JPS62208916A - Method and apparatus for molding precision form - Google Patents

Method and apparatus for molding precision form

Info

Publication number
JPS62208916A
JPS62208916A JP5226986A JP5226986A JPS62208916A JP S62208916 A JPS62208916 A JP S62208916A JP 5226986 A JP5226986 A JP 5226986A JP 5226986 A JP5226986 A JP 5226986A JP S62208916 A JPS62208916 A JP S62208916A
Authority
JP
Japan
Prior art keywords
mold
molded product
primary
temperature
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5226986A
Other languages
Japanese (ja)
Inventor
Sadao Fukuoka
福岡 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5226986A priority Critical patent/JPS62208916A/en
Publication of JPS62208916A publication Critical patent/JPS62208916A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/7207Heating or cooling of the moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/0055Shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To decrease the consumption of energy under shortening a molding cycle, by executing injection under a state where the temperature of a primary mold is high and by cooling under compression with a secondary mold. CONSTITUTION:A molten resin is injected into a cavity 13 from the nozzle of an injection machine through the sprue 14a of a primary mold 10. The temper ature of a cooling medium for the primary mold 10 is preset by 10-40 deg.C lower than the glass transition point to a resin material. The fluidity of the molten resin is not damaged, and thereby good transfer can be performed. The sectional thickness of a disc part 41 of the primary form 40 is t1 and slightly thicker than a final form 45. Then a die plate 32 at moving side is released from a die plate 31 at a fixed side, and the disc part 41 is transmitted to a secondary mold 20. It is compressed to a thickness t2 at the secondary mold 20 and cooled to a temperature less than about 100 deg.C, thereby a base plate for magnetic disc is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気ディスクの基板等の精密成形品を成形
する方法お上、び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for molding precision molded products such as magnetic disk substrates.

(従来の技術) 一般に磁気ディスクの基板には、アルミニュームやガラ
スが用いられている。磁気ディスクの記録面は高精度の
平滑性が要求されるため、アルミニュームやガラスの基
板では研削研摩により鏡面仕上げする工程が必要であり
、生産性が悪かった。
(Prior Art) Aluminum or glass is generally used for the substrate of a magnetic disk. Since the recording surface of a magnetic disk requires highly precise smoothness, aluminum or glass substrates require a process of grinding and polishing to a mirror finish, resulting in poor productivity.

また重量が大きい欠点らあった。It also had the disadvantage of being heavy.

そこで、特開昭53−224730号公報や特開昭60
−19518号公報に見られるように、エンジニアリン
グプラスチックにより、磁気ディスク基板を射出成形す
る技術が開発されている。
Therefore, Japanese Patent Application Publication No. 53-224730 and Japanese Patent Application Publication No. 60
As seen in Japanese Patent No. 19518, a technique for injection molding magnetic disk substrates using engineering plastics has been developed.

エンジニアプラスチックは軽量で、研削研摩を必要とせ
ず高い生産性を実現できる。磁気ディスクの基板の場合
には、記録面に高熱を付与しながら塗布、メッキ、スパ
ッタリング等の手段で磁気層を形成するため、高耐熱性
を要求され、記録再生の際に3600rpmで回転され
るため、高強度ら要求されるが、エンジニアプラスチッ
クはこれら要求をも満足させることができる。
Engineered plastics are lightweight and can achieve high productivity without the need for grinding and polishing. In the case of magnetic disk substrates, the magnetic layer is formed by coating, plating, sputtering, etc. while applying high heat to the recording surface, so high heat resistance is required, and the substrate is rotated at 3600 rpm during recording and reproduction. Therefore, high strength is required, and engineered plastics can meet these requirements.

しかし、エンジニアリングプラスチックは溶融温度が4
00℃前後と非常に高温であるから、高精度の成形を行
なうためには種々の解決すべき問題をかかえている。
However, engineering plastics have a melting temperature of 4
Since the temperature is extremely high, around 00°C, there are various problems that must be solved in order to perform high-precision molding.

一般の射出成形法では、金型を常温で冷却しているため
、極めて高温の溶融樹脂が、金型のキャビティの中央が
ら周辺部へと射出される過程で、金型の成形面に接して
急冷されて流動性が悪くなり、この結果、溶融樹脂に射
出圧力が充分に作用しなくなるため、転写性が悪く高精
度の平滑性を達成できない。また、樹脂の凝固は周辺部
がら始まり、凝固速度に差があるtこめ、射1がらの保
圧のための圧力が周辺より中央で高くなり、この結果、
中央部が周辺部より肉厚になってしまう。
In the general injection molding method, the mold is cooled at room temperature, so the extremely high temperature molten resin comes into contact with the molding surface of the mold during the process of being injected from the center of the mold cavity to the periphery. The molten resin is rapidly cooled and its fluidity deteriorates, and as a result, the injection pressure is not sufficiently applied to the molten resin, resulting in poor transferability and failure to achieve highly accurate smoothness. In addition, the solidification of the resin begins at the periphery, and since there is a difference in solidification rate, the pressure required to maintain the pressure in the shotgun is higher at the center than at the periphery, and as a result,
The center part becomes thicker than the peripheral part.

