mold, a temperature monitor detects the temperature of the mother mold and a molded object. temperature control for controlling the temperature of the mother mold throughout the shrinkage process so that the amount of shrinkage of the mother mold and the molded material coincides with each other as the temperature of the mold and the molded material decreases according to information from the temperature monitoring mechanism; It has a structure in which a mechanism is installed.

(作  用) この発明によれば、温度降下に伴う母型と被成形物の収
縮過程において、温度モニター機構によってそれぞれの
温度変化が把握され、把握された温度変化情報は温度制
御機構に伝達される。温度変化情報を受けた温度制御機
構によって、被成形物の収縮量に対応して母型の収縮量
が一致するように母型の温度が収縮過程を通して制御さ
れる。
(Function) According to the present invention, during the contraction process of the mother mold and the molded object due to a temperature drop, the temperature monitoring mechanism grasps the respective temperature changes, and the grasped temperature change information is transmitted to the temperature control mechanism. Ru. The temperature control mechanism that receives the temperature change information controls the temperature of the mother mold throughout the shrinkage process so that the amount of contraction of the mother mold corresponds to the amount of shrinkage of the molded object.

(実施例) 第1図はこの発明の一実施例を示す。(Example) FIG. 1 shows an embodiment of the invention.

図示しない装置本体には、母型2が移動可能に設置され
ており、こげ母型2に対向して固定金型4が設置されて
いる。母型2と固定金型4間において、熱可塑性樹脂と
してのポリカーボネイト樹脂を射出してコンパクトディ
スク等のディスク状の被成形物5を形成する例を示して
いる。母型2は、移動本体部6と、この移動本体部6の
前面に積層して設置された温度可変体8,50ミクロン
の厚みに形成されたニッケル製のスタンパ10とから成
っており、これら温度可変体8とスタンパ10は移動本
体部6に押え具12で固定されている。
A mother mold 2 is movably installed in the device main body (not shown), and a fixed mold 4 is installed opposite the burnt mother mold 2. An example is shown in which a polycarbonate resin as a thermoplastic resin is injected between a mother mold 2 and a fixed mold 4 to form a disc-shaped molded object 5 such as a compact disc. The mother mold 2 consists of a movable main body part 6, a temperature variable body 8 stacked on the front surface of the movable main body part 6, and a nickel stamper 10 formed to a thickness of 50 microns. The temperature variable body 8 and the stamper 10 are fixed to the movable main body part 6 with a presser 12.

温度可変体8は、導体本体部14と、この導体本体部1
4を挾むように設置された絶縁層16.I8とから成っ
ている。絶縁層16.18は、例えばZrO,やTiO
3等のセラミックスで形成される。導体本体部14は、
第2図に示すように、径の異なる2種類の環状導体20
.22を、接触状態で交互に且つスタンパ10の裏面面
積に対応する面積を有するように同心円状に配して形成
されている。この例では、環状導体20としてビスマス
を、22としてアンチモンを使用している。温度可変体
8は電源24に接続されており、ペルティエ効果(P 
e 1 t i e reffect)に基づいた発熱
能、冷却能を有するようになっている。
The temperature variable body 8 includes a conductor main body 14 and a conductor main body 1
An insulating layer 16 installed to sandwich 4. It consists of I8. The insulating layer 16.18 is made of, for example, ZrO or TiO.
Made of grade 3 ceramics. The conductor main body part 14 is
As shown in FIG. 2, two types of annular conductors 20 with different diameters are used.
.. 22 are arranged concentrically in a contacting state alternately and having an area corresponding to the area of the back surface of the stamper 10. In this example, bismuth is used as the annular conductor 20 and antimony is used as the annular conductor 22. The temperature variable body 8 is connected to a power source 24, and the Peltier effect (P
It has a heat generating ability and a cooling ability based on e 1 t i e refect).

スタンパlOの表面には、ピット形成突起10aとグル
ープ形成突起10bが形成され、被成形物5に対する転
写パターン面が形成されている。
A pit forming protrusion 10a and a group forming protrusion 10b are formed on the surface of the stamper IO, and a transfer pattern surface for the object to be molded 5 is formed.