さらに、上記凝固速度の差により圧力の分布が不均一と
なるため樹脂密度も不均一となり、この結果、残留歪み
が生じ経時的変形の原因となる。また、冷却時の収縮に
よる変形も生じる。
Furthermore, the pressure distribution becomes uneven due to the difference in solidification rate, and the resin density also becomes uneven, resulting in residual strain and deformation over time. Further, deformation occurs due to contraction during cooling.

精密品の射出成形方法として、射出圧縮成形法は公知で
ある。詳述すると、金型のキャビティを成形品の肉厚よ
り広くした状態で射出を行ない、この樹脂の冷却固化の
過程でキャビティを狭めるようにして樹脂を圧縮するも
のである。この方法では、射出を低圧、高速で行なうこ
とができ、凝固速度の不均一を緩和できるため、経時的
変形の原因となる残留歪みをなくすことができ、また、
射出後、樹脂が溶融した状態で圧縮を開始するので、肉
厚の均一化を図ることらできるとともに、冷却時の収縮
に伴なう変形を防止できる。
Injection compression molding is a well-known method for injection molding precision products. Specifically, injection is performed with the cavity of the mold made wider than the wall thickness of the molded product, and the resin is compressed by narrowing the cavity during the process of cooling and solidifying the resin. With this method, injection can be performed at low pressure and high speed, and unevenness in solidification rate can be alleviated, thereby eliminating residual strain that causes deformation over time.
After injection, compression is started while the resin is in a molten state, so it is possible to make the wall thickness uniform and prevent deformation due to shrinkage during cooling.

しかし、上記射出圧縮方法では、極めて高温の溶融樹脂
が成形面で急冷されて流動性が低下することは避けられ
ず、磁気ディスク基板で求められている厳しい規準の平
滑性を達成するにはまだ不充分である。
However, with the injection compression method described above, it is unavoidable that the extremely high temperature molten resin is rapidly cooled on the molding surface, resulting in a decrease in fluidity, and it is still difficult to achieve the strict smoothness standards required for magnetic disk substrates. It is insufficient.

そこで、この射出圧縮方法において、金型温度を射出開
始時に高くして転写性を向上させ、その後金型をより低
い温度(冷却収縮に伴なう変形が生じない温度)まで冷
却しながら圧縮することが考えられる。
Therefore, in this injection compression method, the mold temperature is raised at the start of injection to improve transferability, and then the mold is cooled to a lower temperature (a temperature that does not cause deformation due to cooling shrinkage) and compressed. It is possible that

(発明が解決し上うとする問題点) しかし、上記のような金型温度の制御サイクルを実行す
ると、特に溶融温度の高いO(脂を用いる場合には、上
限と下限の温度差が大きく、この温度制御のために成形
サイクルが長くなってしまい生産性が極度に低下すると
ともに、エネルギーの消費が大きく不経済であった。し
かも、金型は精度を上げるために剛性を必要とし、肉厚
が厚く熱容量が大きいため、上記欠点が@著である。
(Problems to be Solved by the Invention) However, when the mold temperature control cycle as described above is executed, the temperature difference between the upper and lower limits is large, especially when using O (fat), which has a high melting temperature. This temperature control lengthens the molding cycle, drastically reducing productivity, and consumes a large amount of energy, making it uneconomical.Furthermore, molds require rigidity to improve precision, and The above disadvantages are due to the thick thickness and large heat capacity.

(問題点を解決するための手段) この発明は上記問題点を解消するためになされたもので
、その要曽は、キャビティの最終幅を成形品の厚さより
若干広くした第一次金型と、キャビティの最終幅を成形
品の厚さとほぼ等しくした第二次金型とを用意し、第一
次金型を比較的高温にし、第二次金型を比較的低温にし
、第一次金型のキャビティに溶融樹脂を射出充填して冷
却賦形し、賦形された一次戊形品を第二次金型に移して
圧縮冷却することにより最終成形品を得ることを特徴と
する精密成形品の成形方法にある。
(Means for Solving the Problems) This invention was made to solve the above problems, and the key point is that the final mold width of the cavity is slightly wider than the thickness of the molded product. , prepare a secondary mold in which the final width of the cavity is approximately equal to the thickness of the molded product, heat the primary mold at a relatively high temperature, set the secondary mold at a relatively low temperature, and set the primary mold to a relatively high temperature. Precision molding characterized by injecting and filling a molten resin into a mold cavity, cooling and shaping, and then transferring the shaped primary molded product to a secondary mold and compressing and cooling it to obtain a final molded product. The problem lies in the method of molding the product.

もう一つの発明の要曽は、第一次金型と第二次金型とを
備え、各金型の固定型が共通の固定側ダイプレートに設
置され、各金型の移動型が共通の移!1JIIlダイプ
レートに設置され、第一次金型は射出樹脂の通路となる
スプルーを有するとともに、このスプルーに連通し最終
幅が成形品の厚さより若干広く設定されたキャビティを
有し、第二次金型は最終幅が成形品の厚さとほぼ等しく
設定されたキャビティを有し、第一次金型はこの金型を
比較的高温に維持する温度制御手段を有し、第二次金型
はこの金型を比較的低温に維持する温度制御手段を有し
ていることを特徴とする精密成形品の成形装置にある。
Another key feature of the invention is that it includes a primary mold and a secondary mold, the fixed mold of each mold is installed on a common fixed die plate, and the movable mold of each mold is installed on a common fixed die plate. Move! The primary mold has a sprue that serves as a passage for the injected resin, and a cavity that communicates with this sprue and has a final width slightly wider than the thickness of the molded product. The mold has a cavity whose final width is approximately equal to the thickness of the molded part, the primary mold has temperature control means to maintain this mold at a relatively high temperature, and the secondary mold has a The apparatus for molding precision molded products is characterized by having a temperature control means for maintaining the mold at a relatively low temperature.

(作用) この発明方法では、第一次金型の温度を比較的高温にし
た状態で射出を行なうので、良好な転写を実現でき高精
度の平滑性を得ることができるとともに、キャビティ内
での樹脂の凝固速度の不均一さを緩和して残債歪みをな
(すことができ経時的変形を防止できる。磁気ディスク
基板等の平板形状の精密成形品を成形する場合には肉厚
を均一にすることができる。
(Function) In the method of this invention, injection is performed while the temperature of the primary mold is relatively high, so good transfer can be achieved and highly accurate smoothness can be obtained, as well as smoothness inside the cavity. It is possible to alleviate unevenness in the solidification rate of the resin and prevent residual distortion, thereby preventing deformation over time.When molding precision molded products in the form of a flat plate, such as a magnetic disk substrate, it is possible to make the wall thickness uniform. It can be done.

主た、第二次金型で圧縮冷却することにより、冷却時の
変形等をなくすことができる。
By performing compression cooling using the main and secondary molds, deformation during cooling can be eliminated.

しかも、第一次金型で射出と冷却賦形を行ない、第二次
金型で圧縮冷却を行なうため、これら金型では大きな温
度差での温度制御サイクルを実行しなくて済み、成形サ
イクルを短縮できるとともに、エネルギーの消費を少な
くすることができる。
Moreover, because the primary mold performs injection and cooling shaping, and the secondary mold performs compression cooling, these molds do not require temperature control cycles with large temperature differences, and the molding cycle can be shortened. It is possible to shorten the time and reduce energy consumption.

この発明装置では、共通のダイプレートに第一次金型と
第二次金型が設置されるため、設備コストが安価である
とともに、各金型で射出、冷却賦形と圧縮冷却とを同時
に行なうので、生産性が高い。第一次金型で得られた一
次成形品を短時間で確実に第二次金型へ移すことができ
、移動時の一次成形品の変形を防止できる。
In this invented device, the primary mold and secondary mold are installed on a common die plate, so the equipment cost is low, and each mold can perform injection, cooling shaping, and compression cooling at the same time. Because of this, productivity is high. The primary molded product obtained in the first mold can be reliably transferred to the second mold in a short time, and deformation of the primary molded product during transfer can be prevented.

(実施例) 以下、この発明方法および装置を、磁気ディスクの基板
(精密成形品)を成形する場合を例にとって、図面に基
づいて説明する。
(Example) Hereinafter, the method and apparatus of the present invention will be explained based on the drawings, taking as an example the case of molding a substrate (precision molded product) for a magnetic disk.

図中10は第一次金型であり、20は第二次金型である
。各金型10.20はそれぞれ、固定型11.21およ
び移動型12.22を有している。
In the figure, 10 is a primary mold, and 20 is a secondary mold. Each mold 10.20 has a fixed mold 11.21 and a movable mold 12.22.

固定型11.21は共通の固定側ダイプレート31に固
定されており、パーティング面1ib、21bが同一面
上に配置されている。また、移動型12.22は共通の
移動側ダイプレート32に固定されており、パーティン
グ面12b、22bが同一面上に配置されている。固定
型11.21問および移動型12.22間には、熱絶縁
機能を果たすエアギャップ33が介在されている。移動
側ダイプレート32を固定側ダイプレート31に対して
移動させる機構は、通常の射出成形装置と同様である。
The fixed die 11.21 is fixed to a common fixed die plate 31, and the parting surfaces 1ib and 21b are arranged on the same surface. Further, the movable die 12.22 is fixed to a common movable die plate 32, and the parting surfaces 12b and 22b are arranged on the same plane. An air gap 33 is interposed between the fixed type 11.21 and the movable type 12.22, which functions as a thermal insulation. The mechanism for moving the movable die plate 32 relative to the fixed die plate 31 is the same as that of a normal injection molding apparatus.

第一次金型10の固定型11と移動型12には、高精度
に鏡面仕上げされた成形面11a、12aが形成されて
いる。型締め時において、これら成形面11a、12a
間にキャビティ13が形成される。
The fixed mold 11 and the movable mold 12 of the primary mold 10 are formed with molding surfaces 11a and 12a that are mirror-finished with high precision. During mold clamping, these molding surfaces 11a, 12a
A cavity 13 is formed therebetween.

このキャビティ13では、固定型11と移動型12のパ
ーティング面11b、12bが当たった状態での幅(最
終幅1.)が、後述する最終成形品45の厚さ約2mm
より20〜200μ程度広く設定されている。
In this cavity 13, the width (final width 1.) when the parting surfaces 11b and 12b of the fixed mold 11 and the movable mold 12 are in contact is approximately 2 mm, which is the thickness of the final molded product 45 described later.
It is set to be about 20 to 200 μ wider.