一方、固定金型4には、射出用孔4aが形成され、底面
には、被成形物5の温度を検出するための温度検出素子
26がマトリックス状に設置されている。各温度検出素
子26は温度モニター機構28の第1の温度検出部30
に接続されており、被成形物5の温度変化は、隣接する
温度検出素子26間の熱勾配による起電力値をもって第
1の温度検出部30で横比されるようになっている。そ
して、第1の温度検出部30で検出された情報は温度制
御機構32に伝達される。
On the other hand, an injection hole 4a is formed in the fixed mold 4, and temperature detection elements 26 for detecting the temperature of the molded object 5 are arranged in a matrix on the bottom surface. Each temperature detection element 26 is connected to a first temperature detection section 30 of the temperature monitor mechanism 28.
The temperature change of the molded object 5 is horizontally compared by the first temperature detecting section 30 using the electromotive force value due to the thermal gradient between the adjacent temperature detecting elements 26 . Information detected by the first temperature detection section 30 is then transmitted to the temperature control mechanism 32.

また、スタンパ10の温度変化、すなわち母型2の温度
変化は、温度モニター機構28の第2の温度検出部34
によって検出され、検出された情報は温度制御機構32
に伝達される。第2の温度検出部34は例えば、温度可
変体8にマトリックス状に配された図示しない複数の温
度検出素子と、これらの温度検出素子が接続されたアン
プとから構成され。
Further, the temperature change of the stamper 10, that is, the temperature change of the mother mold 2, is detected by the second temperature detection section 34 of the temperature monitoring mechanism 28.
The detected information is detected by the temperature control mechanism 32.
is transmitted to. The second temperature detecting section 34 includes, for example, a plurality of temperature detecting elements (not shown) arranged in a matrix on the temperature variable body 8, and an amplifier to which these temperature detecting elements are connected.

温度可変体8の温度分布を局地的に、あるいはブロック
毎に把握できるようになっている。
The temperature distribution of the temperature variable body 8 can be grasped locally or block by block.

温度制御機構32で第1の温度横比部30と第2の温度
検出部34からの情報が照合され、照合結果に基づいて
電源24が制御される。電流の向きが制御されることに
よって、温度可変体8における発熱能、冷却能というペ
ルティエ効果の可逆性が得られ、電流値の制御によって
発熱能、冷却能における温度の増減が図られる。温度可
変体8はスタンパ10の裏面全域に対応するので、温度
制御機構32によってスタンパ10はその局地的な温度
勾配と全体的な温度勾配を任意に制御される。なお、温
度可変体8の導体本体部14は、例えば1円柱状や立方
体状をなす2種類の導体をマトリックス状に配置する構
造とすることもできる。
The temperature control mechanism 32 collates the information from the first temperature aspect ratio section 30 and the second temperature detection section 34, and controls the power supply 24 based on the collation result. By controlling the direction of the current, the reversibility of the Peltier effect of the heating capacity and cooling capacity in the temperature variable body 8 is obtained, and by controlling the current value, the temperature in the heating capacity and cooling capacity can be increased or decreased. Since the temperature variable body 8 corresponds to the entire back surface of the stamper 10, the local temperature gradient and the overall temperature gradient of the stamper 10 can be arbitrarily controlled by the temperature control mechanism 32. Note that the conductor main body portion 14 of the temperature variable body 8 can also have a structure in which two types of conductors, each having a cylinder shape or a cube shape, are arranged in a matrix.

前述のように、ニッケルの熱膨張係数はポリカーボネイ
ト樹脂の約115であるので、被成形物5に対し、スタ
ンバ10側は約5倍の温度降下を図る必要があるが、こ
の一定ルールが維持されるように温度制御機構32で電
源24が制御される。
As mentioned above, the thermal expansion coefficient of nickel is about 115 that of polycarbonate resin, so it is necessary to reduce the temperature on the standby 10 side by about 5 times that of the molded object 5, but this constant rule is maintained. The power supply 24 is controlled by the temperature control mechanism 32 so that the temperature is controlled.

また、温度変化による変位量をΔ℃1元の大きさをL、
熱膨張係数をα、温度の変化量をΔTとすると、ΔQ=
LXα×ΔTの関係があるから、ΔΩを一定以内に抑え
るために、Lの変化すなわち、ばらつき面積、範囲の長
さに応じてΔTも適当に設定できる論理回路ないし仮想
テーブルが温度制御機構32に内蔵される。
In addition, the amount of displacement due to temperature change is Δ℃1 yuan is L,
If the coefficient of thermal expansion is α and the amount of change in temperature is ΔT, then ΔQ=
Since there is a relationship of LXα×ΔT, in order to suppress ΔΩ within a certain range, the temperature control mechanism 32 is provided with a logic circuit or a virtual table that can appropriately set ΔT according to the change in L, that is, the variation area and the length of the range. Built-in.