固定型11と移動型12の中央部には孔11C112c
が形成されており、この孔11c、12cにスライドカ
ットコア14.15がスライド可能に収納されている。
There are holes 11C and 112c in the center of the fixed mold 11 and the movable mold 12.
are formed, and slide cut cores 14 and 15 are slidably housed in these holes 11c and 12c.

固定型11のスライドカットコア14は、スプルーブツ
シュを兼ねておリスプルー14aを有している。また、
移動型12のスライドカットコア15には突き出しピン
16が貫通している。
The slide cut core 14 of the fixed mold 11 has a resprue 14a that also serves as a sprue bush. Also,
An ejector pin 16 passes through the slide cut core 15 of the movable die 12.

固定型11と移動型12には、エア通路17が形成され
ており、このエア通路17には、成形面11a、12a
主で延びる円筒状のスリ7)17aが連通している。
An air passage 17 is formed in the fixed mold 11 and the movable mold 12, and the air passage 17 has molding surfaces 11a and 12a.
A cylindrical slot 7) 17a extending from the main part is in communication.

固定型11と移動型12には、渦巻き形状の媒体通路1
8が形成されており、この媒体通路18に比較的高温の
冷却媒体が流通される。比較的高温なのに冷却媒体と称
するのは、樹脂の溶融温度より低(溶融樹脂を冷却する
ことができるからである。これら媒体通路18と冷却媒
体とで、温度制御手段が構成されでいる。
The fixed mold 11 and the movable mold 12 have a spiral medium passage 1.
8 is formed, and a relatively high temperature cooling medium flows through this medium passage 18. Although the temperature is relatively high, it is called a cooling medium because the temperature is lower than the melting temperature of the resin (molten resin can be cooled down).These medium passages 18 and the cooling medium constitute a temperature control means.

第二次金型20の固定型21と移動型22には、高精度
に鏡面仕上げされた成形面21a、22aが形成されて
いる。型締め時において、これら成形面21a、22a
間に°キャビティ23が形成される。
The fixed mold 21 and the movable mold 22 of the secondary mold 20 are formed with highly precisely mirror-finished molding surfaces 21a and 22a. During mold clamping, these molding surfaces 21a, 22a
A cavity 23 is formed in between.

このキャビティ23では、固定型21と移動型22のパ
ーティング面21b、22bが当たった状態での幅(最
終幅L2)が、最終成形品45の厚さとほぼ等しくなる
ように設定されている。なお、後述する最′p−成形品
45は、第二次金型20から取り出された後にさらに常
温まで冷却されて微小量収縮する。また、巨大な圧力で
圧縮する場合には、弾性戻りがある。したがって、キャ
ビティ23の最終幅し2は、最終成形品45の微小の冷
却収縮および弾性戻り等を勘案して設定され、これが、
キャビティ23の最終幅L2を最終成形品45の厚さと
「はぼ等しく」と表現した所以である。
In this cavity 23, the width (final width L2) when the parting surfaces 21b and 22b of the stationary mold 21 and the movable mold 22 are in contact with each other is set to be approximately equal to the thickness of the final molded product 45. Note that the most p-molded product 45, which will be described later, is further cooled to room temperature after being taken out from the second mold 20, and shrinks by a minute amount. Also, when compressed with huge pressure, there is elastic return. Therefore, the final width 2 of the cavity 23 is set in consideration of minute cooling shrinkage and elastic return of the final molded product 45, and this
This is why the final width L2 of the cavity 23 is expressed as "approximately equal" to the thickness of the final molded product 45.

固定型21と移動型22の中央部には孔21c。A hole 21c is provided in the center of the fixed mold 21 and the movable mold 22.

22cが形成されており、この孔21c、22cに固定
コア24.25が収納されている。移動型22の固定コ
ア25は、成形面22aからキャビティ23の最終幅し
2分突出しておワ、この固定コア25と孔22cの内周
面との間には突き出しスリーブ26が配置されている。
22c is formed, and fixed cores 24 and 25 are housed in these holes 21c and 22c. The fixed core 25 of the movable mold 22 protrudes from the molding surface 22a by two times the final width of the cavity 23, and a protruding sleeve 26 is disposed between the fixed core 25 and the inner peripheral surface of the hole 22c. .

固定型21と移動型22には、エア通路27が形r&さ
れており、このエア通路27には、成形面21a、22
aまで延びる円筒状の又リッ) 27aが連通されてい
る。
An air passage 27 is formed in the fixed mold 21 and the movable mold 22, and the air passage 27 includes molding surfaces 21a, 22.
A cylindrical groove 27a extending to a point 27a is connected.

固定型21と移動型22には、渦巻き形状の媒体通路2
8が形成されており、この媒体通路28に比較的低温例
えば常温の冷却媒体が流通される。
The fixed mold 21 and the movable mold 22 have a spiral medium passage 2.
8 is formed, and a cooling medium at a relatively low temperature, for example, room temperature, flows through this medium passage 28.

これら媒体通路28と冷却媒体とで、温度制御手段が構
成されている。
These medium passages 28 and the cooling medium constitute a temperature control means.

上述構成において、第1図の型締め状態で、射出機のノ
ズル(図示しない)から、第一次金型10のスプルー1
4aを経てキャビティ13へ溶融樹脂を射出する。樹脂
は、例えば溶融温度が約400℃のPEI(ポリエーテ
ルイミド)やPE5(ポリエーテルサル7オン)である
。第一次金型10の冷却媒体の温度を、樹脂材料のガラ
ス転移点より10〜40’C程度低い温度に設定する。
In the above configuration, in the mold clamping state shown in FIG. 1, the sprue 1 of the primary mold 10 is
The molten resin is injected into the cavity 13 via 4a. The resin is, for example, PEI (polyetherimide) or PE5 (polyether sal 7one), which has a melting temperature of about 400°C. The temperature of the cooling medium in the primary mold 10 is set to about 10 to 40'C lower than the glass transition point of the resin material.

上記樹脂の場合、ガラス転移点は200℃前後であるか
ら、上記冷却媒体の温度を、160〜190℃に設定し
、さらに好ましくは170〜180℃に設定する。16
0℃以下であると、後述の転写性が充分でなく、主た、
190℃以上であると、後述の賦形1こ支障をきたす。
In the case of the above resin, the glass transition point is around 200°C, so the temperature of the cooling medium is set to 160 to 190°C, more preferably 170 to 180°C. 16
If the temperature is below 0°C, the transferability described below will not be sufficient, mainly due to
If the temperature is 190° C. or higher, it will cause problems in the excipient process described below.

上記射出の際、第一次金型10の成形面11a。During the above injection, the molding surface 11a of the primary mold 10.

12aの温度が上述したように170〜180 ’Cと
比較的高温であるから、溶融樹脂の流動性が損なわれず
、溶融樹脂が射出圧力を受けて鏡面をなす成形面11a
、12aL:密着するので極めて良好な転写が行なえ、
高精度の平滑性を得ることができる。しかも、成形面1
1a、12aが高温であるため、キャビティ14の周辺
部から中央部にわたり凝固速度の差がお主りなく、上記
射出圧力も極端に高くないので、残留歪みの発生を防止
でき、この残留歪みに起因する経時的変形を防止できる
Since the temperature of 12a is relatively high at 170 to 180'C as described above, the fluidity of the molten resin is not impaired, and the molding surface 11a forms a mirror surface when the molten resin receives injection pressure.
, 12aL: Very good transfer is possible due to close contact,
Highly accurate smoothness can be obtained. Moreover, the molding surface 1
1a and 12a are at high temperatures, there is little difference in the solidification rate from the periphery to the center of the cavity 14, and the injection pressure is not extremely high, so the generation of residual strain can be prevented. It is possible to prevent deformation caused by aging over time.

また、凝固速度の差があ主りないので、中央部のみが射
出圧力により肉厚となってしまうのを防止できる。
Furthermore, since there is no difference in solidification rate, it is possible to prevent the wall from becoming thick only in the central part due to injection pressure.

溶融樹脂は、第一次金型10で表面温度がガラス転移点
以下になるまで冷却されて賦形される。
The molten resin is cooled and shaped in the primary mold 10 until the surface temperature becomes below the glass transition point.

賦形された一次歳形品40は、円盤部41とスプル一部
42とを有している。円盤部41の肉厚はキャビティ1
3の最終幅1.と等しく、後述の最終成形品45より若
干厚い。
The shaped primary shaped product 40 has a disk portion 41 and a sprue portion 42. The thickness of the disk portion 41 is that of the cavity 1
Final width of 3 1. , and is slightly thicker than the final molded product 45 described later.

賦形終了後に、スライドカットコア14.I Sを油圧
を用いて第1図中右方向に若干量移動させて一次成形品
40を破線Aで示すように切断し、円盤部41の中央部
とスプル一部42とを、円盤部41の池の部分から分離
する。この際、射出機のノズルもスライドカットコア1
4.15に追随して後退する。
After shaping, slide cut core 14. The primary molded product 40 is cut as shown by the broken line A by moving the IS slightly to the right in FIG. Separate from the pond part. At this time, the nozzle of the injection machine also slide cut core 1
4. Retreat following 15.

次に、移動側ダイプレート32を固定側ダイプレート3
1から離す方向に移動させて、@2図に示すように型開
きを行なう。この時、エア通路17から圧縮エアを供給
し、円筒状スリブ)17aを経て一次成形品40に向か
って吹き出させる。
Next, move the moving die plate 32 to the fixed die plate 3.
Move it in the direction away from 1 and open the mold as shown in Figure @2. At this time, compressed air is supplied from the air passage 17 and blown out toward the primary molded product 40 through the cylindrical sleeve 17a.

これにより、鏡面をなす成形品11a、12aから密着
状態の一次成形品40を離す。
Thereby, the primary molded product 40 in close contact is separated from the mirror-finished molded products 11a and 12a.

次に、中央部をくり抜かれた円盤部41を、取り出し機
50によりバキューム吸着等の手段で移動型12かち取
り出すとともに、スプル一部42等を突き出しピン16
で突き出して移動型12から落下させる。
Next, 12 movable molds are taken out of the disk part 41 with the central part hollowed out by a means such as vacuum suction using a take-out machine 50, and the sprue part 42 etc. are pushed out and the pin 16 is removed.
to push it out and drop it from the movable mold 12.