従って、温度降下に伴う母型2と被成形物5の収縮量が
一致するように、母型2の温度が収縮過程全体に亘って
制御されるので、それぞれの収縮量の差に起因するずれ
応力の発生が抑制されるともに、異常転写の発生を抑制
できる。
Therefore, the temperature of the matrix 2 is controlled throughout the shrinkage process so that the amount of shrinkage of the matrix 2 and the molded object 5 match as the temperature drops, so that the deviation due to the difference in the amount of shrinkage between the two is controlled. In addition to suppressing the generation of stress, it is also possible to suppress the occurrence of abnormal transcription.

次に第3図はこの発明の他の実施例を示すもので、前記
実施例と同一部分は同一符号にて示す。
Next, FIG. 3 shows another embodiment of the present invention, in which the same parts as in the previous embodiment are designated by the same reference numerals.

移動本体部6の前面には、温度可変体36と、成形パタ
ーン面を有するニッケル製のスタンパ38が積層状態に
設置されている。温度可変体36は、本体部40と、こ
の本体部40に例えばマトリックス状に配置されて埋め
込まれた発熱能、冷却能を有する複数の素子42とから
成っており1本体部40は。
A temperature variable body 36 and a nickel stamper 38 having a molded pattern surface are installed in a stacked manner on the front surface of the movable main body 6. The temperature variable body 36 is made up of a main body 40 and a plurality of elements 42 having heating and cooling abilities, which are arranged and embedded in the main body 40, for example, in a matrix.

射出される樹脂より高い融点、ガラス転移点及び同等の
熱膨張係数を有する樹脂で板状に形成されている。また
、スタンパ38は5ミクロン以下の厚みをもって薄膜状
に形成されている。
It is formed into a plate shape using a resin that has a higher melting point, glass transition point, and coefficient of thermal expansion than the injected resin. Further, the stamper 38 is formed in the form of a thin film with a thickness of 5 microns or less.

スタンパ38が剛性を持たない超薄膜であることと、ま
た温度可変体36の熱特性が被成形物5の熱特性に近似
することから、収縮過程おける被成形物5とスタンパ3
8の挙動が近似され、母型2の温度制御によるずれ応力
の抑制の精度を高めることができる。
Since the stamper 38 is an ultra-thin film with no rigidity and the thermal characteristics of the temperature variable body 36 are similar to those of the object 5, the object 5 and the stamper 3 during the shrinking process are
8 is approximated, and the accuracy of suppressing shear stress by temperature control of the matrix 2 can be improved.

(発明の効果) この発明によれば、ずれ応力の発生の抑制を図ることが
できるので、異常転写による成形品の品質低下を抑制す
ることができる。
(Effects of the Invention) According to the present invention, it is possible to suppress the occurrence of shear stress, and therefore it is possible to suppress the deterioration in quality of the molded product due to abnormal transfer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る精密金型による成形
装置の要部断面図、第2図は第1図で示した温度可変体
の要部を示す平面図、第3図は他の実施例を示す要部断
面図、第4図は異常転写の状態を示す図である。 2・・・母型、4・・・固定金型、5・・・被成形物8
.36・・・温度可変体、10.38・・・スタンパ1
4・・・本体部、16.18・・・絶縁層20.22・
・・環状導体、z4・・・電源、40・・・樹脂板42
・・・素子 心2 図 δ 図 馬 図
FIG. 1 is a sectional view of the main parts of a molding device using a precision mold according to an embodiment of the present invention, FIG. 2 is a plan view showing the main parts of the temperature variable body shown in FIG. 1, and FIG. FIG. 4 is a cross-sectional view of a main part showing an embodiment of the present invention, and FIG. 4 is a diagram showing a state of abnormal transfer. 2...Mother mold, 4...Fixed mold, 5...Molded object 8
.. 36... Temperature variable body, 10.38... Stamper 1
4... Main body part, 16.18... Insulating layer 20.22.
...Annular conductor, z4...Power supply, 40...Resin plate 42
...Element core 2 Diagram δ Diagram Horse diagram

Claims (1)