上記取ワ出し磯50は円盤部41を第二次金型20主で
移動させ、移動型22の固定コア25に円盤部41の中
央の孔41aを差し込む。この際、移動型12と移動型
22が近い位置にあるので、迅速に円盤部41を移動さ
せることができ、円盤部41の変形を防止できる。なお
、突き出し入リーブ26が成形面22aから若干量スプ
リング(図示しない)の力で突出しており、円盤部41
はこのスリーブ26の先端に位置決めされて、成形面2
2aから離れている。したがって、円盤部41の一面だ
けが先に冷却されることはない。
In the tapping rock 50, the disc part 41 is moved by the secondary mold 20, and the central hole 41a of the disc part 41 is inserted into the fixed core 25 of the movable mold 22. At this time, since the movable mold 12 and the movable mold 22 are located close to each other, the disc part 41 can be quickly moved and deformation of the disc part 41 can be prevented. Note that the protruding rib 26 protrudes from the molding surface 22a by a slight force of a spring (not shown), and the disc portion 41
is positioned at the tip of this sleeve 26, and the molding surface 2
It is far from 2a. Therefore, only one surface of the disk portion 41 is not cooled first.

次に、移動側ダイプレート32を再び固定側ダイプレー
ト31に近付けて、型締めを行なう。この際、円盤部4
1の一方の面が固定型21の成形面21aに当たって押
されるため、突き出しスリーブ26が後退し、この直後
に円盤部41の池方の面が移動型22の成形面22aに
当たる。このように、円盤g41の両面が殆ど同時に成
形面21a、22aに接するため、冷却速度の差に起因
する歪みを防止でざる。
Next, the movable die plate 32 is brought close to the stationary die plate 31 again and the molds are clamped. At this time, the disc part 4
1 hits the molding surface 21a of the fixed mold 21 and is pressed, the ejecting sleeve 26 retreats, and immediately after this, the Ike side surface of the disc part 41 hits the molding surface 22a of the movable mold 22. In this way, since both surfaces of the disk g41 come into contact with the molding surfaces 21a and 22a almost simultaneously, distortion caused by the difference in cooling rate can be prevented.

第二次金型20では、型締め力で円盤部41の樹内の中
心部を塑性変形させることにより、厚さLlの円盤部4
1をキャビティ23の幅と等しい厚さし、まで圧縮する
とともに、約i o o ’c以下(冷却収縮に伴なう
変形が生じない温度である)主で冷却し、磁気ディスク
基板としての最終成形品45を得る。上記圧縮冷却によ
り、最終成形品45は冷却に伴なう収縮で生じる反り等
の変形を確実に防止できる。また、肉厚の微小の不均一
が残っていても、これを矯正して均一化することができ
る。
In the secondary mold 20, by plastically deforming the inner center of the disc part 41 with the mold clamping force, the disc part 4 with a thickness Ll is
1 is compressed to a thickness equal to the width of the cavity 23, and cooled at a temperature below approximately IoO'c (a temperature at which deformation due to cooling shrinkage does not occur) to form the final magnetic disk substrate. A molded product 45 is obtained. By the compression cooling described above, the final molded product 45 can reliably prevent deformation such as warpage caused by shrinkage due to cooling. Furthermore, even if there are still minute non-uniformities in the wall thickness, this can be corrected and made uniform.

上記成形の過程で、第一次金型10および第二次金型2
0の温度は一定に維持しておけばよく、高温から低温へ
の移行、低温から高温への移行を含む温度制御サイクル
を実行しないから、成形サイクルを短縮でき、エネルギ
ーの節約を図ることもできる。
In the above molding process, the primary mold 10 and the secondary mold 2
The temperature at 0 only needs to be maintained constant, and a temperature control cycle that includes transitions from high to low temperatures and from low to high temperatures is not executed, so the molding cycle can be shortened and energy can be saved. .

第二次金型20では、上記圧縮冷却後に、型開きする。In the second mold 20, the mold is opened after the compression cooling described above.

この際、エア通路27から供給された圧縮エアをスリ7
)27aを経て上記最終成形品45に吹き付けることに
より、これを鏡面をなす成形面21a、22aから離す
とともに、突き出しスリーブ26で突き出し、池の取り
出し磯で取り出す。
At this time, the compressed air supplied from the air passage 27 is
) 27a onto the final molded product 45 to separate it from the mirror-like molding surfaces 21a and 22a, and at the same time eject it with the ejecting sleeve 26 and take it out at a takeout rock in the pond.

上述したように、型締め時には、第一次金型10で射出
、冷却賦形を行なうとともに第二次金型20で圧縮冷却
を行ない、型開き時には、第一次金型10で一次成形品
40の取り出しを行なうとともに第二次金型20で最終
成形品45の取り出しを行なうものであり、同時に2工
程を実行するので生産性が高い。
As mentioned above, when the mold is closed, the primary mold 10 performs injection and cooling shaping, and the secondary mold 20 performs compression cooling, and when the mold is opened, the primary molded product is molded in the primary mold 10. 40 and the final molded product 45 from the secondary mold 20. Since two steps are performed at the same time, productivity is high.

この発明方法は上記実施例に制約されず種々の態様が可
能である。
The method of this invention is not limited to the above embodiments, and various embodiments are possible.

例えば、第一次金型10.7)媒体通路18に温度が異
なる2種の冷却媒体を交互に流し、金型温度を射出開始
時にガラス転移点以上にし、射出後にガラス転移点以下
まで低下させてもよい。この場合、金型温度のサイクル
を実行するため、エネルギーの消費は上記実施例よりも
増えるが、平滑性等をより向上できる。この場合でも、
温度サイクルの上限と下限の幅は、比較的狭いので、大
きなエネルギーの消費にはならない。
For example, in the primary mold 10.7), two types of cooling media with different temperatures are alternately flowed into the medium passage 18, and the mold temperature is made to be above the glass transition point at the start of injection, and then reduced to below the glass transition point after injection. It's okay. In this case, since the mold temperature cycle is executed, energy consumption is higher than in the above embodiment, but smoothness etc. can be further improved. Even in this case,
Since the range between the upper and lower limits of the temperature cycle is relatively narrow, it does not consume much energy.

また、通常の射出成形装置で射出と冷却賦形を行なって
第−次成形品を得、上記射出成形装置とは別体をなす冷
却手段を備えたプレス装置で上記第一次成形品の圧縮冷
却を行なってもよい。
In addition, the primary molded product is obtained by performing injection and cooling shaping using a normal injection molding device, and the primary molded product is compressed using a press device equipped with a cooling means that is separate from the injection molding device. Cooling may also be performed.

この発明装置において、第二次金型の固定型に成形用凹
部を形成し、移動型に成形用凸部を形成し、上記凹部に
凸部を挿入することに上り、容積変化の可能なキャビテ
ィを形成してもよい。
In the apparatus of this invention, a molding recess is formed in a fixed mold of a secondary mold, a molding projection is formed in a movable mold, and the projection is inserted into the recess, thereby forming a cavity whose volume can be changed. may be formed.

主な、第一次金型の固定型を2分割し、そのキャビティ
側の部位を移動型が僅かに開いた時に移動させることに
より、スライドカットコアで支持した一次成形品のスプ
ル一部を切断するように構成してもよい。
By dividing the fixed mold of the main primary mold into two parts and moving the part on the cavity side when the movable mold opens slightly, a part of the sprue of the primary molded product supported by the slide cut core is cut. It may be configured to do so.

(発明の効果) 以上説明したように、この発明方法では、転写を良好に
行なえるため高精度の平滑性を達成できるとともに高い
寸法精度を得ることができ、主た確実に変形を防止でき
る。しかも、大きな温度差での金型の温度制御サイクル
を実行しなくて済み、成形サイクルを短縮できるととも
に、エネルギーの消費を少なくすることができる。
(Effects of the Invention) As explained above, in the method of the present invention, since transfer can be performed well, highly accurate smoothness can be achieved, high dimensional accuracy can be obtained, and deformation can mainly be prevented reliably. Moreover, it is not necessary to perform a mold temperature control cycle with a large temperature difference, so the molding cycle can be shortened and energy consumption can be reduced.

また、この発明装置では、共通のダイプレートに第一次
金型と第二次金型が設置されるため、設備コストが安価
であるとともに生産性が高い。第一次金型で得られた一
次成形品を短時間で確実に第二次金型へ移すことができ
るので、移動時の一次成形品の変形を防止できる。
Furthermore, in the device of this invention, the primary mold and the secondary mold are installed on a common die plate, so the equipment cost is low and productivity is high. Since the primary molded product obtained in the first mold can be reliably transferred to the second mold in a short time, deformation of the primary molded product during transfer can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示すものであり、第1図、
第2図は型締めおよび型開きの状態をそれぞれ示す成形
装置の横断面図である。 10・・・第一次金型、20・・・第二次金型、11.
21・・・固体型、12.22・・・移動型、lla、
12a。 21a、22a・・・成形面、13.23・・・キャビ
ティ、14a・・・スプルー、18.28・・・媒体通
路(温度制御手段)、31・・・固体側ダイプレート、
32・・・移動側ダイプレート、40・・・−次成形品
、45・・・最終成形品。
The drawings show one embodiment of the invention, and include FIG.
FIG. 2 is a cross-sectional view of the molding apparatus showing the mold-clamping and mold-opening states, respectively. 10... Primary mold, 20... Secondary mold, 11.
21...solid type, 12.22...mobile type, lla,
12a. 21a, 22a... Molding surface, 13.23... Cavity, 14a... Sprue, 18.28... Medium passage (temperature control means), 31... Solid side die plate,
32... Moving side die plate, 40...-Next molded product, 45... Final molded product.

Claims (3)