【特許請求の範囲】[Claims] 1、所定の成形パターン面を有するスタンパを備え、発
熱可能に且つ冷却可能に設定された移動可能な母型と、
該母型に対向する固定金型との間で射出による成形を行
なう精密金型による成形装置において、前記母型と被成
形物の温度を検出する温度モニター機構を設置するとと
もに、該温度モニター機構からの情報を受けて前記母型
と被成形物の温度降下に伴うそれぞれの収縮量が一致す
るように前記母型の温度を収縮過程を通して制御する温
度制御機構を設置したことを特徴とする精密金型による
成形装置。
1. A movable mother mold equipped with a stamper having a predetermined molding pattern surface and configured to be able to generate heat and cool;
In a molding device using a precision mold that performs injection molding between a fixed mold facing the mother mold, a temperature monitoring mechanism for detecting the temperature of the mother mold and the molded object is installed, and the temperature monitoring mechanism Precision molding machine, characterized in that a temperature control mechanism is installed to control the temperature of the mother mold throughout the shrinkage process so that the amount of shrinkage of the mother mold and the molded object coincide with each other as the temperature drops. Molding equipment using molds.
JP3708089A 1989-02-16 1989-02-16 Molding device with precise mold Pending JPH02215513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3708089A JPH02215513A (en) 1989-02-16 1989-02-16 Molding device with precise mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3708089A JPH02215513A (en) 1989-02-16 1989-02-16 Molding device with precise mold

Publications (1)

Publication Number Publication Date
JPH02215513A true JPH02215513A (en) 1990-08-28

Family

ID=12487574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3708089A Pending JPH02215513A (en) 1989-02-16 1989-02-16 Molding device with precise mold

Country Status (1)

Country Link
JP (1) JPH02215513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528543A (en) * 1991-07-22 1993-02-05 Sharp Corp Production of optical disk substrate
EP1358987A2 (en) * 1998-10-14 2003-11-05 Gyros AB A replication matrix
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding
WO2007121934A1 (en) * 2006-04-21 2007-11-01 Tecos, Slovenian Tool And Die Development Centre Mould for thermally processing polymeric moulding materials, temperature controlled mould system and polymer processing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528543A (en) * 1991-07-22 1993-02-05 Sharp Corp Production of optical disk substrate
EP1358987A2 (en) * 1998-10-14 2003-11-05 Gyros AB A replication matrix
EP1358987A3 (en) * 1998-10-14 2004-03-03 Gyros AB A replication matrix
US6884370B2 (en) 1998-10-14 2005-04-26 Amic Ab Matrix and method of producing said matrix
US7182890B2 (en) 1998-10-14 2007-02-27 Gyros Patent Ab Matrix and method of producing said matrix
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding
WO2007121934A1 (en) * 2006-04-21 2007-11-01 Tecos, Slovenian Tool And Die Development Centre Mould for thermally processing polymeric moulding materials, temperature controlled mould system and polymer processing system

Similar Documents

Publication Publication Date Title
US5324473A (en) Method for molding stress free amorphous and crystalline thermoplastic resins
Kim et al. Low thermal inertia molding (LTIM)
JPS6378720A (en) Molding die
KR950012859B1 (en) Method for molding plastic material into disc shaped sabstrate for an optical information record carrier
KR20010043098A (en) Structure and method for molding optical disks
JPH02215513A (en) Molding device with precise mold
JPH07178784A (en) Injection mold
JPS60174624A (en) Molding die
JP3871815B2 (en) Mold for optical disc
JPS6259014A (en) Mold for molding disc-type recording medium
JPH0890624A (en) Disk substrate molding die
US6729870B2 (en) Multi-cavity optical disc mold
JPH02160525A (en) Injection mold and molding method of disc board for which the same mold is used
JPH0596576A (en) Mold
JPH1034655A (en) Mold for molding optical information-recording medium and molding method of optical information-recording medium using the mold
JPH01135610A (en) Molding equipment of circular disc-shaped molded item
JPS62208916A (en) Method and apparatus for molding precision form
JPS61290024A (en) Mold for molding plastic lens
JPH11291292A (en) Molding die
JPH0531777A (en) Method of molding optical disk substrate
JPH06114885A (en) Injection mold device
JP3585963B2 (en) Disc substrate forming machine
JP3242613B2 (en) Lamination molding method
JP2622326B2 (en) Method and apparatus for controlling mold temperature distribution in injection molding
JP2002347093A (en) Mold for injection molding