【特許請求の範囲】[Claims] (1)キャビティの最終幅を成形品の厚さより若干広く
した第一次金型と、キャビティの最終幅を成形品の厚さ
とほぼ等しくした第二次金型とを用意し、第一次金型を
比較的高温にし、第二次金型を比較的低温にし、第一次
金型のキャビティに溶融樹脂を射出充填して冷却賦形し
、賦形された一次成形品を第二次金型に移して圧縮冷却
することにより最終成形品を得ることを特徴とする精密
成形品の成形方法。
(1) Prepare a primary mold in which the final width of the cavity is slightly wider than the thickness of the molded product, and a secondary mold in which the final width of the cavity is approximately equal to the thickness of the molded product. The mold is kept at a relatively high temperature, the secondary mold is kept at a relatively low temperature, the molten resin is injected into the cavity of the primary mold, cooled and shaped, and the shaped primary molded product is transferred to the secondary mold. A method for forming precision molded products, characterized by obtaining a final molded product by transferring the product to a mold and compressing and cooling it.
(2)第一次金型の成形面温度を射出樹脂のガラス転移
点より10〜40℃低い温度にしておいて射出を行ない
、樹脂の表面温度がガラス転移点以下になるまで冷却し
て一次成形品を得、第二次金型で樹脂の表面温度が10
0℃以下になるまで冷却して最終成形品を得る特許請求
の範囲第1項に記載の精密成形品の成形方法。
(2) Perform injection with the molding surface temperature of the primary mold set at a temperature 10 to 40°C lower than the glass transition point of the injected resin, and cool until the surface temperature of the resin falls below the glass transition point. A molded product is obtained, and the surface temperature of the resin in the second mold is 10
The method for molding a precision molded product according to claim 1, wherein the final molded product is obtained by cooling to 0° C. or lower.
(3)第一次金型と第二次金型とを備え、各金型の固定
型が共通の固定側ダイプレートに設置され、各金型の移
動型が共通の移動側ダイプレートに設置され、第一次金
型は射出樹脂の通路となるスプルーを有するとともに、
このスプルーに連通し最終幅が成形品の厚さより若干広
く設定されたキャビティを有し、第二次金型は最終幅が
成形品の厚さとほぼ等しく設定されたキャビティを有し
、第一次金型はこの金型を比較的高温に維持する温度制
御手段を有し、第二次金型はこの金型を比較的低温に維
持する温度制御手段を有していることを特徴とする精密
成形品の成形装置。
(3) Equipped with a primary mold and a secondary mold, the fixed mold of each mold is installed on a common fixed die plate, and the movable mold of each mold is installed on a common movable die plate The primary mold has a sprue that serves as a passage for the injected resin, and
The secondary mold has a cavity that communicates with this sprue and whose final width is set to be slightly wider than the thickness of the molded product, and the secondary mold has a cavity whose final width is set approximately equal to the thickness of the molded product. Precision molding characterized in that the mold has temperature control means for maintaining the mold at a relatively high temperature, and the secondary mold has temperature control means for maintaining the mold at a relatively low temperature. Molding equipment for molded products.
JP5226986A 1986-03-10 1986-03-10 Method and apparatus for molding precision form Pending JPS62208916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5226986A JPS62208916A (en) 1986-03-10 1986-03-10 Method and apparatus for molding precision form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5226986A JPS62208916A (en) 1986-03-10 1986-03-10 Method and apparatus for molding precision form

Publications (1)

Publication Number Publication Date
JPS62208916A true JPS62208916A (en) 1987-09-14

Family

ID=12910055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5226986A Pending JPS62208916A (en) 1986-03-10 1986-03-10 Method and apparatus for molding precision form

Country Status (1)

Country Link
JP (1) JPS62208916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849062A1 (en) * 1996-12-21 1998-06-24 HERBST, Richard Method and apparatus for removing plastic products from a plastic injection moulding machine
JP2007112028A (en) * 2005-10-21 2007-05-10 Musashino Kiko Kk Method and apparatus for manufacture of recycle plastic panel
ITTO20090439A1 (en) * 2009-06-09 2010-12-10 Inglass S R L PROCEDURE AND INJECTION MOLDING EQUIPMENT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849062A1 (en) * 1996-12-21 1998-06-24 HERBST, Richard Method and apparatus for removing plastic products from a plastic injection moulding machine
JP2007112028A (en) * 2005-10-21 2007-05-10 Musashino Kiko Kk Method and apparatus for manufacture of recycle plastic panel
ITTO20090439A1 (en) * 2009-06-09 2010-12-10 Inglass S R L PROCEDURE AND INJECTION MOLDING EQUIPMENT

Similar Documents

Publication Publication Date Title
EP0610002B1 (en) Mold for injection molding of thermoplastic resin
US5648105A (en) Apparatus for making a plurality of optical record disc subtrates
JPS62208916A (en) Method and apparatus for molding precision form
JPS6311317A (en) Molding device
JP2001079889A (en) Mold
JP2994580B2 (en) Injection mold, injection molding apparatus, and injection molding method
JP2008230005A (en) Plastic lens molding method and lens preform
JP2821093B2 (en) Manufacturing method of plastic molded article and molding die
JP4081962B2 (en) Insulating mold manufacturing method and apparatus and insulating mold
JP2000052390A (en) Molding method for plastic part and mold therefor
JPS61290024A (en) Mold for molding plastic lens
TW537959B (en) Die assembly used for forming optical disc
JP2002187168A (en) Mold for molding optical element and optical element molded article
JPH03193322A (en) Mold for plastic lens
JPH0566245B2 (en)
JP2000084950A (en) Mold for molding optical element, molding method, and optical element
JPS588622A (en) Molding of precise plastics parts
JPH1142684A (en) Injection molding method
JPH11291292A (en) Molding die
JPS6337912A (en) Injection compression molding die assembly
JPH07186181A (en) Manufacture of substrate for optical disc
EP0846542A1 (en) Method of and apparatus for molding with multiple temperature adjusting channels
JP2000229336A (en) Mold for molding
JP2003025396A (en) Method for injection molding plastic optical element, and mold for injection molding
JPS6391216A (en) Molding mold